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Just as miners must process huge quantities of rock and dirt 
to obtain valuable ores, data analysts must often process huge 
volumes of raw data to extract useful information.  

CONCEPT EXTRACTION
a data-mining technique

Vance Faber, Judith G. Hochberg, Patrick M. Kelly,
Timothy R. Thomas, and James M. White



The use of computers in numerous ap-
plications is generating data at a rate
that far outstrips our ability to process
and analyze it.  For example, NASA
satellites are expected to generate hun-
dreds of terabytes of data per day (1
terabyte = 1012 bytes).  Sets of financial
data ranging from credit-card transac-
tions to shipping records contain tera-
bytes, and textual databases are grow-
ing rapidly.  A great deal of effort is
currently being expended to develop
new hardware and software to generate,
transmit, and store such data, but rela-
tively little emphasis has been placed
on developing new ways to use com-
puters to analyze the data after they are
acquired.

“Data mining,” or the process of ex-
tracting useful information from very
large datasets, is a focus of our efforts
in the Laboratory’s Computer Research
and Applications Group.  In this article
we describe a data-mining method we
call concept extraction, which involves
both humans and computers in a pro-
ductive partnership.  Here “concept” is
defined as a psycholinguistic category
that can be either physical (animal or
blue) or abstract (mood or politics).

The underlying premise of concept
extraction is that in order to interpret
data, humans naturally and quickly ex-
tract and identify significant concepts.
A person can contemplate a landscape,
receive data through the sense organs,
and can then make a reasonable judge-
ment about whether it will rain, for ex-
ample, or whether it will snow.  A per-
son can scan a magazine’s table of
contents and easily select the articles
that relate to a subject of interest.  Hu-
mans are constantly assimilating, cate-
gorizing, synthesizing, and analyzing
data—most often without any conscious
realization of doing so.

The ability to extract concepts from
sensory data is the product of millions
of years of evolution and years of indi-

vidual learning and experience.  But
humans go beyond simply recognizing
and naming objects or events; we make
judgements based on an overall context
or quite subtle correlations among di-
verse elements of the available data.
The great complexity, subjectivity, and
ambiguity of human concepts make
them extremely difficult if not impossi-
ble to define in a quantitative manner
appropriate for use by computers.  As
linguist William Labov puts it, “Words
that are bound to simple conjunctive
definitions will have little value for ap-
plication in a world which presents us
with an unlimited range of new and
variable objects for description.”

Computers can, however, make data
mining easier because they can quickly
and accurately perform certain tasks
that demand of humans too much time
or concentration.  For example, an ex-
pert in the interpretation of satellite im-
ages may wish to determine the ratio of
urban to rural land use in a particular
region.  No matter how skilled the ex-
pert may be at distinguishing between
the urban and rural areas in the image,
the task of identifying each area in a
large image is time-consuming and te-
dious.  In contrast, computers—once
appropriately programmed—are ideally
suited to that task.  We have accelerat-
ed the concept-extraction process by
breaking it down into quantitative and
intuitive portions, and assigning the for-
mer to computers and the latter to
human experts.

First, the computer reduces the size
of the dataset composing the satellite
image while retaining its essential char-
acter.  This crucial step employs a new,
high-speed clustering algorithm specifi-
cally developed to handle very large
datasets.  The human then identifies, or
extracts, an example of each concept of
interest, in this case an urban area and a
rural area, within the image produced
from the reduced dataset.  An expert

ability such as this cannot readily be
translated into a computer program, but
after examples have been provided, the
computer can identify any repetitions of
the examples in the image.  

Our method greatly increases the
rate at which an expert, or even a
novice, can analyze a large and com-
plex dataset.  Concept extraction is not
an exact process—even an expert can
be inconsistent or make mistakes.  But
by enabling the computer to approxi-
mate the expert’s interpretive skills,
concept extraction provides a flexible,
rapid way to incorporate the human
perspective—flaws and all—into com-
puter analysis.

 

Concept Extraction Applied to
Satellite Images

Traditional analysis methods. Im-
ages produced by satellites orbiting
Earth serve a variety of purposes in-
cluding assessing weather conditions,
such as heavy rains likely to cause
flooding, and tracking long-term envi-
ronmental trends, such as deforestation.
Satellite images are, of course, also a
source of military intelligence.  Here
we focus on the application of concept
extraction to data obtained by the Land-
sat 4 system, an unclassified system
that has been in operation since 1982.

Traditional image analysis requires
an expert for two reasons.  First, the
analyst must interpret Earth data from a
rather unusual perspective—imagine the
difference between an eye-level view of
a forest and a satellite view from an al-
titude of 450 miles.  Second, the ana-
lyst must understand the significance of
all the recorded information, which
consists of the intensities of the radia-
tion reflected from or emitted by the
surface of the earth.  Intensity measure-
ments are recorded for seven regions 
of the electromagnetic spectrum, three
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in the visible region (red, blue, and
green) and four in the infrared region
(see Figure 1).  Analysts must know
which spectral regions help identify
which surface features and must locate
and identify each separate occurrence
of each concept.  Even an expert ana-
lyst may need up to several weeks to
extract the desired information from a
single Landsat 4 image.  

The slow pace of the analysis is
mainly due to the enormous size of the
dataset.  A typical Landsat image covers
an area of about 10,000 square miles, or
100 miles on a side.  The digital image
is composed of about 50 million pixels,
or 7000 pixels per side, so each pixel
represents a square region of about 75
feet on a side.  For each pixel the Land-
sat system measures the radiation inten-
sity in each of the seven spectral bands
and stores each of the measured intensi-
ties as an 8-bit (or 1-byte) number.  So,
the data for a single image amount to 7
1-byte numbers per pixel, or a total of
roughly 350 million bytes of data.

These data are typically viewed on a
high-cost, 24-bit-per-pixel color screen.
To produce an ordinary color image,
the red, green, and blue 8-bit intensity
values for each pixel of the recorded
image are mapped to the blue, green,

and red components that constitute each
pixel on the screen (see Figure 2).  To
gain a different perspective and thus
additional information, analysts often
display other combinations of spectral
bands (see Figure 3). 

Even a simple mapping of the spec-
tral data to the display screen requires
time-consuming computation.  The
color value for each pixel must be com-
puted separately and recomputed each
time a new set of three bands is chosen
for display.  Usually only a quarter of
an image is processed at a time, but
processing even 12 million pixels takes
long enough—up to a few minutes—
that interactive use of the data is im-
practical.  For more complex mappings,
where two or more spectral bands
might be combined according to some
useful function, computations can take
up to a few hours.

Data clustering—the first step in
concept extraction. One of our goals
in developing the concept-extraction
technique was to facilitate interactive
analysis of Landsat data by reducing
the time required for analysis from days
to hours.

The essential first step in achieving
that goal was to reduce the size of the

original dataset by applying a newly
developed, high-speed computer algo-
rithm for clustering the data.  (See
“Clustering and the Continuous k-
Means Algorithm.”)  Clustering allows
us to replace the original spectral data
with an appropriate set of representative
values.  To find those values, the seven
intensity values for each of the 50 mil-
lion pixels are regarded as the compo-
nents of a vector in a seven-dimension-
al spectral-intensity space.  That is,
each axis in the space corresponds to
one of the seven spectral bands, and the
coordinates specifying the end point of
each vector are the seven spectral inten-
sity values of the pixel that vector rep-
resents.  The k-means algorithm groups
the 50 million points into k clusters
such that all the points in each cluster
are more similar (“closer”) to one an-
other than to those in the other clusters.
For the Landsat data we chose a k
value of 256 because 256 is the greatest
number of distinct colors that can be
represented on an inexpensive, 8-bit
screen; we often use larger k values for
other applications.  The algorithm also
determines each cluster’s centroid,
which is the cluster’s “mean point,” or
the point each of whose coordinates is
the arithmetic average of the corre-
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Figure 1.  Locations within the Electromagnetic Spectrum of the Seven Bands Recorded by the Landsat System
A portion of the electromagnetic spectrum, the continuum of all electromagnetic waves, is arranged from left to right according to in-

creasing wavelengths.  Landsat sensors collect data in seven spectral bands:  three in the visible portion of the spectrum (Bands 1,

