What’s Happening Now...

W hat better way to learn about the state of the Laboratory—its present excitement and its future possibilities—than to talk with some of the outstanding scientists at Los Alamos. We chose ten who represent a wide spectrum of fields and asked them to share their personal views on the mission of the Laboratory, the current work, the management of research, and some pragmatic directions for the future.

SCIENCE: I know that many of you chose to come to Los Alamos for personal reasons and are enthusiastic about its setting, its people, and your own work here. But Los Alamos has always been a...
mission-oriented Laboratory, and I wonder how you view that mission and your role in it?

BAKER: Let me suggest a definition of the main mission of the Laboratory. Our mission is to provide input on all energy and national security issues that have a scientific or technological component. Is that general enough?

WHEATLEY: Yes, but I wonder whether the Laboratory’s management has firmly in mind what technologies and ultimate applications we should be seeking.

HECKER: I personally feel that national security is our most important mission. Essentially, the country has entrusted to us and to Livermore their nuclear defense.
LANDT: Certainly the Laboratory is aware of its obligation to help the country defend itself and to maintain a balance of technologies. Right now I am assigned to the Weapons Advanced Concepts Program Office, which was begun a year ago to try in a practical way to determine which technologies really make a difference for the national defense so that the country won’t throw its money away on the wrong things. The Laboratory management is very interested in addressing this issue, and they have put dollars behind it and people to work on it.

ROCKWOOD: Today the government’s method of doing business is very much applied and mission-oriented. Although basic research is also essential to our national security mission, it is often overlooked, and the national laboratories are handcuffed in this area by administrative limitations. People here have to be clever in extracting from their mission-oriented programs good basic results in science. I think Los Alamos has been rather successful at that.

WHEATLEY: Do you think mission orientation is a good thing? As a matter of principle?

ROCKWOOD: Moderation in all things.

BAKER: I think we must fight this trend toward applied work only, toward everything having an immediate payoff. A national laboratory should play as active a role in basic research as any laboratory. The country will suffer in the long run if we don’t.

ROCKWOOD: Often the most exciting and fundamentally useful part of a program is not its stated objective but some unplanned spin-off. In the laser isotope separation program, spectroscopists working to explain the spectrum of the octahedral molecule UF discover that the octahedral symmetry group had previously been analyzed incorrectly and had been wrong in the literature for years. Even a very applied program may yield results of use to basic science.

BAKER: That’s certainly been true in space physics. The Vela satellite program to detect nuclear explosions deep in space was a mission-oriented project, and we continue to have test and verification activities. To accomplish that practical goal we had to place instrumentation on the spacecraft to measure the environment. As a result, many properties of the magnetosphere were discovered.

Now the space physics groups are involved in a number of activities on collisionless shock waves, cosmic particle acceleration, the interplay between the solar wind and the earth’s magnetic field, and the exploration by the International Sun-Earth Explorer 3 satellite of the night side of the earth.

SCIENCE: How do you get funds for all these activities?

BAKER: In a variety of ways. We have been able to obtain reimbursable funding from NASA [National Aeronautics and Space Administration] for some of our projects. But the continuing money from the weapons program gives us more stability than we could ever obtain from reimbursable funding alone. When we get our funding from the DOE [Department of Energy] or from the Laboratory, we are better able to make long-range plans. It’s fortunate for us that the Europeans are also participating in many of our scientific satellite programs because the European Space Agency plans much further ahead than NASA does.

HYMAN: There are some problems with diversified funding. The Mathematical Modeling and Analysis Group in the Theoretical Division is almost completely basic research, and we also have been obtaining some support from outside the Laboratory. The largest block grant we have supports only one and one-half staff members. Because our funding comes in such little pieces, we are perpetual job hunters and odd jobbers—always knocking on a different door.

ROCKWOOD: The country hasn’t learned how to fund basic science at all. Research doesn’t integrate with time. Each administration

Dan Baker on Space Science

The Vela satellite program to detect nuclear explosions in space has led scientists at Los Alamos to satellite exploration of the magnetosphere and of a wide variety of other space phenomena. Some of the instruments aboard such spacecraft have been designed to measure the interplanetary medium and planetary bow shocks, and we are doing theoretical studies in support of these observations. A related study is our work on cosmic particle acceleration. The information about energization of particles at interplanetary shocks may have applicability to shocks of much more cosmic proportions, such as those presumed to exist in supernova remnants.

We are also exploring the interplay between the solar wind [the hot, expanding corona of the sun] and the magnetic field of the earth. This interplay produces the magnetic structure we call the magnetosphere, the tenuous plasma region that makes up the uppermost part of the earth’s atmosphere. We are doing computer modeling of the entire magnetosphere and, furthermore, are developing computer network links to many other institutions involved in similar work.

In a more practical vein we are using our advancing technology to do experiments in which we release chemical tracers into the ionosphere or even deeper into the magnetosphere to learn in what way these additives may modify the outer parts of the earth’s environment.

Still another project is attempting to use an existing satellite in a different and innovative way. The International Sun-Earth Explorer 3 [ISEE-3] spacecraft has been orbiting at the L-I
comes in and has a new policy. Basic science suffers more from these oscillations than it would from a low level of sustained funding. And I believe Los Alamos suffers more from funding oscillations and changes in direction than other national laboratories. Our normal attrition rate is about 4 per cent per year. Any change in direction by more than that amount involves moving people around. People’s skills are not always totally applicable to a different program, and those who are not absorbed by other parts of the Laboratory are not absorbed by the town at all. It is this very closed environment, which drastically constrains our flexibility, that I see as a major problem for the Laboratory. It always has been so.

Returning to the question of the funding of basic research, I feel that, although the government can’t just pour out money and expect nothing in return except good intentions, the funding “pendulum” has swung too far toward applied activities.

