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I
intend to develop here some of the algebra pertinent to the

basic concepts of supersymmetry. I will do this by showing an

analogy between the quantum-mechanical harmonic os-

cillator and a bosonic field and a further analogy between the
quantum-mechanical spin-% particle and a fermionic field. One

result of combining the two resulting fields will be to show that a

“tower” ofdegeneracies between the states for bosons wtd fermions is

a natural feature of even the simplest of stspersymmetry theories.
A supersymmetry operation changes bosons into fermions and

vice versa, which can be represented schematically with the operators

Q: and Q, and the equations

(?$lboson) = Ifermion)a

and (1)

Q.lfermion) = Iboson)a.

In the simplest version of supersymmetry, there are four such

operators or generators of supersymmetry (Q~ and the Hermitian

conjugate Q$ with a = 1, 2). Mathematically, the generators are

Lorentz spinors satisfying fermionic anticommutation relations

[Q:>QB}= I+’(oA , (2)

where # is the energy-momentum four-vector @o = H, p’ * three-

momentum) and the UP are two-by-two matrices that include the

Pauli spin matrices ai (GP = (1, d“) where i = 1, 2, 3). Equation 2

represents the unusual feature of this symmetry: the supersymmetry
operators combine to generate translation in space and time. For

example, the operation of changing a fermion to a boson and back

again results in changing the position of the fermion.

If supersymmetry is an invariance of nature, then

[H, Q.]= O, (3)

that is, Q. commutes with the Hamiltonian H of the universe. Also,

in this case, the vacuum is a supersymmetric singlet (Qalvac) = O).

Equations I through 3 are the basic defining equations of super-

symmetry. In the form given, however, the supcrsymmetry is solely
an external or space-time symmetry (a supersymmetry operation

changes particle spin without altering any of the particle’s internal
symmetries). An exlended supersymmetry that connects external and
internal symmetries can be constructed by expanding the number of

operators of Eq. 2. However, for our purposes, we need not consider

that complication.

The Harmonic oscillator. In order to illustrate the consequences

of Eqs. 1 through 3, we first need to review the quantum-mechanical

treatment of the harmonic oscillator.

The Hamiltonian for this system is

(4)
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where p and q are. respectively. the momentum and position

coordinates of a nonrelativistic particle with unit mass and a 2K/O
period of oscillation. The coordinates satisfy the quantum-mechani-

cal commutation relation
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[P)d=o’w-w)-=-fh. (5)

The well-known solution to the harmonic oscillator (the set of

eigenstates and eigenvalues of H=) is most conveniedy eztprcased
in terms of the so-called raising msd lowering operators, C?+and a,
respectively, which are defined as

“=AJ’+’”q)
and

1

‘“m ‘–i’’’q)’

and which Satisfi the commutation relation

[a, a’] = 1.

(6)

(7)

[n terms of these operators, the Hamiltonian becomes

HM = hm(ata + %) , (f3)

with eigenstates

In) = Nn(at)”lO), (9)

where Nn is a normalization factor and 10) is the ground state

satisfying

alO)= O

and (10)

(010)= 1.

It is easy to show that

a+ln} = -I In+ 1)

and

a[rs)=fi [n–l),
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hence the names raising operator for at and lowering operator for a.
Ah note that da is jwst a counting operator since at a In)= n In).
Fizta$iy, we find &t

Hm In)= rl@(n + Y2) pz) , (12)

thatis, the states ~n)have enmgy (n + 1/2)ha) .

The BoaossicField. There is a simple analogy between the quantum

oscillator and the scalar quantum field needed to represent bosons
(scalar particles). A fkee scalar field is quite rigorously described by an

infinite set of nonistteraetktg harmonic oscillators {a~ up),where p is

an index Meting the set. The Hamiltonian of the free field can be
written as

Hwh = ~ hsoP(aJ.aP+ %), (13)

with the summation taken over the individual oscillators p.
The ground state of the f$ee scaiar quantum field is called the

vatmrst (it coztfaks no soaks partickes) and is de.wibed mathe-
matically by the conditions

@p&@ = O

and

(vaclvac) = 1.

(14)

The a$ and aP operators create or annihit

scalar particle with energy Isa)fl (huP =

momewurt carrkd by the created particle and m is the mass). A
Scz21a$particle is *as an exciwtion of one particular oscillator mode.

The FWSBWC FM. TM simple quantum-mechanical analogue of

a spin-% field needed to represent fermions is just a quantum particle
with spin M Tltis is necessary because, whereas bosons can be

represented by soak pasticles satisfying commutation relations,

fermions must be represented by spin-% particles satis~hzg anticom-

mutation relations.

A spin-’jz particte has two spin states 10)for spin down and 11) for

spin up. Once again we detine raising and lowering operators, here bt
and b, respectively. These opezwtors satisfy the anticommutation

relations

{b, bt} = (bb++ btb) = I
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and (15)

[b’, b’] = [b, b] = 0.

If blO)= O, it is easy to show that

/$10)=11)

and (16)

h’ll)= lo),

where /}+b is again a counting operator satisfying

/) ’611)=11)

and (17)

b’b 10)= 0.

We may define a Hamiltonian

H,P,n= IIW(b+fi– ‘/2), (18)

so that states II) and 10)will have energy equal to 1/2fI 10 and +21102,

respectively.