2, and 3); one in the near-infrared (Band 4); two in the mid-infrared (Bands 5 and 7); and one in the thermal infrared (Band 6). 
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Figure 2.  Landsat Image of Moscow and Its Environs
This image of Moscow and environs is based on data obtained by a Landsat satellite late in the growing season.  The satellite, in

orbit at an altitude of 450 miles, measured the intensities, in seven spectral bands, of the radiation reflected from or emitted by the

surface of the earth.  This is a small portion of the entire 50-million-pixel image, only about 800,000 pixels, and each pixel represents

a square region of about 75 feet on a side.  The image is an ordinary, or “natural-color,” image, and the color of each pixel is deter-

mined by combinations of intensity values in the blue, green, and red spectral bands mapped to the blue, green, and red compo-

nents of each pixel.  However, the intensity values combined to produce the image shown are not those measured by the satellite

but, rather, are those resulting from a data-reduction technique called clustering, as discussed in the main text.  The image is repro-

duced as it would appear on an 8-bit-per-pixel color screen.
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Figure 3.  An Alternative Imaging of Moscow and Its Environs
This image was produced from the same reduced dataset that yielded the image in Figure 2.  Here, however, is an alternative repre-

sentation that yields optimal visual separation of the various types of vegetation and, in particular, agricultural versus non-agricul-

tural regions.  The color of each pixel was determined by a combination of intensities from the near-infrared Band 4, mid-infrared

Band 5, and the visible Band 3 (red) mapped to the red, green, and blue pixel components respectively.  With this band combination,

vegetation types are differentiated by variations in both color and color intensity.  The regions of various shades of red and orange

are fields of growing crops.  Regions with the healthiest vegetation, or greatest amount of “biomass,” appear in the most intense

shades of red.  The pale blue regions are unplanted fields.  The brown regions represent forested areas; deciduous forests are light

brown, and coniferous forests are a darker shade of brown.



sponding coordinates of all the points
in that cluster.  Figure 4 illustrates the
process of clustering spectral-intensity
data for a simplified case that considers
only two bands, red and blue, and thus
a spectral-intensity space of only two
dimensions.

After the Landsat data is grouped by
the algorithm into 256 clusters, each
cluster is designated by a 1-byte num-
ber from 0 to 255 and those designa-
tions are stored in a codebook along
with the seven intensity values for the
centroid of each cluster.  Each pixel in
the image is now associated with, or
belongs to, a spectral cluster—the clus-
ter into which its spectral data have
been grouped.  Furthermore, each pixel
will now be “colored” according to the
intensity values of that cluster’s cen-
troid rather than according to the origi-
nal spectral data.  Figure 5 illustrates
the stored data array before and after
clustering.

The centroid data stored in the code-
book are used to approximate the origi-
nal spectral data.  To produce a color
image, any combination of up to three
of the seven spectral bands—or any
mathematical transformation of all
seven—are mapped to the three compo-
nents of each pixel on a color screen.
Although clustering drastically reduces
the amount of spectral data to the 256
centroid values, that number is substan-
tially greater than the number of con-
cepts (urban, rural, forest, desert, and
so on) we intend to extract from the
data.  Thus the data still have enough
detail to allow clear distinctions among
those concepts.  In fact, the human eye
cannot distinguish a display of the clus-
tered data from a display of the original
data.

Storage and handling of clustered
data. The use of clustered data greatly
enhances the efficiency of all future
data handling.  Since the amount of
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Figure 4.  Clustering Landsat Data
The figure illustrates the clustering of spectral-intensity data for a simple two-band

image.  The red and blue components of the digital image are shown separately.  Each

pixel is plotted in “spectral-intensity space”; that is, the coordinates of each pixel in

that space are the red and blue intensities of that pixel in the original image.  The data

in spectral-intensity space have been grouped into three clusters.  Each of the three

points outlined in black represents the centroid of its cluster, that is, the average of the

coordinates of the data points in each cluster.  Thus the color given by the centroid’s

coordinates is the “mean color” of the cluster.   When the image is displayed after the

spectral data have been clustered, each pixel that belongs to cluster 1 in spectral-in-

tensity space is colored with the centroid color of cluster 1, and similarly the pixels

that belong to other clusters are colored with the centroid color of their clusters.  Thus

in this simplified example the final image is composed of pixels with just three colors.

In reality, the data for Landsat images are grouped into 256 clusters, and the resulting

256-color images cannot be visually distinguished from the original Landsat images.
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Figure 5.  The Data Array before and after Clustering
(a) The original data for a Landsat image are represented as a set of seven digital images, one for each of the seven spectral bands

recorded by the Landsat system.  The location of each of the roughly 50 million pixels composing each image is specified by its ma-

trix coordinates.  Also shown is the stored data array for the entire data set prior to clustering.  The array contains the seven 1-byte

numbers that correspond to the seven different spectral intensities recorded at each pixel location.  Thus, prior to clustering, the

spectral data for a single Landsat image occupy roughly 350 million bytes of memory.  The two components of the stored data array

after clustering are shown in (b).  The first component is an array consisting of the pixel cluster numbers.  (A pixel’s cluster number

is a 1-byte number that specifies the cluster into which the spectral data for that pixel have been grouped.)  The second component

is the codebook, or lookup table, which contains the seven spectral values of the centroid of each of the 256 clusters.  After cluster-

ing, the mean spectral data in the codebook replace all the original spectral data, and the clustered data occupy only about 50 mil-

lion bytes of memory.  As shown in the figure, the cluster number of each pixel links the pixel’s coordinates to the appropriate cen-

troid data in the codebook.  Those data specify the spectral characteristics of that pixel after clustering, and the figure shows how

the clustered data are mapped to an 8-bit-per-pixel color screen.  Any combination or mathematical transformation of the seven

spectral bands can be used to create the color image.  The computer accesses the codebook to find the appropriate spectral values

for each pixel.
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Figure 6.  Using Spectrum to Extract Concepts
The figure shows the window environment provided by Spectrum,

a software package developed through a collaboration between

the Laboratory and the University of New Mexico.  The small win-

dow in the lower left-hand corner of the screen shows the entire

quarter-scene image.  The large center window shows a smaller

region at full resolution.  This region was selected by placing a

box icon within the small window to enclose a particular region.

The medium-sized window on the left is a magnification of a re-

gion selected by placing a cursor within the center image.  Here,

the concept-extraction technique has already been applied (as de-

scribed in the main text).  The user drew a polygon within a region

identified as an agricultural field, labeled the concept  “agricul-

ture,” and selected a shade of bright green as the color for that

concept.  As a result, all of the agricultural fields in the image (the

red-orange regions in Figure 3) have been automatically identified

and colored a shade of bright green.  The scatter_plot window

(upper right) and the class_subform window (lower right) are dis-

cussed in Figures 7 and 8.
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data stored for each pixel has been re-
duced from 7 bytes to 1 byte (the pix-
el’s 1-byte cluster designation), a clus-
tered image can be transmitted seven
times faster than the original Landsat
image.  In addition, the great reduction
in the quantity of the spectral data dra-
matically increases the speed of analy-
sis.  For example, calculating the “veg-
etation vigor” (which is a standard
remote- sensing measure derived from
the third and fourth spectral bands) of a
12-million-pixel-image from clustered
data requires only 768 operations—
three operations for each of the 256
clusters.  Performing the same calcula-
tion on the original data requires 36
million operations, or three for each
pixel.

Extracting concepts with Spectrum
software. After the clustering algo-
rithm reduces the dataset to a manage-
able size and level of detail, an interac-
tive data-analysis tool called Spectrum
is used to interpret the image.  The
Spectrum software package was devel-
oped through a collaboration between
the Laboratory and the University of
New Mexico.  When using Spectrum,
the human expert first identifies an ex-
ample of a concept, and then the com-
puter takes over and automatically iden-
tifies additional occurrences of that
concept.