WHEATLEY: Some of you would say that Los Alamos ought as a matter of principle to devote some fraction of its work to purely unqualified basic science, the sole motive being to understand things better and to develop knowledge or whatever—to have fun, really. I would like to suggest that perhaps that’s not true. Perhaps it is our responsibility to articulate the possible relationship between our work and some appropriate mission of this Laboratory. I am not thinking of explicit applications, necessarily. Let me give you a personal example. I think that it is appropriate that my work in thermal and condensed-matter physics should feed into thermal technology, broadly defined, that is to say, into technologies that involve the concepts of energy, work, heat, temperature, and so on.

Right now I am working on heat engines. I had set myself a semipractical problem that no one in industry would define as practical of course—but it was. It had to do with producing cold very simply. I had an idea for doing that with acoustics, so I started playing around with the idea, developing it, and soon—meaning one year later—I found that what I was doing seemed to me to have very broad implications. Now I have put possible applications off to one side, and I am looking strictly at the basic science, at the fundamentals of it. I think I have identified what I regard as a new principle applying to heat engines in a very general sense. I do feel a responsibility ultimately to be able to draw a connection between the basic scientific work I do and some technology.

KOLB: I don’t feel that way at all. There is a real necessity for nonmission. For fifteen years people have been looking at magnetic monopoles, intensively, just for pleasure, and for the past five or six years have been studying grand unified gauge theories—same motivation. Recently, Rubakov in Russia and Callan at Princeton have proposed that monopoles can catalyze proton decay, can just completely convert the rest mass of protons into energy. It will be another five years before it’s worked out. Now something like that would have a tremendous payoff. would be comparable to Otto Hahn’s discovery of fission. But it never could happen in a mission-oriented environment. No one told these people they should study monopole structure because it might have important applications. And no government agency has told me I should be studying them, either.

WHEATLEY: I’m not waiting to be told what I should do, either. For instance, I would feel perfectly fine studying spin-polarized hydrogen, a project in which I am very interested. Nor can I tell you what gadget that might be used in, but I do see that it is part of the foundation for thermal physics and that we ought to understand it.

KOLB: I don’t choose research projects by wondering if they will have any impact on technology.

BAKER: Aren’t you thinking of beam weapons systems using...
monopoles?

KOLB: If I think about it, it is only after doing the basic science.

HOWE: Is it necessarily the basic researcher’s responsibility to come up with the utility of it? There are, perhaps, other people who are more interested in the engineering side, so they take the proton-monopole catalysis concept that Rocky mentioned and say, “Well, let’s develop starship drives: let’s design power reactors!”

SCIENCE: Rocky, how do you choose your research projects? You’ve said how you don’t choose them.

KOLB: I don’t know, actually, I don’t know what I am going to be doing tomorrow or when I go back to my office. I read the literature and see what other people are doing. This communication is very important. I follow the direction the work is going.

HYMAN: You may recognize a problem as being important, but in the end the choice is subjective. A question gets under your skin, and you can’t let loose until you understand it. That’s the driving force behind science—the need to understand. As far as Rocky’s responsibility to the Laboratory, that has become clear as he’s talked. His obligation is to push back the frontiers of basic science—that’s his job description. At the same time every scientist has a responsibility to the overall health of the Lab. Whenever you discover something that could be applied in a programmatic effort, you go down the hall, knock on doors, and make sure the right people know about what you have done.

KOLB: When I first read about Callan and Rubakov’s work on monopole-catalyzed proton decay, I was at Aspen, and I said, “Well, I have to get back to Los Alamos and tell people about this.” but then Stirling and I decided it couldn’t work, so I didn’t go knocking on doors.

WHEATLEY: Coming back to the missions of the Laboratory, I understand why we should be doing some basic science and much fundamental technology, that is, research on problems whose ultimate objectives are fully seen. However, my own view concerning applied work and hardware is that if you have a particular, well-defined job to do, the private sector would probably do it better.

HECKER: I would disagree, John. The weapons mission is a specific job, and we have done it very well.

WHEATLEY: The weapons case is rather special because of the national security problem. Suppose that you took the secrecy requirements away.

BAKER: In fact, private industry does secret work, builds all the components. We provide the overall science and technology. I don’t think secrecy is the defining factor. The national laboratories are most effective doing both the theory and the design development of jobs that are high risk and from which an industry couldn’t expect a profit in a short term. Fusion is another example.

HYMAN: Our exceptional facilities also give us an edge over industry. The two thousand scientists at Los Alamos comprise a pool...
the ceramic loses strength. To eliminate the need for an additive, we have developed a technique for making an extremely fine, extremely reactive powder that shows great promise of densifying at low temperatures. We form the fine powder particles, which have diameters on the order of hundreds of angstroms, by a plasma-assisted chemical vapor-deposition process. In this process the constituents, such as silicon and carbon, are carried by appropriate gases and are reacted in a hot argon plasma. We are also using the Laboratory’s expertise in shock loading to activate ceramic powder containing larger diameter particles. The idea is to produce a large concentration of defects on the surface of the particles before attempting to consolidate them.

Ceramic whiskers, a field in which we are the world leader, are long, single-crystal fibers of, for example silicon carbide or silicon nitride, with diameters that vary from less than a micron to maybe ten microns. These single crystals are grown by a process called the vapor-liquid-solid process. They are essentially defect free and have enormous strengths, from ten to fifty times that of structural steel. We are now trying to incorporate the whiskers into a composite material—a glass matrix, a ceramic matrix, or a glass-ceramic composite—to make high-temperature materials. Essentially, we are using processing science to control the strength and the ductility of materials on a microstructural level.

