
Fiel& andSpins in
Fields in HigherDimensions.We deseribeherehow to cos%stmcta
field in higher dimensions and how such a &$$ is rektmi to i%ldri b
the 4-dimensional world in which we live. Higher dimensiensd 6c$th
unify an infinite number of 4-dimensional fieids. A typical and
simple example of this can be seen from a scalar field (a spin-O field)
in five dimensions. A scaiar field has ostly one component, so it can
be written as q(x.y), where x is the 4dinmnsiotml space-time
coordinate and y is the coordinate fbr the fifth dimension. We wili
assume that the fifth dimension is a little circle with radius R, where
R is independent of x. (After this example, we examine the gen-
eralizations to more than five dimensions and to fields carrying
nonzero spin in the higher dimensions.)

Functions on a circie can be expanded in a Fourier series; thus, the
5-dimensional scalar field can be written in the form

.
$I(X..V)= ~>,4%(@WXifrY/fV. (1)

where n is an integer, and ~n(x) are 4-dimensional fields. The Fourier
series satisfies the requirement that the field is single-valued in tlse
extra dimension, since Eq. 1has the same vaiue at the identical poissts
y and y + 2xR, Usually the wave equation of q(x,y) is a 5%rs@t-

forward generalization of the 4-dimensional scalar wave equation

(that is, the Klein-Gordon equation) in the limit that interactions cats
be ignored. The 5-dimensional Kiein-Gordon equation for a massless
5-dimensional particle is

(2)

m~~~ 1 term depends on the details of lhe

~, $@ W@- thm for the present description. It is a
simple ssmtter to s&titt@ the Fmwier expansion of Eq. 1 into Eq. 2
and use the rwthogonality of the expansion functions exp(itr.v/R) to

rewrite Eq. 2 as an infinite number of equations in four dimensions.
one for each *AX)

[$-v’+(azl~n(x)mo (3)

Note the foi!owing very impomsnt point: for n = O, Eq. 3 is the
er&atiorr for a massiess 4-dimensional scalar field, whereas for n # O.
Eq. 3 is the wave equation for a particie with mass InI/R. The
massiess particle, or “zero mode,” should correspond to a field
observable in our world. The fields with nonzero mass are called
“pyrgons,” since they are on a “tower” of particles, one for each n. If
k?is near the Planck length (10-33 centimeter), then the pyrgons have
masses on the order of the Planck mass. However, it is also possible
that R can be much larger, say as large as 10-16 centimeter, without
conflicting with experience.

The 4dimensional form of the Lagrangian depends on an infinite
number of fields and is very complicated to analyze. For many
purposes it is heipful to truncate the theory, keeping a specially
chosen set of fields. For example, 5-dimensional Einstein gravity is
simplified by omitting ail the pyrgons. This can be achieved by
requiring that the fields do not depend on y, a procedure called
“dimensioaai reduction.” The dimensionally reduced theory should

qucncwoflhc s!mmctricsi)lspacc-lime ISSO

~!!rac~l~c tha[ c$fft)rts 10 gcncrall/c the

haluza-Klcln lLiC2 hai (’ been Ilgorousi}

purwscd. l-hcsc theories require a more com-
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The gcomcir! of the c\lra dimensions in

Ihcahscnmolmattcr is I!pIcally a space with
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arc Icientl!icd h! .Y paramc(crs, where V is

[hc numlwr o!’ lndcpcndcn( transtbrmations

In lhc group. For example. Y = 3 I(]r S( 1(?)

and 8 for SLJ(3). These parameters arc the

coordinates of an .Y-dimensional manifold.

Ifthc vacuum valucsofficlds arc constant on

~hc group manifold. then Ihe vacuum solu-

(ion IS said to bc symmetric.