Figure 6 illustrates the interactive
use of Spectrum on clustered Landsat
data.  The user simultaneously views
the entire image as well as portions of
it at two levels of magnification.  To
identify a concept of interest, the user
simply draws a polygon enclosing a re-
gion of the image in one of the magni-
fied views that corresponds, in his or
her expert opinion, to that concept.
This opinion may be based on the color
or colors within the region, the intensity
values in other bands of the spectrum,
the region’s shape, and/or the position
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Figure 7.  The Scatter_plot Window
The scatter_plot window allows the user to see how clusters within a concept relate to

one another as well as to other clusters outside the concept.  It is a two-dimensional

plot of the 256 cluster centroids.  The quantity plotted along each axis is defined by

the user as either the intensity recorded in a single spectral band or some function of

the intensities in two or more spectral bands.  Here the horizontal coordinate (“bright-

ness”) and the vertical coordinate (“greenness”) are linear transformations of the origi-

nal seven spectral bands.  That transformation is known to remote-sensing scientists

as the “tasseled-cap” transformation.  When the user selects a concept from the menu

boxes in the scatter_plot window, all the points representing clusters that have been

mapped to that concept  are automatically highlighted in the assigned color.  Here, for

example, the user has selected the concept “agriculture,” which is assigned a shade of

bright green, so the points representing centroids whose clusters have been defined as

part of the concept “agriculture” are colored bright green.  The scatter_plot window re-

veals points close to those that are bright green and so represent other clusters whose

brightness and greenness values fall near those already assigned to the concept but

that have not themselves been assigned.  Such clusters are also likely to represent

agricultural fields, and the user can experiment by adding them to the concept and

then examining the resulting mapping.



of the region with respect to other re-
gions.  For example, a region used to
exemplify the concept “highway”
would be gray in color, relatively warm
in the thermal infrared band, narrow
and relatively straight in shape, and
might connect urban areas.

Once the user has drawn a polygon
around a region that exemplifies a con-
cept of interest, a category-labeling
window appears on the screen.  When
the user enters the name of the concept,
Spectrum automatically defines that
concept as the set of all the spectral
clusters that are associated with the pix-
els in the polygon.  From the legend-
control window, the user then selects a
color to represent the concept.  Spec-
trum will then automatically and in-
stantly update the color of all pixels in
the image that exemplify any of the
spectral clusters that compose the con-
cept.  In the image shown in Figure 6,
for example, the expert has identified
and enclosed a portion of an agricultur-
al region.  Suppose that the region is
composed of pixels that exemplify, or
have been linked through clustering to,
spectral clusters 20, 22, 36, and 48.  As
soon as the enclosed region is labeled
“agriculture” and colored, say, bright
green, clusters 20, 22, 36, and 48 are
labeled “agriculture” and associated
with the concept-specific shade of
bright green.  The color of every pixel
in the entire image that exemplifies
these clusters is then automatically up-
dated to bright green.  In other words,
the concept “agriculture” is mapped
onto the image.  

After the computerized mapping is
complete, the user can magnify and ex-
amine various regions to which the
concept has been mapped and deter-
mine whether those regions do indeed
exemplify the concept.  Some fine tun-
ing may be required.  That is, some
spectral clusters may be added or re-
moved from the concept definition so

that the mapping more accurately iden-
tifies examples of the concept.

Sometimes the relevant concepts are
more abstract and apply to regions with
quite different spectral characteristics.
For example, suppose an analyst is in-
terested in determining what percentage
of a given image is used for agriculture.
To design the concept “agricultural
field,” the expert might draw two poly-
gons, one around a field with growing
crops and the other around a fallow
field.  The analyst would include both
those regions in defining a single con-
cept labeled “agriField” and both would
be assigned a single color, say, dark
blue.  This concept unifies regions that
are linked not by their spectral charac-
teristics but rather by the more abstract

idea of land use.  When both fallow
and planted fields identified as “agri-
Fields,” quantitative queries such as
“what percentage of the image is used
for agriculture?” can be posed and an-
swered.

Figures 7 and 8 show two Spectrum
windows used for displaying and com-
paring the spectral data associated with
particular pixels, clusters, or concepts.
The scatter_plot and class_subform
windows provide the user with quanti-
tative representations of the data that
are useful tools for designing concepts
and evaluating mapping results.

Application of the concept-extraction
method to Landsat images has eliminat-
ed many of the problems associated
with traditional analysis techniques.
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Figure 8.  The Class_subform Window
This window plots the relative spectral intensities for any selected pixel.  Users who

are familiar with spectral data find that such a plot is a helpful addition to the visual in-

formation in the magnified images.  Here, the spectral characteristics from a pixel in

one of the bright green agricultural regions has been selected.  Healthy vegetation is

generally highly reflective in the infrared region of the spectrum.  And, indeed, the plot

shows that the infrared intensity measured for this pixel is relatively high.  The user

might gain added insights by comparing the shape of this plot to that produced by se-

lecting pixels from other regions.
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The analyst need identify and label
only one or a few examples of a con-
cept, and the computer identifies all
other examples.  That division of labor,
combined with the computational effi-
ciency of clustered data, reduces the
time required for analysis of an image
from several weeks to two or three
hours and also decreases the amount of
time required to train new analysts.
In addition, the data can be displayed
on an inexpensive color screen.
These advantages have sparked inter-
est in our method from the United
States Geological Survey, NASA, and
the U.S. Army.

When applied to Landsat data, our
concept-extraction technique has also
proved capable of achieving the funda-
mental goal of data mining—finding
human concepts amidst huge amounts
of data.  Obviously, the method would
fail if the concepts were poorly separat-
ed.  For example, our purpose would be
subverted if we were to define “agricul-
ture” to include clusters 17, 36, and 45,
only to find many pixels of cluster 45
in the middle of the ocean.  Such prob-
lems do arise occasionally, but the vast
majority of cluster assignments are un-
ambiguous.  The key to our success lies
in keeping clusters “fine-grained” by
generating many more clusters than the
number of concepts we want to consider.

Concept Extraction and CT
Lung Scans 

About LAM disease. In collabora-
tion with Dr. John Newell at the Na-
tional Jewish Center for Respiratory Ill-
nesses in Denver, we are also applying
our concept-extraction technique to the
analysis of computed-tomography (CT
or CAT) scans.  Our effort has focused
on the scans from women afflicted with
lymphangioleiomyomatosis, or LAM
disease (see Figure 9).  This rare dis-

ease attacks only women in their child-
bearing years.  The disease is character-
ized by cysts, or holes, in lung tissue.
Its presence is signaled by profound
shortness of breath, and diagnosis is
confirmed by open-lung biopsy.  The
cause of the cysts is not yet fully un-

derstood.  They may be a result of de-
fective tissue that breaks down during
normal breathing, or they may be indi-
rectly caused by the proliferation of
smooth muscle tissue within the lungs,
a condition often seen in LAM patients.
According to the latter theory, blockage

Figure 9.  Computed-Tomography Lung Scan
Computed tomography is a method of recording two-dimensional x-ray images of an

internal body structure.  An incoming x-ray beam is absorbed by the lung tissue as

well as the tissue and bone surrounding the lung.  The intensities of the transmitted

x rays are recorded by an array of charge counters analogous to those found in CCD

cameras.  Those intensities are recorded, processed, and reconstructed by a computer

to form the image on a video display unit.  The CT scan above shows a transverse

slice of the left lung of a a woman afflicted with a moderate case of LAM disease.  Both

the spinal column (lower right) and the sternum (upper right) are visible in cross-sec-

tional views.  The scan shows multiple, thin-walled cysts throughout the lung.  Several

normal air-conducting bronchi are also visible, but they are difficult to distinguish from

the cysts (see Figure 11).  Both the large number of cysts and variations in cyst size

make it difficult to gather quantitative diagnostic data on a routine basis.



of the airways by the extra muscle tis-
sue causes strain during breathing,
which in turn tears the lung tissue.  The
current therapy involves hormonal ma-
nipulation, but unless a lung transplant
is performed, LAM disease eventually
leads to respiratory failure and death.

