basic concepts of supersymmetry. [ will do this by showing an
analogy between the quantum-mechanical harmonic os-
cillator and a bosonic field and a further analogy between the
quantum-mechanical spin-Y2 particle and a fermionic field. One
result of combining the two resulting fields will be to show that a
tower” of degeneracies between the states for bosons and fermions is
a natural feature of even the simplest of supersymmetry theories.
A supersymmetry operation changes bosons into fermions and
vice versa. which can be represented schematically with the operators
Q! and Q, and the equations

I intend to develop here some of the algebra pertinent to the

Q! |boson) = |fermion),
and (1)
Q.lfermion) = [boson), .

In the simplest version of supersymmetry, there are four such
operators or generators of supersymmetry (Q, and the Hermitian
conjugate @} with « = 1, 2). Mathematically. the generators are
Lorentz spinors satisfying fermionic anticommutation relations

(QL Qpl = 7" (0u)as » (2

where p* is the energy-momentum four-vector @°= H, p’ = three-
momentum) and the o, are two-by-two matrices that include the
Pauli spin matrices ¢’ (5, = (1, ¢’) where i = 1, 2, 3). Equation 2
represents the unusual feature of this symmetry: the supersymmetry
operators combine 1o generate translation in space and time. For
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example, the operation of changing a fermion 10 a boson and back
again results in changing the position of the fermion.
If supersymmetry is an invariance of nature. then

[H, Qo= 0, ©)

that is, O, commutes with the Hamiltonian H of the universe. Also.
in this case, the vacuum is a supersymmetric singlet (Q,|vac) = 0).

Equations 1 through 3 are the basic defining equations of super-
symmetry. In the form given, however, the supersymmetry is solely
an external or space-lime symmetry (a supersymmetry operation
changes particle spin without altering any of the particle’s internal
symmetries). An extended supersymmetry that connects external and
internal symmetries can be constructed by expanding the number of
operators of Eq. 2. However, for our purposes. we need not consider
that complication.

The Harmonic Oscillator. In order to illustrate the consequences
of Eqs. 1 through 3. we first need 10 review the quantum-mechanical
treatment of the harmonic oscillator.

The Hamiltonian for this system is

1
How=5 (0’ + 0’ , 4

where p and ¢ are. respectively. the momentum and position
coordinates of a nonrelativistic particle with unit mass and a 2n/o
period of oscillation. The coordinates satisfy the quantum-mechani-
cal commutation relation
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[p. al=(pg—qp)=—ih . (5

The well-known solution to the harmonic oscillator (the set of
eigenstates and eigenvalues of Hy,) is most conveniently expressed
in terms of the so-called raising and lowering operators, a' and a,
respectively, which are defined as

a?g_l_ + i
p+ing)

V2oh
and (6)
a= S (p—iwg).

and which satisfy the commutation relation

la,a']=1. @)
In terms of these operators, the Hamiltonian becomes

How = ho(a'a + '), ®
with eigenstates

n) = Na(@")"|0) , %)

"where N, is a normalization factor and |0) is the ground state
satisfying

al0y=0

and (10)
0|0y =1,

It is easy to show that

a'iny=vn+1|n+1)
and (I

a|n)=\/; n—1),
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hence the names raising operator for a' and lowering operator for a.
Also note that a*a is just a counting operator since a' a |n)=n | ny.
Finally, we find that

Hop )= hax(n + V2) |n) (12)

that is, the states [#) have energy (n + 1) ho .

The Bosonic Field. There is a simple analogy between the quantum
oscillator and the scalar quantum field needed to represent bosons
(scalar particles). A free scalar field is quite rigorously described by an
infinite set of noninteracting harmonic oscillators {a}, a,}, where p is
an index labeling the set. The Hamiltonian of the free field can be
written as

H,c.l,,-),;hw,,(a},a,,+ '/z), (13)

with the summation taken over the individual oscillators p.

The ground state of the free scalar quantum field is called the
vacuum (it contains no scalar particles) and is described mathe-
matically by the conditions

a, [vac) =0
and (14)
{vac|vac)=1.

The a} and a, operators create or annihilate, resp!ectively, a single
scalar particle with energy Ao, (Aw,= Vp°+m* where p is the
momentum carried by the created particle and m is the mass). A
scalar particle is thus an excitation of one particular oscillator mode.

The Fermionic Field. The simple quantum-mechanical analogue of
a spin-%: field needed to represent fermions is just a quantum particle
with spin 'a. This is necessary because, whereas bosons can be
represented by scalar particles satisfying commutation relations,
fermions must be represented by spin-Y: particles satisfying anticom-
mutation relations.

A spin-'4 particle has two spin states: |0} for spin down and |1) for
spin up. Once again we define raising and lowering operators, here b'
and b, respectively. These operators satisfy the anticommutation
relations

(b, b} = (bb* + btb) = 1
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and (15)

(6", b") = b, b] = 0.

If bj0) = 0. it is easy to show that

b"10)=11)
and (16)
b'1)=10),

where b' b is again a counting operator satisfying
2 g

By = 1)
and (17
Bbi0)=0.

We may define a Hamiltonian
Hoin = ho(b'h = 'n). (18)

so that states |1) and |0) will have energy equal to 2k and —":h®.
respectively.