The analogy between the free quantum-mechanical fermionic field
and the simple quantum-mechanical spin-Yz particle is identical to

the scalar field case. For example, once again we may define an
infinite set {b;, 6PIof nonin[eracting spin-Yz particles labeled by the

index p. The vacuum state satisfies

bflIvac) = O

and (19)

(vaclvac) = 1.

Here b; and bpare identified as creation and annihilation operators,

respectively, of a single fermionic particle. Note that since {b\, /.$)

= O, it is only possible to create one fermionic particle in the state p.

This is the Pauli exclusion principle.

StqwsymmeCry. Let us now construct a simple supersymmetric

quantum-mechanical system that includes the bosonic oscillator

degrees of freedom (a+ and a) and the fermionic spin-llz degrees of
freedom (bt and b). We define the anticommuting charges

Q=at/2(~~)1/2

and

Qt = abt(fiw)’/2 .

itis then easy to verify that

[Q’, Q]= H= Ho,. + H,.,.

= hw(a+a+ b+b).

and

[H. Q]=O. (22)

Equations 2 I and 22 are the direct analogues of Eqs. 2 and 3.

respectively. We see that the anticommuting charges Q combine to

form the generator of time translation. namely. the Hamiltonian H.
The ground state of this system is the state 10)JO),P,n = 10.0). where

both the oscillator and the spin-Yz degrees of freedom are in the lowest

energy state. This state is a unique one, satisfying

QIO.0) = QtlO,O) = 0. (23)

The excited states form a tower of degenerate levels (see figure) with

energy (n + ‘/2)hco t ‘/2fto+ where the sign of the second term is

determined by whether the spin-’h state is 11)(plus) or 10)(minus).

The tower of states illustrates the boson-fermion degeneracy for

exact supersymmetry. The bosonic states In+ 1,0) (called bosonic in

the field theory analogy because they contain no fermions) have the

same energy as their fermionic partners In, I).

Moreover, it is easy to see that the charges Q and Q+ satisfy the

relations

Qlrrl)=~l~+l.0)

and

(20)
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Energy States

Boson Fermion

o 10,0>

bu i 1,0> 10,1>

2!IU I 2,0> 11,1;/

3hLJ 13,0> !2,1:’

First we may add a small symmelry breaking Iernl to lhc Hanlllto-

nian. thal is, H- // + df’. where & IS a small parameter and

[H’, Q]#O . (25)

This mechanism is called r.Yp//cif .symlnc(rj$ hrcakin~. Using it we can

give scalars a mass that is larger than that of their fermionic parlners.

as is observed in nature. Although [his breaking mcchan]srn ma} be

perfectly self-cons] stcnt (even this is in doubt when one includes

gravity), it is totally ad hoc and lacks prcdicti~c power.

The second symmetry breaking mechanism is termed $pon{u)lcojis

sjw~nwfr,t Iwaking. This mechanism is characterized by Ihc fact that

the Hamiltonian remains supcrsymmetric.

.
[QJI]=O, (26)

.

but the ground state does nol.

Qlvac) # 0. (27)

The boson-fermion degeneracy for exact supersymmetry in
which the first number in In,m) corresponds to the state for
the oscillator degree of freedom (the scalar, or bosonic,
field) and the second number to that for the spin-% degree of
freedom (the fermionicfield).

Q’lrr+l,O)= ~ lrr,l), (24)

which are analogous to Eq. 1 because they represent the conversion of

a fermionic state to a bosonic state and vice versa.

The above example is a simple representation of supersymmetry in

quantum mechanics. It is, however, trivial since it describes non-

interacting bosons (oscillators) and fermions (spin-l/? particles). Non-

trivial in[ww(lng representations of supersymmetry may also be

obtained. In some of these representations it is possible to show that

the ground state is not supersymmetric even though the Hamiltonian

is. This is an example of spontaneous supersymmetry breaking.

Symmetry Breaking. Ifsupersymmetry were an exact symmetry of

nature. then bosons and fermions would come in degenerate pairs,

Since th]s is not the case. the symmetry must be broken. There arc

two inequivalent ways in which to do this and thus to have Ihc

degeneracy removed.
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Supersymmetry can either be a global symmetrj. such as the

rotational invariance of a ferromagnet, or a local symmetry. such as a

phase rotation in electrodynamics. Spontaneous breaking of a

.q/ohu/ symmetry leads to a massless Nambu-Goldstonc parltclc. In

supcrsymmctry wc obtain a massless fcrmion {;. the goidstino.

Spontaneous breaking ofa /fxa/ symmetry, however. results In the

gauge particle becoming massive. (In Ihc standard model, [hc Ii

bosons oblain a mass .MH = gl’ by “eating” the massless HIRS

bosons. where .r IS [hc S[J(?) coupling conslant nnci I IS [hc lac.uum

cxpcclation value of the neutral Higgs boson. ) The gtiugc partlclr o!’

local supersymmcwy is called a gravitino. it m the spin-3/2 partner O(

the graviton: that is. local supersymmctry incorporates Einstctn’s

theory ofgravily. When supcrsymmctry is spontaneously hrokcn. the

gravi[ino obtains a mass

by “eating” the goldstino (here G~ is Newton’s gravitational constan~

and ASSis the vacuum expectation of some field that spontancousl!

breaks supersymmetry).

Thus. If ~hc ideas of supcrsymmctry are correct. there is an

underlying symmclry connecting bosons and fermions that IS “hid-

den” in nature by spontaneous symme[ry breaking. ■
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