LAM disease is notoriously difficult
to study.  The amount of tissue that can
safely be removed in a lung biopsy is
too small for research purposes.  Entire
lungs can be studied when they are re-
moved as part of a transplant operation
or after an autopsy; however, the lungs
collapse immediately upon removal,
and the integrity of the tissue is com-
promised.  Because of these difficulties,
LAM researchers are turning to CT
data to further their progress in study-
ing this disease.

Previous studies done by “eye-
balling” CT scans have indicated that
as the disease progresses, patients show
increasing numbers of large cysts in
their lungs.  Researchers are hoping
that a more sophisticated analysis of the
CT data will reveal more about the ori-
gin and progress of the disease and lead
to improvements in diagnosis and treat-
ment.  We, and Dr. Newell, believe that
an application of the concept-extraction

technique may yield significant new re-
sults.  In his words, concept-extracted
CT data could provide a “quantitative,
non-invasive, in vivo pathology.”

Preparing CT data for concept 
extraction. Concept extraction is per-
formed on the CT data by using a tech-
nique similar to that described above
for the Landsat data.  The CT data dif-
fer, however, in their initial representa-
tion and in how they are prepared for
clustering.  In the case of the Landsat
data, “color,” or intensity in seven
bands of the electromagnetic spectrum,
was the feature that allowed concepts to
be differentiated from one another.  In
contrast, the CT scans record radiation
intensity in only one spectral band,
namely x rays, and so result in a single
black-and-white digital image with
pixel intensities ranging on a gray scale
from 0 to 4095.  These intensity varia-
tions alone do not provide enough in-
formation to differentiate cysts from
normal bronchi because both cysts and
bronchi register as “empty,” or black,
regions in the CT scan.  (Bronchi are
hollow regions and cysts are also hol-
low in the sense that they are holes or
tears in the lung tissue.)  If Spectrum

were applied directly to the intensity
data from the CT scan without any pre-
processing, the method would fail.  The
user might draw a polygon within a
cyst to create the concept “cyst.”  Spec-
trum would then identify and map as
cysts all pixels with the same intensities
as those in the polygon—that is, not
only pixels composing additional cysts
but also those that compose the
bronchi.

To overcome this problem we have
defined a quantitative descriptor charac-
terizing the region surrounding each
pixel.  The descriptor consists of the
maximum and minimum intensities of
the pixels in each of 12 concentric cir-
cles of increasing diameter around each
pixel, or 24 intensity measures per pixel
(see Figure 10).  This 24-component
descriptor gives an indication of tissue
density, texture, and local shape of
structures surrounding a pixel.  A spe-
cial program has been developed to au-
tomatically scan the original data and
record the 24 components of the de-
scriptor for each pixel.  The descriptors
provide enough contextual information
to avoid the complications outlined
above and to produce accurate identifi-
cation of cysts using Spectrum.
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Figure 10.  Creating a Quantitative Descriptor 
The figure illustrates our method of preparing the CT data for clustering.  Before clustering the data, we measure the maximum and

minimum intensity of the gray values in twelve concentric circles of increasing diameter centered around each pixel.  Only the first

three circles and the last circle are illustrated here.  The chart shows the maximum and minimum intensity values for each circle.

The 24 intensity values are treated as a 24-component vector during clustering.  As a result, each pixel is clustered not only in terms

of its own gray-scale intensity value but also in terms of the values of the surrounding pixels.  The 24-component vectors can be

shown to vary according to the tissue density, texture, and local shape of structures in the area surrounding each pixel.
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Figure 11.  Application of Concept Extraction to a CT Lung Scan
At left is the scan shown in Figure 9 after application of the concept-extraction technique.  The intensity data have been pre-

processed by using the descriptor defined in Figure 10, and the resulting data have been clustered.  Two concepts, “bronchus” and

“cyst,” have been defined for the clustered data by expert analysis.  Spectrum has been used to map those concepts to the image;

red represents “bronchus” and blue represents “cyst.”  Two large bronchi are visible near the center of the image, and the scan

shows many cysts of various sizes.  The descriptor derived from the nested set of circles described in Figure 10 is effective for dis-

tinguishing cysts from bronchi primarily because arteries run adjacent to and form a circular pattern around each bronchus.  Once

the concept-extraction method is applied to the clustered CT data to identify the cysts, researchers can easily carry out quantitative

analysis of CT lung scans.

To the right of the CT scan is its scatter plot.  The plot shows that the centroids (clusters) corresponding to the concept “cyst”

(blue) are well separated from the centroids corresponding to the concept bronchus (red).  The separation is achieved by using as

the two axes for the plot the first and second principal components of the data:  The x-axis is the first principal component, the di-

rection in 24-dimensional space along which the data has maximal variance.  The y-axis is the second principal component, the di-

rection perpendicular to the first principal component along which the data shows maximal variance.  Note that all the centroids cor-

responding to lung tissue fall toward the left in this plot, and the centroids corresponding to non-lung tissue fall toward the right.

The centroids corresponding to cysts form a more-or-less diagonal line; those toward the upper left correspond to larger cysts and

those toward the lower right correspond to smaller cysts.



Concept extraction and automated
analysis of CT scans. Once the 24-
component descriptors have been
recorded for each pixel in a CT scan,
concept extraction proceeds as outlined
for the Landsat data.  The continuous k-
means algorithm is used to partition the
descriptors into 256 clusters.  Spectrum
is then used to define four concepts—
cyst, bronchus, normal lung tissue, and
non-lung material—and to map them to
the CT image.  Figure 11 shows the lung
scan shown in Figure 9 after the first two
of these concepts  have been mapped to
that image.  Cysts are shown in blue and
bronchi in red.  Figure 11 also shows a
scatter plot for this image that illustrates
the clear separation between the concepts
“bronchus” and “cyst” and thus the suc-
cess of clustering based on the 24-com-
ponent “contextual” descriptor.

To automate the analysis of concept-
mapped data, Los Alamos researchers
developed a program that counts the
number of cysts of different sizes.  This
program uses a region-growing algo-
rithm in which a cyst is defined as a
group of adjacent pixels each of which
has been identified by Spectrum as be-
longing to the concept “cyst.”  The size
of the cyst is determined by the number
of such adjacent pixels along with the
pixel resolution of the CT imagery.
The program can also quantify, by
means of a central-moment method,
other descriptive features of the cyst in-
cluding eccentricity (deviation from a
circular shape) and orientation.

Although our results are prelimi-
nary—we have not yet systematically
examined a large number of CT
scans—the concept-extraction method
promises to reveal useful new informa-
tion about LAM disease.  The scans we
have analyzed to date support the earli-
er evidence that more large cysts ap-
pear in the later stages of the disease.
In addition, computer-assisted tech-
niques have revealed large numbers of

small cysts in the later stages of the
disease.  In other words, not only do
small cysts grow larger as the disease
progresses but also many new cysts de-
velop.  Figure 12 shows graphs of the
frequency of different-sized cysts in
scans of patients in two stages of the
disease.  As expected, the patient in the

more advanced stage has more large
cysts than the patient in the earlier
stage; she also shows a large number of
new small cysts.  To confirm or refute
the proliferation of small cysts in asso-
ciation with the later stages of the dis-
ease, the analysis must be repeated on a
more substantial number of CT scans.
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Figure 12.  Frequency Distribution of Cyst Sizes
The graphs show the number of cysts of various sizes for two LAM-disease patients.

The dotted line represents data from a patient early in the course of the disease, and

the solid line, a patient in the later stages.  This comparative plot shows that the pa-

tient in the later stage not only has more large cysts but also has roughly twice as

many small cysts as the patient in the early stage.  These results suggest that as the

disease progresses, small cysts grow in size and many new small cysts appear.  Be-

fore the availability of the concept-extraction technique described in the main text, re-

searchers had no efficient way to obtain quantitative measurements of cyst size and

number.  Now, the progress of the disease in individual patients can be monitored, and

researchers can also gain meaningful insights by comparing data from many patients.



