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Fields in Higher Dimensions. We describe here how to construct a
field in higher dimensions and how such a field is related to fields in
the 4-dimensional world in which we live. Higher dimensional fields
unify an infinite number of 4-dimensional fields. A typical and
simple example of this can be seen from a scalar field (a spin-0 field)
in five dimensions. A scalar field has only one component, so it can
be written as ¢(x.y), where x is the d4-dimensional space-time
coordinate and y is the coordinate for the fifth dimension. We will
assume that the fifth dimension is a little circle with radius R, where
R is independent of x. (After this example, we examine the gen-
eralizations to more than five dimensions and to fields carrying
nonzero spin in the higher dimensions.)

Functions on a circle can be expanded in a Fourier series; thus, the
5-dimensional scalar field can be written in the form

o(x.y) = FE_g«p,,(x)exp(iny/R) . )

where n is an integer, and ¢,(x) are 4-dimensional fields. The Fourier
series satisfies the requirement that the field is single-valued in the
extra dimension, since Eq. 1 has the same value at the identical points
v and y+ 2nR. Usually the wave equation of p(x,y) is a straight-
forward generalization of the 4-dimensional scalar wave equation
(that is, the Klein-Gordon equation) in the limit that interactions can
be ignored. The 5-dimensional Klein-Gordon equation for a massless
5-dimensional particle is
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The presence of additional terms depends on the details of the
Lagrangian, and we ignore them for the present description. It is a
simple matter to substitute the Fourier expansion of Eq. 1 into Eq. 2
and use the orthogonality of the expansion functions exp(iny/R) to
rewrite Eq. 2 as an infinite number of equations in four dimensions,
one for each ¢,(x):
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Note the following very important point; for n=0, Eq. 3 is the
equation for a massless 4-dimensional scalar field, whereas for n # 0,
Eq. 3 is the wave equation for a particle with mass |n|/R. The
massless particle, or zero mode,” should correspond to a field
observable in our world. The fields with nonzero mass are called
*pyrgons,” since they are on a “tower” of particles, one for each n. If
R is near the Planck length (10733 centimeter), then the pyrgons have
masses on the order of the Planck mass. However, it is also possible
that R can be much larger, say as large as 107' centimeter, without
conflicting with experience.

The 4-dimensional form of the Lagrangian depends on an infinite
number of fields and is very complicated to analyze. For many
purposes it is helpful to truncate the theory. keeping a specially
chosen set of fields. For example, 5-dimensional Einstein gravity is
simplified by omitting all the pyrgons. This can be achieved by
requiring that the fields do not depend on y, a procedure called
“dimensional reduction.” The dimensionally reduced theory should

quences of the symmetries of space-time is so
attractive  that generahize  the
Kaluza-Klem been  vigorously

citorts 1o
wdea have
pursucd. These theories require a more com-
plete discussion of the possible candidate
manifolds of the extra dimensions.

The geometry af the extra dimensions in
the absence of matter is typically a space with
a high degree of symmetry. Symmetry re-
quires the existence of transformations in
which the starting point looks hike the point
reached after the transtormation. (For exam-
ple. the environnmients surrounding cach
point on a sphere are identical.) Two of the
most important examples are “"group mani-
folds™ and “coset spaces.” which we bricfly
describe.

The tranformations of a continuous group
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are identified by N parameters, where N s
the number of independent transtormations
in the group. For example. M = 3 for SU(2)
and 8 for SU(3). Thesc paramecters arc the
coordinates of an M-dimensional manifold.
If the vacuum values of ficlds are constant on
the group manifold. then the vacuum solu-
tion is said to be symmetric.

Cosctspaces have the symmetry of a group
too. but the coordinates arce labeled by a
subset of the parameters of a group. For
example. consider the space SO(3)/S(42). In
this example. SO3) has three parameters.
and SO(2) 1s the phase symmetry with one
paramcter. so the coset space SO(3)/SO(2)
has three minus one. or two. dimensions.
This space 1s called the 2-sphere. and it has
the geometry of the surface of an ordinary

sphere. Spheres can be generalized to am
numher of dimensions: the N-chmensional
sphere 1s the coset space [SOLN + N/SOCN),
Many other cosets. or “ratios”™ of groups.
make spaces with large symmetries. 1t s
possible to find spaces with the symmetrics
of the clectroweak and strong interactions.
One such space is the group manifold SU(2)
XU X SU(3). which has twehve
dimensions. More interesting 15 the lowest
dimensional space with those symmetries,
namely. the coset space [S3) X SU) x
Lieh}/Z Sty X Ueh X Ueh). which has
dimension 8§+ 3+ 1 —3—1—1=7(The
SU2) and the U(lYs 1in the denominator
differ from those in the numerator. so they
cannot be “canceled.™) Thus. one nught hope
that (4 + 7 = 1 h-dimensional gravity would
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describe the low-energy limit of the theory.