Cosct spttccs have (hc symmetry ofa group

Irso. bul Ihc coordinates arc Iahrled by a

subscl {)f the p~ramctcrs of a group. For

c\amplc. c[~nsldcr (hc space S0( 3)/S(X21. [n

(his c\anlplc. S0( .3) has three pararncwrs.

and S0(2) IS the phase symmcir> with onc

paramclcr. so the COSCI space S0(3)/S(>(2)

has ~hrcc minus one. or two. dirmcnslons.

This space IS called Ihc ?-sphere. and II has

the gconlclry of the surface of an ordinary

sphere Spheres can bc gcncrallzcd to an)

number of d]mcnwons: ~hc \-dlmcnslc>nal

sphere IS (hc LWSCIspace [SO,\’ + I )1/S()( \ ),

Man! olhcr COSCIS.or “ratios”” o!’ groups.

make spaces with large s}mmctncs. II IS

posslblc 10 find spaces with ~hc s! mmcincs

of lhc clcctrowcak and strong inwractlons.

Onc such space IS the group manifold S1(?)

X (r(l) X S( 1(3). which has IUCl\C

dlmcnslorrs. ,Nlorc lntcr~’s(lng IS Ihc l{~\\csI

dlmcnsl{)nal \[>aCL’ul~h lh(mc $}mmclrlc\,

n:lmcl~. the (owl space [s( ‘(3) \ ~(:~?) \

(1(1) ]/[ S[1(2) X (J(l) X (~(lll. uhtch has

dlnlcnslon 8 + 3 + I – 3 – 1 – 1 = 7, (’The

S(1(2) and the 11(1)’s In (hc dcnorrllna{{~r

dltlcr trom lhosc In Ihc nunwra~or, so [he!

cannel hc “’can c~>lcd,’. ) Thus. t~nc nllghl h~>i>c

Ihai (-! + 7 = I I bdlnwnsmnal grail(! VCNIIC!



Toward a Unified Theo~: ‘ ~ ,

gher Dhensions
describe the low-energy limit of the theory,

The gravitational field can be generalized to higher (X) dimen-
sional manifolds, where the extra dimensions at eaeh +dimetwkttal
space-lime point form a little ball of finite volume. The mathematics
requires a generalization of Fourier series to “harmonic” expansions
on these spaces. Each field (or field component if it has spin) unifies
an infinite set of pyrgons, and the series may also contain some zero
modes. The terms in the series correspond to ftelds of increasing 4-
dimensional mass. just as in the 54itmensiot# example. The kinetic
energy in the extra dimensions of each term in the senks then
corresponds to a mass in our space-time. The higher dimensional
field quite generally describes mathematically an infinite number of
4dimensional fields.

Spin in Higher Dimensions. The definition of spin in D dimensions
depends on the D-dimensional Lorentz symmetry; 4-dimensional
Lorentz symmetry is naturally embedded in the D-dimensional
symmetry. Consequently a D-dimensional fieid of a ~ific spin
unifies 4-dimensional fields with different spins.

Conceptually the description of D-dimettsiotd spits is simiktr to
that of spin in four dimensions. A massless particle of spin J in four
dimensions has felicities +J and –J corresponding to the projections
of spin along the direction of motion. These two felicities are singlet
muhiplets of the Idirnensional rotations that leave unchanged the
direction of a particle traveling at the speed of light. The group of 1-
dimensional rotations is the phase symmetry SO(2), and this tnctimd
for identifying the physical degrees of fi-eedom is called the “lighl-
cone classification.” However, the situation is a tittie more com-

plicated in five dimensions, where there are three directions or-
thogod w the direction of the particle. Then the helicity symmetry

ties SO(9 (ktstmd of SO(2)), and the spin multiples in five
dimensions group together sets of 4-dimensional helicity. For exam-
ple, the graviton in five dimensions has five components. The SO(2)
of fdur dimectsions is contained in this SO(3) symmetry. and the 4-
dimcmaiod felicities of the 5-dimensional graviton are 2, 1,0. –1,
and -2.