Another area that is not new, but extremely fascinating, is the actinides. In the last few years a marriage of condensed-matter physics, chemistry, and metallurgy has helped us to understand the intriguing electronic and magnetic properties of these elements and, in particular, how they determine the macroscopic properties of plutonium, uranium, and americium. For plutonium, especially, the only way to understand it is to understand the role of its bonding f electrons. For example, because the f-electron wave functions possess odd symmetry, bonding of these electrons favors unusual crystal structures with low symmetry. People in academic circles are now becoming very interested in the actinides because they offer new physics.
processing, without question, has always come from the weapons program. Weapons designers, be they physicists or engineers, come to us with requests that to them seem exceedingly simple and to us almost impossible, at least at first glance. For example, the physicists wouldn’t hesitate to ask us for structural air, that is, something with no density but enormous strength. Faced with sophisticated problems for years and years, we’ve learned how to tailor-make many special materials.

We have also done some basic research in materials science, and in the past few years we have begun to apply our understanding of materials on an atomic level to materials processing. One example is rapid-solidification-rate technology to make amorphous metals with high strength and good corrosion resistance. Another is ceramics processing; we are attempting to make materials for high-temperature environments, such as composites containing single-crystal ceramic whiskers.

LANDT: Electronics is another field that combines ideas and applications; it’s partly software and partly hardware, and it’s a crucial part of future technologies. I would like to put before you a statement by Dr. DeLauer, Undersecretary for the Department of Defense. Dr. DeLauer insists that electronics is the most critical of all technologies for the maintenance of peace, and he claims that “Further development of the electronics technology base of the United States is as important to defense today as the atomic bomb in World War II.”* I think it’s time the Laboratory took its electronics seriously.

BAKER: There are, however, a lot of good electronics firms.

LANDT: We are working on several projects that could make significant contributions in electronics—areas that private industry is not touching. These include high-speed electro-optic switches and thermionic integrated circuits that have important military as well as commercial potential. We are also developing high-power microwaves from lasers. This is research that could not be done without the exceptional computer and experimental facilities at Los Alamos.

SCIENCE: Since we have mentioned speaking freely, I’d like to ask Steven whether there’s anything he can tell us about weapons design work.

HOWE: Most of what we do is classified, but I can say that we work to get better codes, better computational abilities to describe the processes in the weapon, to put in the things we do know so that the things we have to extrapolate can be better estimated. In the year I have been here we have come up with several interesting pursuits. One is in low-energy nuclear physics: there is a process that we think exists in the weapon but that we don’t account for in the codes. This particular development is interesting because we have shared it with Livermore, and we have collaborated with them in getting it into the codes and making estimates. We also do secondary design work on weapons materials, attempting to understand basic processes. Generally we aim to satisfy the military requests and to come up with smaller, more efficient devices. We are continually looking at new...

several exciting things are happening in life sciences. We are using laser-based flow cytometric methods to separate chromosomes from mammalian including human, genomes. DNA from these isolated chromosomes can be cloned by recombinant DNA methods, allowing studies of the basic structure and functional organization of the chromosome. Los Alamos is one of perhaps three labs with the requisite expertise in biophysics and molecular biology to perform this work, and recent NIH [National Institutes of Health] funding to establish a Flow Cytometry National Resource is fostering progress in this area.

We are also working on cellular oncogenes. These genes are thought to control the evolution of the normal cell toward malignant change. The isolation, that is, the cloning, of such genes by recombinant DNA methods and the reinsertion of these genes into normal cells, by a process known as DNA-mediated gene transfer, permit us to study how specific oncogene expression can result in cancerous change. We are also studying the role that gene rearrangement, which can result for example from chromosome damage, can play in the initiation and progression of cancer. This work relates to DOE concerns regarding the effects of both ionizing radiation and the by-products of fossil-fuel development and consumption.

Another exciting development is the establishment of an NIH-funded DNA sequence database in the Theoretical Division. Sequencing, or decoding, of the genetic code in cloned fragments of DNA is meaningful only if such information can be stored, retrieved readily, and analyzed. Just consider for a moment that each mammalian organism expresses on the order of fifteen thousand distinct genes in a cell—not to mention that each cell has DNA encoding for an amount of unexpressed information that is several orders of magnitude greater. Software development for the analysis of the stored sequences will be pursued

oncomitantly with this Herculean bookkeeping effort. ■

things and attempting to improve the codes both in X Division where we do theoretical weapons design and in T [Theoretical] Division. We do interesting work. and I find it kind of sad that we can’t tell everybody about it. Clearly we could do better if we could talk to people.

BAKER: Do you find it difficult to get rewards from your work because you can’t talk with more people about what you do, can’t publish results?

HOWE: In some sense your ideas are rewards in themselves. If they work, you know you have made a gain, perhaps even contributed to unclassified scientific efforts like inertial confinement fusion, which is also being studied in our division.

SCIENCE: Is it difficult to pick up information you need because your problems are classified?

HYMAN: I really think it is. It is frustrating on all sides not to be able to express an interesting scientific question in the context where it arises. You notice the difference at national physics meetings between the typical scientist and those working only on classified problems. The ones working on unclassified problems can go to the blackboard and describe everything in minute detail, get immediate feedback, and also know that people will go home and continue thinking about the problem. When people first come to X and T Divisions, they continue to go to physics conventions as they did before. But if they work only on classified problems, often within the first few years their attendance drops off very fast. Some just stop attending national meetings and interacting with the outside world.

At the Center for Nonlinear Studies [CNLS] we are trying to encourage interactions between the classified and unclassified research areas by organizing mixed workshops. In these workshops the first two or three days are unclassified and uncleared university scientists are encouraged to attend and speak. On the last day classified questions related to national security are addressed, and the attendance is limited. The last such conference was a joint X-Division/CNLS workshop in February on interface instabilities.