Many types of data analysis, such as the interpretation of Landsat images
discussed in the accompanying article, involve datasets so large that
their direct manipulation is impractical.  Some method of data compres-

sion or consolidation must first be applied to reduce the size of the dataset without
losing the essential character of the data.  All consolidation methods sacrifice
some detail; the most desirable methods are computationally efficient and yield re-
sults that are—at least for practical applications—representative of the original
data.  Here we introduce several widely used algorithms that consolidate data by
clustering, or grouping, and then present a new method, the continuous k-means
algorithm,* developed at the Laboratory specifically for clustering large datasets.

Clustering involves dividing a set of data points into non-overlapping groups, or
clusters, of points, where points in a cluster are “more similar” to one another than
to points in other clusters.  The term “more similar,” when applied to clustered
points, usually means closer by some measure of proximity.  When a dataset is
clustered, every point is assigned to some cluster, and every cluster can be charac-
terized by a single reference point, usually an average of the points in the cluster.
Any particular division of all points in a dataset into clusters is called a partitioning.

One of the most familiar applications of clustering is the classification of plants or
animals into distinct groups or species.  However, the main purpose of clustering
Landsat data is to reduce the size and complexity of the dataset.  Data reduction is
accomplished by replacing the coordinates of each point in a cluster with the coor-
dinates of that cluster’s reference point.  Clustered data require considerably less
storage space and can be manipulated more quickly than the original data.  The
value of a particular clustering method will depend on how closely the reference
points represent the data as well as how fast the program runs.

A common example of clustering is the consolidation of a set of students’ test
scores, expressed as percentages, into five clusters, one for each letter grade A, B,
C, D, and F (see Figure 1).  The test scores are the data points, and each cluster’s
reference point is the average of the test scores in that cluster.  The letter grades
can be thought of as symbolic replacements for the numerical reference points.

Test scores are an example of one-dimensional data; each data point represents a
single measured quantity.  Multidimensional data can include any number of mea-
surable attributes; a biologist might use four attributes of duck bills (four-dimen-
sional data:  size, straightness, thickness, and color) to sort a large set of ducks
into several species.  Each independent characteristic, or measurement, is one di-
mension.  The consolidation of large, multidimensional datasets is the main pur-
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Clustering and the
Continuous k-Means Algorithm

Vance Faber

* The continuous k-means algorithm is part of a patented application for improving both the processing
speed and the appearance of color video displays.  The application is commercially available for Mac-
intosh computers under the names Fast Eddie, 1992 and Planet Color,  1993, by Paradigm Con-
cepts, Inc., Santa Fe, NM.  This software  was developed by Vance Faber, Mark O. Mundt, Jeffrey S.
Saltzman, and James M. White.



pose of the field of cluster analysis.  We will describe several clustering methods
below.  In all of these methods the desired number of clusters k is specified be-
forehand.  The reference point zi for the cluster i is usually the centroid of the
cluster.  In the case of one-dimensional data, such as the test scores, the centroid
is the arithmetic average of the values of the points in a cluster.  For multi- 
dimensional data, where each data point has several components, the centroid will
have the same number of components and each component will be the arithmetic
average of the corresponding components of all the data points in the cluster.

Perhaps the simplest and oldest automated clustering method is to combine data
points into clusters in a pairwise fashion until the points have been condensed into
the desired number of clusters; this type of agglomerative algorithm is found in
many off-the-shelf statistics packages.  Figure 2 illustrates the method applied to
the set of test scores given in Figure 1.

There are two major drawbacks to this algorithm.  First—and absolutely prohibi-
tive for the analysis of large datasets—the method is computationally inefficient.
Each step of the procedure requires calculation of the distance between every pos-
sible pair of data points and comparison of all the distances.  The second difficulty
is connected to a more fundamental problem in cluster analysis:  Although the al-
gorithm will always produce the desired number of clusters, the centroids of these
clusters may not be particularly representative of the data.

What determines a “good,” or representative, clustering?  Consider a single cluster
of points along with its centroid or mean.  If the data points are tightly clustered
around the centroid, the centroid will be representative of all the points in that
cluster.  The standard measure of the spread of a group of points about its mean is
the variance, or the sum of the squares of the distance between each point and the
mean.  If the data points are close to the mean, the variance will be small.  A gen-
eralization of the variance, in which the centroid is replaced by a reference point
that may or may not be a centroid, is used in cluster analysis to indicate the over-
all quality of a partitioning; specifically, the error measure E is the sum of all the
variances:

E
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where xij is the jth point in the ith cluster, zi is the reference point of the ith clus-
ter, and ni is the number of points in that cluster.  The notation ||xij - zi|| stands for
the distance between xij and zi. Hence, the error measure E indicates the overall
spread of data points about their reference points.  To achieve a representative
clustering, E should be as small as possible.

The error measure provides an objective method for comparing partitionings as
well as a test for eliminating unsuitable partitionings.  At present, finding the best

Figure 1.  Clustering Test Scores
The figure illustrates an arbitrary parti-

tioning of 20 test scores into 5 non-over-

lapping clusters (dashed lines), corre-

sponding to 5 letter grades.  The

reference points (means) are indicated 

in red.

47 5253 5657 59 61 65 6768 70 71 73 75 77 79 8283 87 97

60 70 80 90 100

47

F

56.33

D

69.86

C

81.6

B

97

A

cluster1.adb•
7/26/94

50

Clustering and the Continuous k-Means Algorithm

Number 22  1994  Los Alamos Science  139



Clustering and the Continuous k-Means Algorithm

140 Los Alamos Science Number 22  1994

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

47 5253 5657 59 61 65 6768 70 71 73 75 77 79 8283 87 97

9783.7569.2558.2549.75
47, 52, 53 56, 57, 59, 61 65, 67, 68, 70, 71, 73, 75 77, 79, 82, 83, 87 97

52.5

56.5

60

67.5

70.5

66.25

58.25

49.75

72.25

69.25

74

78

82.5

80.25

83.75

cluster2.adb•
7/26/94

Test scores

S
te

p 
nu

m
be

r

Means

Clusters

Figure 2.  Pairwise Agglomerative Clustering
The figure illustrates the operation of an agglomerative clustering method, in which the 20 test scores of Figure 1 are successively

merged by pairs of points and/or pairs of clusters until all the scores are collected into 5 clusters.  The steps of the algorithm are

shown in the branching of a dendrogram, or tree structure (much like a genealogy).  A node, or branch point, indicates the merging

of two branches into one, i.e. two data points into one cluster, or two clusters into one larger cluster.  The algorithm begins with 20

separate clusters of one point apiece.  For the first step in the algorithm, the closest two points (here, scores of 52 and 53) are

found and merged into one cluster {52,53}.  The two individual points are replaced by a single point equal to the unweighted average

of the two points (52.5).  The next step repeats this process (find the closest two points, calculate the average, merge the points),

but with 19 points and 19 clusters (18 one-point clusters, plus 1 two-point cluster).  There will be only one new branch, or merge at

each step.  Hence, if there is more than one pair of points at the minimum distance, only one pair will be merged at each step.  It

takes 15 steps to consolidate 20 points into 5 clusters.
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partitioning (the clustering most representative of an arbitrary dataset) requires
generating all possible combinations of clusters and comparing their error mea-
sures.  This can be done for small datasets with a few dozen points, but not for
large sets—the number of different ways to combine 1 million data points into 256
clusters, for example, is 2561,000,000/256!, where 256! is equal to 256 3 255 3
254 3 … 3 2 3 1.  This number is greater than 102,000,000, or 1 followed by 2
million zeros.