The gravitational field can be generalized to higher (5) dimen-
sional manifolds, where the extra dimensions at each 4-dimensional
space-time point form a little ball of finite volume. The mathematics
requires a generalization of Fourier series to "harmonic’ expansions
on these spaces. Each field (or field component if it has spin) unifies
an infinite set of pyrgons, and the series may also contain some zero
modes. The terms in the series correspond to fields of increasing 4-
dimensional mass, just as in the 5-dimensional example. The kinetic
energy in the extra dimensions of each term in the series then
corresponds 10 a mass in our space-time. The higher dimensional
field quite generally describes mathematically an infinite number of
4-dimensional fields.

Spin in Higher Dimensions. The definition of spin in D dimensions
depends on the D-dimensional Lorentz symmetry; 4-dimensional
Lorentz symmetry is naturally embedded in the D-dimensional
symmetry. Consequently a D-dimensional field of a specific spin
unifies 4-dimensional fields with different spins.

Conceptually the description of D-dimensional spin is similar to
that of spin in four dimensions. A massless particle of spin J in four
dimensions has helicities +J and —J corresponding to the projections
of spin along the direction of motion. These two helicities are singlet
muttiplets of the {-dimensional rotations that leave unchanged the
direction of a particle traveling at the speed of light. The group of 1-
dimensional rotations is the phase symmetry SO(2), and this method
for identifying the physical degrees of freedom is calted the *light-
cone classification.” However, the situation is a little more com-

plicated in five dimensions, where there are three directions or-
thogonal to the direction of the particle. Then the helicity symmetry
becomes SO(3) (instead of SO(2)), and the spin multiplets in five
dimensions group together sets of 4-dimensional helicity. For exam-
ple, the graviton in five dimensions has five components. The SO(2)
of four dimensions is contained in this SO(3) symmetry. and the 4-
dimensional helicities of the 5-dimensional graviton are 2, 1, 0, —1,
and —2.

Quite generally, the light-cone symmetry that leaves the direction
of motion of a massless particle unchanged in D dimensions is
SO(D — 2), and the D-dimensional helicity corresponds to the multi-
plets (or representations) of SO(D — 2). For example, the graviton
has D(D — 3)/2 independent degrees of freedom in D dimensions;
thus the graviton in eleven dimensions belongs to a 44-component
representation of SO(9). The SO(2) of the 4-dimensional helicity is
inside the SO(9), so the forty-four components of the graviton in
eleven dimensions carry labels of 4-dimensional helicity as follows:
one component of helicity 2, seven of helicity 1, twenty-eight of
helicity 0, seven of helicity ~1 and one of helicity —2. (The compo-
nents of the graviton in eleven dimensions then correspond to the
graviton, seven massless vector bosons, and twenty-eight scalars in
four dimensions.)

The analysis for massive particles in D dimensions proceeds in
exactly the same way, except the helicity symmetry is the one that
leaves a resting particle at rest. Thus, the massive helicity symmetry
is SO(D — 1). (For example, SO(3) describes the spin of a massive
particle in ordinary 4-dimensional space-time,) These results are
summarized in Fig. 5 of the main text.

unify all known interactions.

ft rurns our that the 4-dimensional ficlds
imphed by the [1-dimensional gravitational
ficld resemble the solution to the 3-dimen-
sional Kaluza-Klein casc. except that the
gravitational ficld now corresponds to many
morc 4-dimensional ficlds. There are meth-
ods of dimensional reduction for group
manifolds and cosct spaces. and the zero
mades include a cector boson for cach sym-
metry of the extra dimensions. Thus. in the
(4 + 7-dimensional c¢cxample mentioned
above. there 1s a complete set of vector bos-
ons for the standard modcl. At first sight this
model appears to provide an attractive uni-
fication of all the interactions of the standard
modecl: i1t cxplains the origins of the local
svymmetries of the standard model as space-
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time  symmetrtes cleven
dimensions.

Unfortunately. this  [l-dimensional
Kaluza-Klein theory has some shortcomings.
Even with the complete freedom consistent
with quantum ficld theory to add fermions. it
cannot account for the parity violation seen
in the weak ncutral-current interactions of
the clectron. Witten! has presented very gen-
eral arguments that no |l-dimensional
Kaluza-Klein theory will ever give the cor-
rect clectroweak theory.

of gravity in

Supersymmetry and Gravity in
Four Dimensions

We return from our excursion into higher
dimensions and discuss cxtending gravity

not by cnlarging the space but rather by
cnlarging the ssmmetry. The local Poincare
symmetry of Emnsteimn’s gravity imphies the
massless spin-2 graviton: our present goal 1s
to extend the Poincaré symmetry (without
increasing the number of dimensions) so that
additional ficlds are grouped together with
the graviton. However. this cannot be
achicved by an ordinary (Lic group) sym-
metry: known
clementary spin-2 ficld. and the local sym-
metrics of the standard model are internal
symmetries that group together particles of
the same spin. Morcover, gravity has an
exceptionally weak interaction. so if the
graviton carrics quantum numbers of sym-
metries similar to those of the standard
modcl. 1t will interact too stronghy. We can

the graviton is the onh
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