A problem we have not been able to overcome is that numerical results generated by a classified code are classified—even when the physics model, the data tables, and the numerics used in the run are unclassified. This restriction greatly inhibits interactions with computational physicists outside the Laboratory.

SCIENCE: How open is the communication between T and X divisions?

HOWE: We rely heavily on our communication with T Division people.

HYMAN: Mostly it’s between people you’ve worked with for years or know from the coffee machine. And the interchange is more limited now that the two divisions have been physically separated. We are trying to get more joint seminars so that we can indeed hear what people doing unclassified research learn in the outside world and then relate it to our needs.

HECKER: It is a poor substitute to have to depend on T Division for your information.

HOWE: It doesn’t really work.

SCIENCE: Is an effort being made to change the situation?

HYMAN: Yes, there’s been a change in the attitude of management.
In T Division we’ve always been very strongly encouraged to publish at least one paper, if not more, a year and to present at least one, if not more, at a national meeting. Some of the same emphasis is now appearing in X Division.

HOWE: We are getting more new people straight out of universities, and I think those who are new are interested in the national meetings. Getting back to our relationship with T Division, I would like to see us, as designers, integrate better with the work in T Division. For example, we really don’t have a well-defined effort to do nuclear physics type research in the weapons physics business. We do our job for the military. They say, “We want this beast,” and so we take what the codes can give us, and we design the creature. The T Division staff doesn’t have this limitation and their work in nuclear physics is relevant to what we do in weapons.

BAKER: I know that some people in X Division work enthusiastically with the space groups. They have a number of large computer codes that they like to test on a variety of systems to see just how well the codes predict behavior. The magnetosphere is a large plasma system with magnetic fields; they like to try to model that. We do such modeling, too, and like to compare the results of our different codes.

SCIENCE: I want to ask you about the young people in the weapons program. Are they there because the problems are interesting or because they have some feeling of commitment to the development of new weapons?

HOWE: Many of them are in there because they did their theses in areas used in weapons research. Weapons development is such a multidisciplinary field; everything in the world is involved in making this thing go. Chemistry, physics, nuclear engineering, hydrodynamics—almost any field you name is involved. I would say people’s motivations vary.

HYMAN: Many people have come into the weapons field because at one time they recognized that controlling fusion is one of the most important unsolved physics problems of the century. Much of the knowledge and data needed to crack the controlled fusion problem is classified. Once in the system, people find the weapons-related problems equally or even more fascinating and rewarding.

HECKER: Because of the strictures of classification, people rarely choose to come to the Laboratory to do materials research for the weapons program. People come here to do research in other areas and then wind up working on weapons problems because they are so interesting. We do have a corps of extremely dedicated people who build prototype hardware, develop our local shots, and design Nevada Test Site shots. But the tight ring of security really stops the flow of ideas from the outside in. Our metallurgists working on plutonium have been so strictly limited that we have tried to give them a cross section of other work, but an enormous amount of materials expertise remains outside the reach of the Laboratory.

SCIENCE: A new Center for Materials Science has been created at the Laboratory, as well as the Center for Nonlinear Studies and a branch of the Institute for Geophysics and Planetary Physics. Are these centers aimed at alleviating the communications problem?

HECKER: Yes. Don Kerr has recognized the overall problem. The Center for Materials Science has brought us in close contact with first-class materials science people outside the Laboratory.

HYMAN: The Center for Nonlinear Studies has had a similar impact. We sponsored over three hundred visitors last year. Besides the week-long conference each year, we have a number of workshops in areas we’ve chosen to target. One target this year is understanding the creation, stability, and evolution of patterns, fronts, and interfaces. There will also be workshops on cellular automata, implicit methods of differential equations, fracture mechanics, science underground, synthetic metals, and biopolymers. And what is even better than solving immediate problems is bringing together from the Laboratory, industry, and universities people on a one-to-one basis—establishing relationships that can continue for many, many years.

BAKER: In contrast, the Institute for Geophysics and Planetary Physics is directed toward interactions with professors and their students. We are a resource of the University of California in particular, and we now have a number of their graduate students working here for a year or two.

KOLB: This type of interaction not only helps us; it brings in people who then discover what is going on in the Laboratory. Half the people taking part in this discussion had their first contact with the Laboratory either as graduate students or as postdocs. Both the graduate student program and the postdoc program are really excellent ways for the Laboratory to recruit good people. I strongly believe it would be to the long-term benefit of the Laboratory to enlarge these programs and the visitor program as well.

ROCKWOOD: We should also work closely with the universities to make both students and faculty aware of the directions in applied science and the particular types of people that we see we are going to need. We can give universities access to such facilities as LAMPF, Antares, and Helios as research laboratories for their students; in return they may become more familiar with this Laboratory and be more responsive to our future needs.

HYMAN: In line with this thinking I should point out that the Graduate Research Assistant program is probably the most effective and least expensive of all of our advertising. But it’s under-utilized, and I’d like to see it used more.

CRAWFORD: The closer our contact with graduate students, the better off we are, I think. It’s a way of advertising the incredible potential and diversity of this place—some of it realized and some still untouched. It’s difficult to overstate the importance of the Laboratory’s diverse capabilities. I think there’s a real need to keep
Laboratory Support for Basic Research

The Laboratory has always recognized the need to support a wide variety of basic research, and for most of the Laboratory’s history, that research was funded entirely by the weapons program. During the 1970s, however, budgetary constraints made it increasingly difficult to maintain the level of so-called Weapons supporting Research, and in 1975 concern about its steady decrease prompted Harold Agnew to found the New Research Initiatives program as a supplement. However, despite the Laboratory’s growth and widened spectrum of activities, Weapons supporting Research funds continued to be the dominant means of Laboratory support for basic research.