When clustering is done for the purpose of data reduction, as in the case of the
Landsat images, the goal is not to find the best partitioning.  We merely want a
reasonable consolidation of N data points into k clusters, and, if necessary, some
efficient way to improve the quality of the initial partitioning.  For that purpose,
there is a family of iterative-partitioning algorithms that is far superior to the ag-
glomerative algorithm described above.  

Iterative algorithms begin with a set of k reference points whose initial values are
usually chosen by the user.  First, the data points are partitioned into k clusters:  A
data point x becomes a member of cluster i if zi is the reference point closest to x.
The positions of the reference points and the assignment of the data points to clus-
ters are then adjusted during successive iterations.  Iterative algorithms are thus
similar to fitting routines, which begin with an initial “guess” for each fitted para-
meter and then optimize their values.  Algorithms within this family differ in the
details of generating and adjusting the partitions.  Three members of this family
are discussed here:  Lloyd’s algorithm, the standard k-means algorithm, and a con-
tinuous k-means algorithm first described in 1967 by J. MacQueen and recently
developed for general use at Los Alamos.

Conceptually, Lloyd’s algorithm is the simplest.  The initial partitioning is set up
as described above:  All the data points are partitioned into k clusters by assigning
each point to the cluster of the closest reference point.  Adjustments are made by
calculating the centroid for each of those clusters and then using those centroids as
reference points for the next partitioning of all the data points.  It can be proved
that a local minimum of the error measure E corresponds to a “centroidal
Voronoi” configuration, where each data point is closer to the reference point of
its cluster than to any other reference point, and each reference point is the cen-
troid of its cluster.  The purpose of the iteration is to move the partition closer to
this configuration and thus to approach a local minimum for E.

For Lloyd’s and other iterative algorithms, improvement of the partitioning and
convergence of the error measure E to a local minimum is often quite fast—even
when the initial reference points are badly chosen.  However, unlike guesses for
parameters in simple fitting routines, slightly different initial partitionings general-
ly do not produce the same set of final clusters.  A final partitioning will be better
than the initial choice, but it will not necessarily be the best possible partitioning.
For many applications, this is not a significant problem.  For example, the differ-
ences between Landsat images made from the original data and those made from
the clustered data are seldom visible even to trained analysts, so small differences
in the clustered data are even less important.  In such cases, the judgment of the
analyst is the best guide as to whether a clustering method yields reasonable results.



The standard k-means algorithm differs from Lloyd’s in its more efficient use of
information at every step.  The setup for both algorithms is the same:  Reference
points are chosen and all the data points are assigned to clusters.  As with Lloyd’s,
the k-means algorithm then uses the cluster centroids as reference points in subse-
quent partitionings—but the centroids are adjusted both during and after each par-
titioning.  For data point x in cluster i, if the centroid zi is the nearest reference
point, no adjustments are made and the algorithm proceeds to the next data point.
However, if the centroid zj of the cluster j is the reference point closest to data
point x, then x is reassigned to cluster j, the centroids of the “losing” cluster i
(minus point x) and the “gaining” cluster j (plus point x) are recomputed, and the
reference points zi and zj are moved to their new centroids.  After each step,
every one of the k reference points is a centroid, or mean, hence the name “k-
means.”  An example of clustering using the standard k-mean algorithm is shown
in Figure 3.

There are a number of variants of the k-means algorithm.  In some versions, the
error measure E is evaluated at each step, and a data point is reassigned to a dif-
ferent cluster only if that reassignment decreases E.  In MacQueen’s original paper
on the k-means method, the centroid update (assign data point to cluster, recom-
pute the centroid, move the reference point to the centroid) is applied at each step
in the initial partitioning, as well as during the iterations.  In all of these cases, the
standard k-means algorithm requires about the same amount of computation for a
single pass through all the data points, or one iteration, as does Lloyd’s algorithm.
However, the k-means algorithm, because it constantly updates the clusters, is un-
likely to require as many iterations as the less efficient Lloyd’s algorithm and is
therefore considerably faster.

The Continuous 

 

k-Means Algorithm

The continuous k-means algorithm is faster than the standard version and thus ex-
tends the size of the datasets that can be clustered.  It differs from the standard
version in how the initial reference points are chosen and how data points are se-
lected for the updating process.
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(a)  Setup:
Reference point 1 (filled red circle) and 
reference point 2 (filled black circle) are 
chosen arbitrarily.  All data points (open 
circles) are then partitioned into two clusters:  
each data point is assigned to cluster 1 or 
cluster 2, depending on whether the data point 
is closer to reference point 1 or 2, respectively.

(b) Results of first iteration:
Next each reference point is moved to the 
centroid of its cluster.  Then each data point is 
considered in the sequence shown.  If the 
reference point closest to the data point 
belongs to the other cluster, the data point is 
reassigned to that other cluster, and both 
cluster centroids are recomputed.

(c) Results of second iteration:
During the second iteration, the process in 
Figure 3(b) is performed again for every data 
point.  The partition shown above is stable; it 
will not change for any further iteration.

Figure 3.  Clustering by the 
Standard k-Means Algorithm
The diagrams show results during two 

iterations in the partitioning of nine two-

dimensional data points into two well-

separated clusters, using the standard 

k-means algorithm.  Points in cluster 1

are shown in red, points in cluster 2 are

shown in black; data points are denoted

by open circles and reference points by

filled circles.  Clusters are indicated by

dashed lines.  Note that the iteration con-

verges quickly to the correct clustering,

even for this bad initial choice of the two

reference points.
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In the standard algorithm the initial reference points are chosen more or less arbi-
trarily.  In the continuous algorithm reference points are chosen as a random sam-
ple from the whole population of data points.  If the sample is sufficiently large,
the distribution of these initial reference points should reflect the distribution of
points in the entire set.  If the whole set of points is densest in Region 7, for ex-
ample, then the sample should also be densest in Region 7.  When this process is
applied to Landsat data, it effectively puts more cluster centroids (and the best
color resolution) where there are more data points.

Another difference between the standard and continuous k-means algorithms is the
way the data points are treated.  During each complete iteration, the standard algo-
rithm examines all the data points in sequence.  In contrast, the continuous algo-
rithm examines only a random sample of data points.  If the dataset is very large
and the sample is representative of the dataset, the algorithm should converge
much more quickly than an algorithm that examines every point in sequence.  In
fact, the continuous algorithm adopts MacQueen’s method of updating the cen-
troids during the initial partitioning, when the data points are first assigned to clus-
ters.  Convergence is usually fast enough so that a second pass through the data
points is not needed. 

From a theoretical perspective, random sampling represents a return to MacQueen’s
original concept of the algorithm as a method of clustering data over a continuous
space.  In his formulation, the error measure Ei for each region Ri is given by

Ei 5E
x

 

[Ri

r (x)x 2 zi 2dx ,

where ρ (x) is the probability density function, a continuous function defined over
the space, and the total error measure E is given by the sum of the Ei’s.   In Mac-
Queen’s concept of the algorithm, a very large set of discrete data points can be
thought of as a large sample—and thus a good estimate—of the continuous proba-
bility density r (x).  It then becomes apparent that a random sample of the dataset
can also be a good estimate of r (x).  Such a sample yields a representative set of
cluster centroids and a reasonable estimate of the error measure without using all
the points in the original dataset.