The analogy between the free quantum-mechanical fermionic field
and the simple quantum-mechanical spin-Y2 particle is identical to
the scalar field case. For example, once again we may define an
infinite set |}, b,| of noninteracting spin-: particles labeled by the
index p. The vacuum state satisfies

bylvac)=0
and (19)
{vaclvac)=1.

Here b} and b, are identified as creation and annihilation operators,
respectively, of a single fermionic particle. Note that since {b}, b})
= (. it is only possible to create one fermionic particlé in the state p.
This is the Pauli exclusion principle.
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Supersymmetry. Let us now construct a simple supersymmetric
quantum-mechanical system that includes the bosonic oscillator
degrees of freedom (a' and a) and the fermionic spin-' degrees of
freedom (b' and b). We define the anticommuting charges

Q=a'lho)?

and (20)
Q' = ab(hw)” .

It is then easy to verify that

{Q?’ Q] =H= Hosc + Hspin
= ho(a'a + b'b), (2n

and
[H. Q] =0. 22)

Equations 21 and 22 are the direct analogues of Eqs. 2 and 3.
respectively. We see that the anticommuting charges Q combine 1o
form the generator of time translation, namely, the Hamiltonian H.
The ground state of this system is the state |0)os|O)spin = 0.0). where
both the oscillator and the spin-Y: degrees of freedom are in the lowest
energy state. This state is a unique one, satisfying

010.0)= Q'0.0)=0. (23)

The excited states form a tower of degenerate levels (see figure) with
energy (n + “)hw = 2hw, where the sign of the second term is
determined by whether the spin-Y state is |1) (plus) or |0) (minus).

The tower of states illustrates the boson-fermion degeneracy for
exact supersymmetry. The bosonic states |n#+1.0) (called bosonic in
the field theory analogy because they contain no fermions) have the
same energy as their fermionic partners |n.1).

Moreover. it is easy to see that the charges Q and Q' satisfy the
relations

Qln,1)= Vn+1in+1.0)

and
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Energy States
Boson Fermion
0 10,0>
hw 11,0> 10,1>
2hw 12,0> i1,1>
3hew 13,0> 21>

The boson-fermion degeneracy for exact supersymmetry in
which the first number in {n,m) corresponds to the state for
the oscillator degree of freedom (the scalar, or bosonic,
Sield) and the second number to that for the spin-': degree of
freedom (the fermionic field).

Q'n+1.0)= Vn+1 |nl), 24

which are analogous to Eq. | because they represent the conversion of
a fermionic state to a bosonic state and vice versa.

The above example is a simple representation of supersymmetry in
quantum mechanics. 1t is, however. trivial since it describes non-
interacting bosons (oscillators) and fermions (spin-'4 particles). Non-
trivial interacting represntations of supersymmetry may also be
obtained. In some of these representations it is possible to show that
the ground state is not supersymmetric cven though the Hamiltonian
is. This is an example of spontaneous supersymmetry breaking.

Symmetry Breaking. If supersymmetry were an exact symmetry of
nature. then bosons and fermions would come in degenerate pairs.
Since this 1s not the case. the symmetry must be broken. There are
two inequivalent ways in which to do this and thus to have the
degeneracy removed.
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First we may add a small symmetry breaking term to the Hamilto-
nian, that is, // — /1 + £/!’. where € is a small parameter and

(H'. Q] #0. (25)

This mechanism is called explicit syimmetry breaking. Using it we can
give scalars a mass that is larger than that of their fermionic partners.
as is observed in nature. Although this breaking mechanism mayv be
perfectly self-consistent (even this is in doubt when onc includes
gravity), it is totally ad hoc and lacks predictive power.

The second symmetry breaking mechanism is termed spontancons
symmetry breaking. This mechanism is characterized by the fact that
the Hamiltonian remains supersymmetric.

[0.H]=0, (26)
but the ground siate docs not.
Qlvac)# 0. (27)

Supersymmetry can either be a global symmetry. such as the
rotational invariance of a ferromagnet, or a local symmetry. such asa
phase rotation in electrodynamics. Spontancous breaking of a
global symmetry lcads 1o a massless Nambu-Goldstone particle. In
supersymmetry we obtain a massless fermion (1. the goldstino.

Spontancous breaking of a focal symmetry. however, results in the
gauge particle becoming massive. (In the standard model. the
bosons obtain a mass My = gl by “cating” the massless Higgs
bosons, where g 15 the SU(2) coupling constant and ! is the vacuum
expectation value of the neutral Higgs boson.) The gauge particle ol
local supersymmetry is called a gravitino. 1t is the spin-3/2 partner of
the graviton; that is. local supersymmetry incorporates Einstein's
theory of gravity. When supersymimetry is spontancously broken. the
gravitino obtains a mass

me = GNAS (28)

by “eating” the goldstino (here (/n is Newton's gravitational constant
and A is the vacuum expectation of some field that spontancously
breaks supersymmetry).

Thus, 1f the idecas of supersymmetry are correct. there is an
underlying symmetry connecting bosons and fermions that is “hid-
den™ in naturc by spontancous symmetry breaking. B
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