In fiscal year 1982 Donald Kerr combined and expanded the Weapons Supporting Research and New Research Initiatives programs with establishment of the Institutional supporting Research and Development program. This new program incorporated the following principles, many of which required new and extensive plans on the part of everyone involved.

- The program should be Laboratory wide and should include a broad spectrum of research and development related to all Laboratory programs.
- Projects should be consistent with and in support of the Laboratory’s basic missions.
- Funds should be distributed according to a fair scheme that encourages competitive proposals and ensures optimum investment of resources.
- Support should be derived proportionately from all Laboratory programs.
- Accountability of funds should be reasonable and consistent with normal practice.

The ISRD program has definitely improved the manner in which discretionary research funds are allocated and the status of funded projects is reviewed. Considerable freedom is exercised by the Laboratory’s associate directors in organizing and evaluating projects under their directorates. As is usual with any new program, some shortcomings have been recognized and some evolution is expected. It is evident that, in spite of the healthy challenge of submitting competitive proposals, there have been too many proposals and they have, for the most part, been too long. Paperwork is being reduced, and a system of triennial, rather than annual, review is being developed for some projects.

The accompanying table lists the distribution of ISRD funds among various broad categories in fiscal year 1982.

<table>
<thead>
<tr>
<th>Research Category</th>
<th>Allocated Percentage of Total Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science and Chemistry</td>
<td>32%</td>
</tr>
<tr>
<td>Program Development and Applied Technology (Energy and Defense)</td>
<td>25%</td>
</tr>
<tr>
<td>Mathematics, Techniques, and Computer Modeling</td>
<td>13%</td>
</tr>
<tr>
<td>Nuclear Physics and Nuclear Chemistry</td>
<td>11%</td>
</tr>
<tr>
<td>Medium and High-Energy Physics</td>
<td>8%</td>
</tr>
<tr>
<td>Plasma Physics and Astrophysics</td>
<td>4%</td>
</tr>
<tr>
<td>Earth and Space Sciences</td>
<td>4%</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>3%</td>
</tr>
</tbody>
</table>

not just students, but the whole country, informed about what we’re doing and can do. One important example in life science research is the new DNA sequence data base being established in the Theoretical Division and funded by the National Institutes of Health. This will be a comprehensive computer-based library of DNA sequences designed specifically as a resource for scientists around the world who are doing recombinant DNA research. Eventually we may be able to produce a computer-based, electronic journal that bypasses conventional publication. Scientists could submit their DNA sequence data for review and receive results in recombinant DNA research electronically.

SCIENCE: How do new projects such as the DNA sequence library get started?

HOWE: First someone has to have an idea and that usually happens quite informally. We sit around and talk and suddenly some guy comes up with a neat idea.

COLGATE: “That’s right. Some of us don’t know one another very intimately, but sooner or later we will meet, I will bump into John and start talking about cryogenic systems for fractional charge separation using superfluid liquid helium as a charge separation drift chamber.

ROCKWOOD: Once the idea is hatched, you might try it out with what is called bootlegging. You do the experiment or the calculations at your own discretion, but generally with the knowledge of the group leader, division leader, or whoever else is involved. If the idea shows real promise you may be funded through Institutional Supporting Research and Development [ISRD] money. This is the Laboratory’s discretionary fund. It has traditionally been used for basic research,
but more recently it has also been used to fund new applied programs. I, for one, believe the applied programs should receive an equal share of this money. This is our investment in the programs of the future, and, in the final analysis, only programs pay the Laboratory’s bills.

HECKER: The fact that this Laboratory has the foresight to take a meaningful fraction of its total income and plow it back as discretionary research is fantastic. At many other places the discretionary research money is more like one per cent. We do have an enormous opportunity for internal research. Of course, there has been a lot of upheaval recently about having to write proposals every year for ISRD money.

COLGATE: I think proposals are a darn good idea. I never did have to do them at Livermore. Then at the university I ended up having to write twelve a year. They are never easy, but they are really worth it.

BAKER: They do help people who didn’t know what they were doing to think about their work a little more, but on the other side of that coin I think management can really be an obstacle.

COLGATE: Yes, if proposals are not reviewed correctly, you end up with a mess. Most proposals are now judged by the Laboratory management and the Senior Fellows, but this does not always constitute peer review.

HECKER: I agree that we do need more accountability than we used to have. However, one simply cannot set up an environment to do good basic research if proposals are required on a yearly basis. Also, the people making the decisions have become farther and farther away from the people who really know what is going on. I’d like the authority and the responsibility for research programs to rest with the divisions. By all means have an advisory panel of outside peer experts to judge the quality of the research, and if the results aren’t good, then fire the division management.

BAKER: I’ve found that the handing out of Institutional Supporting Research money is based too much on historical factors rather than on quality of research. There is no competition in the true sense, that is, based on demonstrated scientific competence.

HECKER: That problem has been addressed to some extent. Two years ago six working groups were set up to look at areas that were not well represented traditionally, and I know that materials science has been receiving more support recently.

COLGATE: Perhaps the ultimate mechanism is, once again, the individuals. To my mind the Lab is put together of people who have an absurd sense of ego; that is, they have the drive and the motivation to back their own original ideas.

HYMAN: It’s true that most projects have started with individuals who were aware that something was about ready to break. They went out and wrote proposals; they got up on their soapboxes; they sold their ideas and started small. Sometimes the ideas fizzled out, but other times they turned into whole divisions.
HYMAN: It is somewhat a management problem in that the codes have been allowed to grow unstructured for so many years that they have become the unmanageable things they are.

HOWE: It may be an external problem—one caused by whoever is using the weapons.

CRAWFORD: The external response to new ideas probably varies greatly from agency to agency. The Office of Health and Environmental Research, which oversees much of the research in the Life Sciences Division, is quite receptive to new programs.