These modifications to the standard algorithm greatly accelerate the clustering
process.  Since both the reference points and the data points for the updates are
chosen by random sampling, more reference points will be found in the densest re-
gions of the dataset and the reference points will be updated by data points in the
most critical regions.  In addition, the initial reference points are already members
of the dataset and, as such, require fewer updates.  Therefore, even when applied
to a large dataset, the algorithm normally converges to a solution after only a
small fraction (10 to 15 percent) of the total points have been examined.  This
rapid convergence distinguishes the continuous k-means from less efficient algo-
rithms.  Clustering with the continuous k-means algorithm is about ten times faster
than clustering with Lloyd’s algorithm. 
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The computer time can be further reduced by making the individual steps in the
algorithm more efficient.  A substantial fraction of the computation time required
by any of these clustering algorithms is typically spent in finding the reference
point closest to a particular data point.  In a “brute-force” method, the distances
from a given data point to all of the reference points must be calculated and com-
pared.  More elegant methods of “point location” avoid much of this time-consum-
ing process by reducing the number of reference points that must be considered—
but some computational time must be spent to create data structures.  Such
structures range from particular orderings of reference points, to “trees” in which
reference points are organized into categories.  A tree structure allows one to elim-
inate entire categories of reference points from the distance calculations.  The con-
tinuous k-means algorithm uses a tree method to cluster three-dimensional data,
such as pixel colors on a video screen.  When applied to seven-dimensional Land-
sat data, the algorithm uses single-axis boundarizing, which orders the reference
points along the direction of maximum variation.  In either method only a few
points need be considered when calculating and comparing distances.  The choice
of a particular method will depend on the number of dimensions of the dataset.

Two features of the continuous k-means algorithm—convergence to a feasible
group of reference points after very few updates and greatly reduced computer
time per update—are highly desirable for any clustering algorithm.  In fact, such
features are crucial for consolidating and analyzing very large datasets such as
those discussed in the accompanying article.
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Concept Extraction Applied to
Text Analysis of Medical

Records

Challenges in analyzing textual
data. Textual datasets are very differ-
ent from the digital-image data to
which we originally applied our con-
cept-extraction technique.  Since the
technique had been conceived in a gen-
eral way and was not specific to any
particular kind of data, we felt confi-
dent that our method could also be ap-
plied in the analysis of textual data.
Our attempts are in their early stages
and several details still need to be
worked out, but our progress to date
has served to reinforce our confidence
in the approach.  The textual data con-
sist of transcripts of physicians’ notes
on patient visits to a large health-main-
tenance organization (HMO).  Each
transcription is termed a document, and
each document is a unique data ele-
ment.  The sample we analyzed con-
tains 142,475 such documents—the en-
tire HMO output for a recent ten-month
period.  To ensure privacy, the patients’
names and medical-record numbers are
replaced by randomly chosen pseudo-
nyms, access to the data is strictly con-
trolled, and all identifying information
is altered in publicly distributed docu-
ments.

Current methods of analysis. The
current method of extracting informa-
tion from transcribed patient records is
to bind printed copies of all documents
related to a single patient in a medical
record folder and deliver that folder to
the physician whenever the patient is
treated at the HMO.  The physician
then reviews the documents and ex-
tracts information deemed helpful for
determining a course of treatment.  On
occasion, epidemiologists or medical
researchers will collect a small sample
of related cases and study the patients’

records in an attempt to answer general
medical questions related to treatments
and outcomes.

Obviously, these two extraction
methods are limited by the ability of
highly-trained human readers to accu-
rately and comprehensively read the
documents.  A dataset of over 100,000
such documents cannot be examined
with current methods, yet the document
set as a whole probably contains a con-
siderable amount of useful information,
such as answers to questions like:
What diseases are most common in this
patient population?  Is aspirin an effec-
tive treatment for cystitis?  Is the rate
of attempted suicide higher among
teenagers or adults?  Answering such
questions requires a computerized
method of examining large datasets of
textual documents and extracting con-
ceptual information.

It may seem that the solution is not
to train computers to analyze text but
rather to train physicians to record their
patient encounters in a structured way
so it will be easier to analyze the
data—“fill out the form!”  Many at-
tempts have been made to standardize
medical-data recording, but all have
been successfully resisted by physi-
cians.  They argue that only free text
can adequately capture the inherent am-
biguity of the concepts involved in a
medical encounter.  Consider the con-
cept “pain.”  Pain may be constant or
intermittent or associated with a specif-
ic movement, and there are many dif-
ferent ways of describing it:  sharp, dull
aching, throbbing, and so on.  Physi-
cians are keenly aware of the inherent
ambiguity of conceptual labels and
have insisted on maintaining their free-
dom to record encounters in a free-text
format.  Therefore, if the information in
the dataset is to be made more general-
ly useful, we must solve the difficult
problem of extracting it from docu-
ments written in a free-text format.

Choosing a quantitative descriptor
and measure of “closeness.” Before
the dataset can be clustered, we must
choose a quantitative descriptor for
each data element.  The most obvious
numerical representation of text is a de-
scriptor indicating the frequencies of all
words in each document.  However,
since the number of words encountered
in medical records is very large (hun-
dreds of thousands) and is constantly
increasing, we wanted to avoid the
problem of managing such huge de-
scriptors.  Choosing a limited set of
words based on expert recommenda-
tions might reduce the difficulties, but
even an expert might overlook terms of
great significance.  In addition, parsing
ASCII text into “words” presents prob-
lems with respect to handling com-
pound words, abbreviations,
homonyms, hyphenations, spelling er-
rors, morphological alternatives (such
as nausea and nauseous), and so on.

Our solution to these problems is the
use of a quantitative representation of
each document that is based on words
but avoids using the words themselves.
The method, called character-trigram
representation, represents each docu-
ment as the set of frequencies of all
three-letter sequences (trigrams) in the
document.  To create this representa-
tion, all non-alphabetic characters in the
document, including spaces, are re-
moved and all letters are reduced to
lower case.  A three-letter window is
then run over the document and the fre-
quencies of the different trigrams is tal-
lied.  The phrase “Prozac 20 mg daily,”
for example, yields one instance each of
trigrams pro, roz, oza, zac, acm, cmg,
mgd, gda, dai, ail, and ily.  Trigrams—
or more generally, n-grams of varying
lengths—have been used successfully in
text applications ranging from spell
checking to language identification.

The main advantage of the trigram
approach is that the number of trigrams
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that must be tallied is relatively small—
about 14,000.  [The total number of
trigrams that can be found in words
written in the Latin alphabet is 17,576
(263), but many of the possible tri-
grams, including, for example, bbb, and
yzv, are seldom if ever encountered.]
So the use of trigrams brings the clus-
tering problem down to a size that our
continuous k-means algorithm can easi-
ly handle without our having to select a
list of words beforehand.  In addition,
trigrams can be tallied without any of
the difficult preprocessing that a tally of
words would require.  Variations in
word form due to spelling errors and
morphological variations “wash out”
because trigrams provide a shared rep-
resentation for word variants.  For ex-
ample, morphological variants such as
congested and congestion overlap and
share the trigrams con, ong, nge, ges,
and est.  Likewise, telephone and telep-
bone (the latter the result of a plausible
optical-character-recognition error)
share trigrams tel, ele, lep, and one.

The next task before clustering is the
selection of a quantitative measure of
the similarity, or “closeness,” of two
sets of trigram frequencies—which pro-
vides a measure of the “closeness” of
two documents.  We chose to consider
the sets as vectors in a space of about
14,000 dimensions, one dimension for
each trigram, and to measure the dis-
tance in terms of the cosine of the
angle between the trigram vectors for
the two documents.  The angle between
two vectors does not depend on their
lengths, so this measure allows the un-
biased comparison of documents of dif-
ferent lengths.  We calculate the cosine
according to a standard formula of vec-
tor analysis.  If the cosine is equal to 1
(meaning the vectors are collinear), the
documents have identical trigram-fre-
quency distributions and are very simi-
lar if not identical.  If the cosine is 0
(meaning the vectors are perpendicu-

lar), then the documents have no tri-
grams in common, and thus no words
in common.  More complicated mea-
sures, which take into account the rela-
tive variability of specific trigrams
across the dataset, could be constructed
and may prove useful.  An obvious en-
hancement would be to weight common
trigrams such as the and and less heavi-
ly than others.  In our early stage of ex-
ploration, however, we have chosen the
simplest approach.

Testing the method. Before at-
tempting to cluster the documents, we
wanted to be certain that documents
that are close to one another according
to our cosine measure are also close to
one another in the sense that they relate
to the same topic.  To test our method
we selected a document that was clear-
ly about headaches and searched the
dataset for the closest, or most similar,
documents according to the trigram-fre-
quency descriptor.  Of the ten closest
documents, eight related to headaches,
one to a numb foot, and one to dizzi-
ness.  Those documents that were not
related to headaches were, however,
generated by the same doctor and writ-
ten on the same day as the document
relating to headaches selected as our
reference document.