@ite generally, the light-cone symmetry that leaves the direction
of motion of a massless particle unchanged in D dimensions is
SO(D – 2), and the D-dimensional helicity corresponds to the multi-

ples (or repreaentations) of SO(D – 2). For example, the graviton
has D(D – 3)/2 independent degrees of freedom in D dimensions;
thus the graviton in eleven dimensions belongs to a 44-compcment
representation of SO(9). The SO(2) of the 4-dimensional he licity is
inside the SO(9), so the forty-four components of the graviton in
eleven dimensions carry labels of 4-dimensional helicity as follows:
one component @fhelicity 2, seven of helicity 1, twenty-eight of
helicity O, aeven of helicity -1 and one of helicity -2. (The compo-
nents of the gravi?on in eleven dimensions then correspond to the
graviton, aeven massless vector bosons, and twenty-eight scalars in
four dimensiorts.)

The analysis for massive particles in D dimensions proceeds in
exactly the same way, except the helicity symmetry is the one that

Ieaves a resting particle at rest. Thus, the massive helicity symmetry

is SO(D - i). [For example, SO(3) describes the spin of a massive

particie in ordinary 4dimensional space-time.) These results are
atmmarized in Fig. 5 of the main text.

un{f! all known Inwrac[lons,

It Iurns out Ihal ~hc 4-dlmcnslonal Iiclds

Impltcd h} ~hc I I-dtmcnslonal gravilalmrral

field rmcmblc the solullon to {hc 5-dlmcn-

slonal Kaluza-Klein case. CMXPI [hat ihc

gra\ ]Ialional Iicld now corresponds 10 man!

more -Ldlmcnsional ftclds. There arc meth-

ods ot dlmcnslorsal rcductmn Ibr group

marrltblds and COSCI spaces. and lhc zero

modes lncludc o \ cc~or boson for each s) m-

mctr! 01 Ihc c\ira dimcnwons. Thus. in Ihc

(4 + 7}-dimensional c\amplc mcntmncd

aboic. !hcrc is a complclc set of vccmr bos-

on$ fur the slandard model, .AI Iirsl sighl this

model appears to prov]dc an altracllvc uni-

fication ofall Ihc tntcractionsofihc standard

model: il cxplalns the origins of the local

symmctncs of [hc standard model as spacc-
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Iimc s~mmclrws of gravi(y in clcvcn

dlmcnslons.

(Jnforlunalcl!. lbls I I-dlrncnslonal

Kaluza-Klcln [hcory has some shortcomings,

Even wi[h the complc[c freedom consistent

with quanlum field [hcory to add fcrmlons. il

cannel account for lhc parity violation seen

In ~hc weak nculral-current in[crac~mns 01

[hc electron. W’illcn’ has prcscntcd very gen-

eral arguments lhat no I 1-dimensional

Kaluza-Klein Ihcory will ever give (hc cor-

rccl clcctrowcak Ihcory.

Supersymmetry and Gravity in
Four Dimensions

Wc relurn Irom our cxcurswn inm htghcr

dimcnsmns and discuss extending gravity

cnlarglng ~hc s}mmclr!. The local Polncarl

s!mmctr) of Elns[cln’s grai II! Impilcs !hu

massicss spin-2 gral]lon: our prcscnl goal IS

[o extend the Poincar< s}mmctr) (wlthou{

increasing !hc numbcro ldlrncnsions) so lhal

addl(ional fields arc grouped logcihcr wlib

the gravlton. Howe\ cr. (his cannel bc

achlcvcd by an ordlnar! (LIC group) s!nl -

mctry: Ihc gravllon IS the onl} known

clcmcntar! sptn-? field. and [he local s!m -

rnc(rws of [hc slandard mode’1 arc Internal

symmclrws that group Ioguthcr partlclcs of

the same sp[n, Moreover. gravlt! has an

cxccptiomslly weak Intcractlon. so If the

gravllon carncs quanlum nurnbcrs of s!m-

mctrws similar 10 those of the standard

model. tI will intcmcl [oo slrongl}, WC can
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