COLGATE: Other offices of the DOE are also receptive. For example, Rocky has had ISRD support for some time doing far-out research in cosmology relating to conditions in the early universe. But what’s really relevant is that last year the Office of High Energy and Nuclear Physics saw fit to pick up part of his funding. Nothing ventured, nothing gained!

SCIENCE: With regard to external support for new ideas, the Laboratory is encouraging more interactions with industry. How will this affect the Laboratory?

ROCKWOOD: I would say that a closer union of this Lab and industry would be mutually beneficial. The best single thing that has happened is that the DOE may now allow patent rights to remain with a funding company. Private industry can now put some money into a national lab without losing all rights to patents that emerge from the work. For instance, an industrial organization that wants to get involved in a new venture requiring a group of plasma physicists wouldn’t have to hire twenty of their own while they got started. Instead, they could hire our expertise in that area to help them get started—a healthy collaboration.

WHEATLEY: I really think that is right.

ROCKWOOD: I see us starting to make some progress. We have money coming from Westinghouse to help look for a method of enriching certain isotopes that they are interested in as a company. They would have refused to invest this money in us a year ago.

BAKER: The hot dry rock project is a related example. Money is coming from a variety of sources, such as the Japanese government and the German government, as well as our own government.

SCIENCE: We hire the people and they fund them?

ROCKWOOD: They hire our people, if you will. They contract to us to do a specific task that saves industry from building up a highly specialized group of people they don’t need for the long term.

HYMAN: The kind of basic research a lot of us do is oriented toward the very large problem with very limited applications. Take the supercomputers. There just aren’t that many supercomputers out there. Most vendors can’t afford to support the effort needed to develop new algorithms and software that push these computers to their limits. Yet it is quite appropriate for us to do that here.

HOWE: I can foresee that industry funding might compete with basic research for a person’s time. Since it is near-term support, you are going to have managers saying, “AH right, we want you guys to work on this project for Westinghouse, and you have to put aside your basic research for now.”

ROCKWOOD: I think rather that industry will be wanting to use basic research that we have already completed. But I won’t say that conflicts will never arise. They’ll have to be worked out.

CRAWFORD: If we become closely allied with both universities and private industry, perhaps we will be able to function more as a research and development organization—taking ideas from university programs and assigning teams of researchers well qualified to test the feasibility of such ideas—with the goal of technology transfer to private industry.

SCIENCE: Gentlemen, it seems that our relationship with industry may undergo a change. What other changes would you like to see
happen in the future? I know I’d like to hear about the proposal for an underground laboratory.

KOLB: Los Alamos has a proposal to build such a laboratory at the Nevada Test Site. It would be operated as a user facility, like LAMPF, and would make possible an entire class of very sensitive elementary particle experiments that require shielding from the normal above-ground radiation levels.

Los Alamos is a good laboratory for this facility because, first of all, we have strong groups in theoretical particle physics and in astrophysics. The interdisciplinary work of the facility would require a broad base in many areas of physics. We would aim to learn about neutrino oscillation and determine neutrino masses, topics that would have a large impact on our understanding of galaxy formation. We would have a chance to detect proton decay, which would go a long way toward telling us how much we understand about the origin of baryon symmetry. We could also learn many things about cosmic-ray physics and the large-scale structure of the universe. And a facility like that would generate technology in building detectors and in doing state-of-the-art experiments.

HOWE: I would like to see us expand in the space utilization business. We have a great deal of expertise in basic physics research and materials sciences, but we don’t have much of a program for utilizing space.

HECKER: At the expense of the Jet Propulsion Laboratory?

HOWE: JPL is mostly involved in planetary exploration, and NASA is doing hardware development. Perhaps Los Alamos should begin programs to utilize the shuttle, to utilize the space station if it gets built.

BAKER: Those things are being considered, but so far the effort is fragmented.

WHEATLEY: There currently is an interesting cooperative program between the Center for Nonlinear Studies and the Center for Materials Sciences, having to do with conductive polymers. Wouldn’t it be good to have such a program between the Institute for Geophysics and Planetary Physics and the Center for Materials Science on materials processing problems for space? We talked with a fellow from NASA who is in charge of their program for materials processing in space. That is really interesting physics—and chemistry and metallurgy and what you would call materials science.

HOWE: That is an important point. Probably the Weapons Advanced Concepts people are looking at orbital devices, but if someone comes up with an idea for an experiment to go on the shuttle, we have no one in the Laboratory who could translate the idea into shuttle-compatible hardware, as far as I know. NASA would have to be contacted. There is no given laboratory in the country to interface with industry and provide shuttle compatibility.

CRAWFORD: I’d like to see the Materials Science and Technology and the Electronics divisions combine research in their areas with the space program to develop alloys, circuits, etc. in space stations. It would be an ideal opportunity for cooperation with the private sector, and it could foster the rebirth of the space programs. It could place us at the forefront of university-industry cooperation with national laboratories.

HOWE: I’d also like to see us involved in the defense angle. The military consults with the Laboratory on a lot of concepts now, and we should have the capability of consulting in the area of space utilization.

LANDT: Interchange takes place along a number of avenues, but there are no hard and fast rules.

BAKER: We clearly have many of our eggs in the space basket for communication and for intelligence gathering, and our reliance on space is likely to grow. It is certainly something the Laboratory is interested in.

HOWE: The Air Force recently created the Space Technology Center in Albuquerque. We could have a good interaction with that phase of the military, and it would be an ideal way for the Laboratory to get involved in the space program.

SCIENCE: Are there any other similar areas? How about computer science in terms of the future?