These results were compared with
results obtained by using a popular text
retrieval tool (WAIS), which works by
counting the number of words in com-
mon between two documents.  We
found that WAIS returned one docu-
ment about headaches, the two non-
headache documents our method also
found, and seven other documents that
were about a variety of medical topics
including stroke, facial tic, and back
pain.  Given this favorable comparison,
we proceeded with clustering under the
assumption that similarity in “trigram
space” indicates similarity in “topic
space.”  It is important to note that the

documents have different meanings—
each describes very different situations.
The similarity resides in the topic of the
documents.  Since they contain similar
root words describing that topic, they
produce similar trigram distributions.
The sentences “she is healthy” and “he
is unhealthy” have different meanings,
but both are about the same topic—
health—and they share a similar tri-
gram distribution.

Clustering the documents. We
chose to create 1000 clusters, and the
results yielded various types of clusters.
One cluster is very large, containing
over 900 documents.  All members of
this cluster appear to be documents that
concern vague headaches.  Without any
further analysis, we can reasonably
conclude that headaches are a very
common symptom prompting numerous
visits to the HMO; visits relating to
headaches should be considered seri-
ously when planning resource alloca-
tions.  It is very likely, however, that
other clusters also relate to headaches,
and it is necessary to fuse such clusters
into a single conceptual category before
meaningful quantitative estimates can
be made.  It is important to note, how-
ever, that the clustering process pro-
duces valuable results even without fus-
ing clusters.  Clustering of a very large
dataset greatly reduces the time needed
to locate similar documents, since one
can first find the cluster to which the
reference document belongs and then
search only the members of that and
nearby clusters for similar documents.
This procedure is much faster than
using an algorithm that considers all
documents as candidates, but it yields
virtually identical results.

Our results yielded a second type of
cluster, a singleton, which contains only
one document.  Any document found in
a singleton usually relates to some
unique topic or is simply some sort of
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Figure 13.  Example of a Two -
Member Cluster
The figure shows an example of the type

of document (transcripts from doctors’

notes on-patient visits) we have been

working with in our textual dataset.

These two documents represent a dou-

bleton cluster, a cluster containing only

two documents that are so much more

similar to each other than to the other

documents that the algorithm automati-

cally separated them into their own clus-

ter.  Here, both documents relate to

cases of laparascopic cholestectomy,

both patients are white males in their

mid-70s, and the documents share sever-

al other medical details in common.

Since laparascopic cholestectomy is a

fairly common procedure, it seems likely

that there are more instances of this pro-

cedure in other 

clusters.



error in the transcription process.  A
third type of cluster is the doubleton,
which contains two very similar docu-
ments (see Figure 13).

Fusing related clusters. Any close-
ly related clusters must be fused before
any quantitative information about a
given condition, procedure, or therapy
can be obtained, and we are currently
trying to develop an efficient method of
fusing such clusters.  The underlying
difficulty is that people are best able to
evaluate the clusters based on words,
but the clusters were created from their
trigram content.  We are making some
progress in finding a way to map the
trigram distributions back to a meaning-
ful list of words so that the expert can
fuse seemingly disjoint clusters into
conceptually relevant categories.

The basic idea is to rank the words
in each document according to how
closely they mirror the cluster centroid.
Words that contain trigrams that occur
frequently in the cluster centroid are
considered to be more indicative of that
centroid than those containing less fre-
quently occurring trigrams.  To begin,
we assign a weight for each possible
trigram by taking the normalized fre-
quency of each trigram in the cluster
centroid.  We then determine the im-
portance of each letter in every docu-
ment in the cluster by adding the
weights of the three trigrams to which
that letter belongs, given its left and
right context.  A word-weight is con-
structed by taking the average letter-
weight for the entire word.  A ranked
word-list can then be compiled.  A
“stop” list is applied to eliminate non-
content words, and a stemming algo-
rithm is applied so that redundancy in
the ranked list is reduced by eliminat-
ing multiple occurrences of words that
are simple variants of the same stem
(operate, operates, operating, etc.)  Fi-
nally, a list of the ten most important

(that is, the ten most heavily weighted)
words is created for each cluster.

The top ten members of this list for
the two-member cluster in Figure 13
are:  tolerate, operate, intake, postoper-
ative, lifting, tolinase, white, intraoper-
ative, laparoscopic, and stone.  This list
catalogues keywords describing the
most important elements of the centroid
for this cluster.  Such lists are useful
for retrieving documents on the basis of
keyword searches.  The lists also repre-
sent practical, quick-reference descrip-
tions of the contents of the various
clusters, and the user can decide
whether to read particular documents
by examining these lists.

We are also planning a user-inter-
face to help the expert decide which
clusters should be fused.  It is impracti-
cal to expect an expert to compare and
evaluate all the lists for the 1000 clus-
ters—even glancing at such lists is an
onerous task.  We plan to provide an
interface that presents a small group of
similar lists (similar according to a
measure of the co-occurrence of either
trigrams or words), prompts the expert
to decide whether the lists should be
fused to a concept, and then asks what
the name and descriptive words for that
concept should be.  Then, on the basis
of the concept-label words, other possi-
ble candidate lists will be displayed and
the process iterated until the expert is
satisfied.  At that point quantitative esti-
mates of documents associated with
each labeled concept can be made.

Enhancing the Method and
Developing New Applications

The research reported in this paper is
part of an ongoing, long-term effort.
We are working to develop new tech-
niques that will improve the existing
technology.  In the area of digital im-
ages, for example, so far we have clus-

tered on the basis of either the spectral
intensities associated with each pixel
(as with the Landsat data) or the texture
surrounding a pixel (as with the CT
data).  If we were able to combine both
types of information, the cluster analy-
sis might result in more subtle distinc-
tions, such as trees in a suburban neigh-
borhood versus trees in a forest.  We
are also experimenting with methods of
generalizing the concepts extracted
from an image of one area to images of
other areas.  Such a technique would
allow the analyst to identify a concept,
say, “deciduous forest,” in one or two
training images and then have any de-
ciduous forest automatically identified
in other images.  Because every image
produces a unique set of clusters, the
success of this technique may hinge on
our ability to map concepts to clusters
identified by their relationship to other
clusters, rather than by their specific
centroid values.

We also hope to extend our methods
to other data domains.  Within the area
of digital-image processing, we are ex-
ploring the analysis of x-ray images,
and within the area of text processing,
we are working with datasets pertaining
to arms control and physics research.
A logical new domain to tackle is that
of one-dimensional signal analysis so
that sound or sonar spectra can be clus-
tered and mapped to concepts.  A more
challenging extension of our method
would be to process data in which sev-
eral different types of information—
character, categorical, scalar—are
recorded for each event in a dataset.
For example, an intrusion detection
program might analyze computer audit
records containing the name of the user
and the process (character), the duration
of the process (scalar), and the error
status of the process (categorical) for
each completed process.  A representa-
tion that combines these different types
of information in a form that allows
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clustering would, at a minimum, allow
more efficient handling of typically
huge audit records.

We view our concept-extraction
technique as a bridge between impre-
cise human concepts and the world of
physical, quantitative measurements.
The method addresses a major weak-
ness in the field of artificial intelli-
gence:  Although machine-learning al-
gorithms enable computers to master
real data, they fall short of being capa-
ble of what humans think of as intelli-
gent behavior because the results of the
learning process do not reflect human
concepts.  Rather than try to solve this
problem directly, we have developed a
tool that uses a partial statistical analy-
sis to facilitate the mapping of concepts
onto data.  Until researchers develop a
more fundamental solution that enables
computers to discover human-relevant
concepts on their own, concept extrac-
tion will allow us to make intelligent
use of the massive amounts of data al-
ready being collected.   
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