HYMAN: The way that the inside of a computer works is going to change completely in the next few years, and unless we rethink how to write programs, we won’t fully exploit the potential power of the new machines. Some people saw this years ago and asked that we prepare new algorithms before the machines arrived. Slowly the proposals went through the Laboratory and through Washington. Now, finally, we have a viable research group in the Computing Division developing new methods for machines not yet built.

There are two similar computer projects still at the proposal stage that come to mind. The first is a CAD/CAM [computer-aided design/computer-aided manufacturing] effort to model three-dimensional surfaces on the computer with a very interactive user interface. The second project is in artificial intelligence and would have many applications within the Laboratory, from providing a reliable friendly user interface for our complex computer network to applications in nuclear safeguards.

The proposal to form an artificial intelligence group at Los Alamos surfaced about a year ago, and by now it is well polished and dog-eared at the corners. A group of about thirty of our scientists meet regularly and sponsor classes and talks from visiting and Laboratory experts.

Just how speculative do you want me to be about future scientific computing?

SCIENCE: Go ahead, speculate.

HYMAN: All the major physics codes at this Laboratory have many similar components. At the lowest level, they use trigonometric functions—sines, cosines, and tangents. In the early days of comput-
ing, everyone had his own favorite procedure for these elementary functions, but gradually the better ones were included in the mathematics program library. In the '60s and '70s higher level routines for solving linear systems of equations, integrating ordinary differential equations, handling one-dimensional interpolation, and other moderately complicated procedures were developed and included in the computer library. But then in the late '70s the trend slowed down and in some cases stopped. Right now we have no appreciable effort developing the next generation of mathematics support software. If such a group existed, it would be writing even higher level routines: multidimensional interpolation and differentiation programs, grid generation and adaptive mesh routines that adjust the solution algorithm to the boundary of the problem and the structure of the solution, routines to help solve large systems of sparse nonlinear equations, and routines to incorporate the boundary conditions into a discrete approximation of the physics model.

For this new software to be successful, it must be compatible with existing techniques and be simple enough that in a trial run potential users can observe tangibly better results than with existing methods. The software packages that are most readily accepted are those that behave like the existing ones—only work better.

Industries and most universities that develop new software are too far removed from the production code programmers to interact with them and obtain the essential feedback. Also, the production codes are run on the most powerful computers available and those writing the software must have access to these machines. This means that we at the national computing centers should be writing the next generation of high-level mathematics support routines to be used in our production codes. At the same time we really should be getting together more with the scientists in industry and universities who are writing mathematics software. This means having a much more active visitor program in math software development and providing easy, long-distance access to our supercomputers.

CRAWFORD: I agree that we should forge ahead in our computer work, both the hardware and the software. Our national security will depend partly on our ability to lead the supercomputer field.

HYMAN: We need a coordinated effort like Japan’s. Japan already dominates in applying robotics in industry. Through its Ministry of International Trade and Industry, it has identified other projects it plans to complete by 1990. One project is a high-speed computer whose capability is at least ten times that of the Cray-1. Another is a fifth-generation computer that will implement artificial intelligence—the number of inferences per second would be a hundred to a thousand times current technology. Losing our technological edge in these areas would have serious repercussions on both our economic and national security.

CRAWFORD: I would like to insert another note of warning. Recombinant DNA techniques are ridiculously simple to master. The United States could suffer from foreign nations or even terrorist groups employing biological or chemical weapons. Our Laboratory is an ideal place—we have both physical isolation and classified research ability—to establish a defense program against such agents. Biological and chemical agents can and will be used by those with a cause, however ill conceived. Countermeasures like specific antitoxins are within reach of our present capability. The nation should move forward in preparing these defenses.

LANDT: To close this discussion, I would like to spend a minute or two talking about future defense. Historically this Lab has developed the nuclear side, but now we should try to get people to think about the other side, the nonnuclear. There is an antinuclear movement in this country and the world. Advances in electronics are going to permit some conventional munitions to have the same military impact as nuclear ones, and we should take advantage of that. These are some of the things the Weapons Advanced Concepts people are thinking about.

ROCKWOOD: I also believe the Laboratory should be expanding into nonnuclear weapons for defense. It appears that the nuclear age has, if you will, made the world “safe” for conventional warfare. Conflicts such as the kind in Vietnam, the Falkland Islands, and the Middle East seem those most likely to occur, and the ever-increasing role of high-technology weapons in those conflicts is a matter of which we must be cognizant. We are a nation that aspires to defend itself not by massive uses of people, but as much as possible by the use of high technology—and that means us here at Los Alamos.
STIRLING COLGATE: I came to Los Alamos primarily because the then Director of the Laboratory, Harold Agnew, and the then Leader of the Theoretical Division, Peter Carruthers, persuaded me to come. I had been a staff physicist at Lawrence Livermore Laboratory for twelve years and then President of New Mexico Tech for ten years. I realized that the type of research I knew best would utilize the facilities of a major national laboratory. My work in inertial fusion continues, and the ability to do astrophysics, atmospheric research, and tectonic engineering in an environment where my advice is respected and my research work is encouraged is a privilege beyond measure. In addition, becoming recognized as a theoretical physicist after initially being an engineer in the Merchant Marine and then being an experimental physicist for many years is a very great privilege, indeed. Explosions turn me on—from firecrackers to testing nuclear bombs at Eniwetok, from using the Lab’s codes to calculate supernova explosions to preventing volcanic ones. Our universe started with an explosion, is tilled with explosions, and by far the most extraordinary and singular one is the explosion of intelligent life.

BRIAN CRAWFORD: I was actively recruited by the Laboratory while I was completing work for my Ph.D. at Johns Hopkins University. The Genetics Group of the Life Sciences Division needed someone to investigate the basic mechanisms by which ionizing radiation, chemicals, or other agents cause gene mutation and/or malignant transformation in cells. I had the specific skills required because my thesis had involved study of the genetic mechanisms of chemical carcinogenesis. I was encouraged to apply for one of the Laboratory’s Oppenheimer Fellowships, which I received in time to begin work in the summer of 1981. Since I came, I have been applying recombinant DNA methods to research on the genetic events underlying carcinogenesis. What attracts me to this Lab are its advanced facilities and, above all, its cooperative atmosphere—theoreticians are working closely with biophysicists and biochemists in very sophisticated studies.

SIG HECKER: I grew up in Austria but moved to Cleveland when I was thirteen. Indeed, I had never been west of Toledo until I came here as a summer graduate student in 1965. My visit was brought about by a gentleman from the Laboratory’s recruiting office who showed me a brochure containing lovely photos of New Mexico mountains. Once here I liked the marriage of basic science and applied technology at the Laboratory. After receiving my Ph.D. from Case Institute of Technology, now Case Western Reserve University, I returned to Los Alamos as a postdoc in 1968, attracted by the excellent funding and the chance to do basic research in metal deformation. In 1973 I came as a staff member after three years in the Physics Department of General Motors. I’ve worked ever since in materials science, principally in plutonium metallurgy and in actinides, although I’ve worked on a number of projects related to the space power and basic energy programs. Two years ago I joined the Division Office of what is now the Materials Science and Technology Division.

STEVEN HOWE: I’m another of those students who keep turning up. I started coming here as a summer student in 1975 and did that for the next two years. Then in January ’78 I came to do my thesis research at the Weapons Neutron Research Facility at LAMPF. After receiving my degree from Kansas State University, I spent a year at Kernforschung Zentrum in Karlsruhe and then returned as a staff member in September ‘81. I’m in the Thermonuclear Applications Group in the Applied Theoretical Physics Division.

JAMES (MAC) HYMAN: I was indirectly introduced to Livermore and Los Alamos at the same time. I was interviewed for my graduate fellowship, a Hertz Fellowship, by someone from Livermore, and he asked, “What are you doing this summer?” I worked that summer at Livermore, and it was the first time I saw mathematicians and physicists working in close coordination with experimentalists. It was just great—except the temperature was 115 degrees. My boss at Livermore had been here during the war, and he said, “Where you really want to go next is Los Alamos.” So I did, and it evolved into a full-time job after I got my degree from the Courant Institute. I work on numerical methods and software for large systems of differential equations, equations that model the physics experiments. It’s partly physics, partly computer science, and mostly mathematics.

EDWARD (ROCKY) KOLB: I received my Ph.D. at the University of Texas in ’78. I interviewed here for a postdoc position, but I went to Caltech instead. Then I came here as an Oppenheimer Fellow rather than going to a university, because here I could spend 100 per cent of my time doing research rather than teaching and sitting on committees. I was attracted by the people I would have a chance to work with. It was really the people who brought me here. I did my Ph.D. in elementary particle theory, and now I’m into cosmology and astrophysics, high-energy astrophysics. I’m in the Theoretical Astrophysics Group and I work closely with the Elementary Particles and Field Theory Group, an overlap that’s possible here for someone not in a traditional discipline. At universities people seem more locked into compartments: there’s one person in nuclear physics, one person in atomic physics, and so forth, and it’s not easy to move into new fields. Here at Los Alamos you can move quickly into exciting fields as they open up.

JEREMY LANDT: The country in the western part of my home state of South Dakota is very much like the country here, so perhaps that was a factor in my initial attraction to Los Alamos. I came here in 1967 as a summer graduate student and liked the facilities and the people. When I completed my research work at Stanford, there weren’t too many jobs available at Los Alamos in the areas I had studied—radio propagation, electromagnetic theory, and that kind of thing. But there were at Livermore, so I spent a few very enjoyable
years there. But I got tired of all the people and the hassle, and when
something opened up here, I applied and came back in 1975. Except
for the past year, my stint here has been spent in the Electronics
Division. I have worked on electronic identification systems, EMP
calculations, application of radar and other electronic techniques to
mapping underground fractures for the hot dry rock project, plus a
little nuclear magnetic resonance work, so I have dabbled in this and
that. At present I’m working in the Weapons Advanced Concepts
Program Office. We’re supposed to be looking at wonderful new
things; we’re finding lots of wonderful old things that other people
have thought of.

STEVE ROCKWOOD: After finishing my doctorate at Caltech in
1969, I went into the Air Force as my obligation to the country
during the Vietnam era and spent two years at the Air Force
Weapons Lab. There I got into laser activities, a field entirely
different from my graduate work. I came to Los Alamos in 1972
principally because the laser programs then being started at the
Laboratory and the people here were stimulating. It is an exciting
area to work in. A secondary consideration would have to be the
New Mexico environment. My own personal way of working has
been to change fields frequently, although always within physics. I
started out at the Laboratory as a theorist in T Division and then
became part of the fledgling isotope separation program and was
Leader of the Laser Development Group until 1980. Then I took
over my present job as Deputy Associate Director for Inertial
Fusion. To me the main attraction of the Laboratory, in contrast to
universities, is its ability to pull together the resources to do a large
multidisciplinary program and move on it quickly.

JOHN WHEATLEY: I received my doctorate from the University of
Pittsburgh in 1952 and came here just recently, after stints at the
University of Illinois and the University of California, San Diego,
because I saw the opportunity to do both the basic physics research
that is my main line of work and also what I call fundamental
technology. That combination is highly regarded here, while in my
previous university careers I always felt I had to sneak my interest in
technology in the back door. After all, instruction through basic
research, not development of technology, is the principal function of
a university. Also, I perceive a very substantial increase in my
effective mass here because the Lab has many more people interested
in my field, which is thermal physics and condensed-matter physics.