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This report is intended to be the first
one of a series dealing with the be-
havior of certain nonlinear physi-

cal systems where the nonlinearity is intro-
duced as a perturbation to a primarily lin-
ear problem. The behavior of the systems
is to be studied for times which are long
compared to the characteristic periods of the
corresponding linear problems.

The problems in question do not seem to
admit of analytic solutions in closed form,
and heuristic work was performed numer-
ically on a fast electronic computing ma-
chine (MANIAC I at Los Alamos). * The
ergodic behavior of such systems was stud-
ied with the primary aim of establishing,
experimentally, the rate of approach to the
equipartition of energy among the various
degrees of freedom of the system. Several
problems will be considered in order of in-
creasing complexity. This paper is devoted
to the first one only.

We imagine a one-dimensional contin-
uum with the ends kept fixed and with
forces acting on the elements of this
string. In addition to the usual linear term
expressing the dependence of the force on
the displacement of the element, this force
contains higher order terms. For the pur-
poses of numerical work this continuum is
replaced by a finite number of points (at
most 64 in our actual computation) so that
the partial differential equation defining the
motion of this string is replaced by a finite
number of total differential equations. . . .

The solution to the corresponding lin-
ear problem is a periodic vibration of the

*We thank Miss Mary Tsingou for efficient coding
of the problems and for ruining the computations
on the Los Alamos MANIAC machine.

string. If the initial position of the string
is, say, a single sine wave, the string will
oscillate in this mode indefinitely. Start-
ing with the string in a simple configura-
tion, for example in the first mode (or in
other problems, starting with a combination
of a few low modes), the purpose of our
computations was to see how, due to non-
linear forces perturbing the periodic linear
solution, the string would assume more and
more complicated shapes, and, for t tending
to infinity, would get into states where all
the Fourier modes acquire increasing impor-
tance. In order to see this, the shape of the
string, that is to say . . . [its displacement,]
and the kinetic energy . . . were analyzed
periodically in Fourier series. . . .

Let us say here that the results of our
computations show features which were,
from the beginning, surprising to us. In-
stead of a gradual, continuous flow of en-
ergy from the first mode to the higher
modes, all of the problems show an en-
tirely different behavior. Starting in one
problem with a quadratic force and a pure
sine wave as the initial position of the
sting, we indeed observe initially [see fig-
ures on next page] a gradual increase of en-
ergy in the higher modes as predicted (e.g.,
by Rayleigh in an infinitesimal analysis).
Mode 2 starts increasing first, followed by
mode 3, and so on. Later on, however,
this gradual sharing of energy among suc-
cessive modes ceases. Instead, it is one or
the other mode that predominates. For ex-
ample, mode 2 decides, as it were, to in-
crease rather rapidly at the cost of all other
modes and becomes predominant. At one
time, it has more energy than all the others
put together! Then mode 3 undertakes this
role. It is only the first few modes which ex-
change energy among themselves and they
do this in a rather regular fashion. Finally,
at a later time mode 1 comes back to within
one per cent of its initial value so that the
system seems to be almost periodic. All our
problems have at least this one feature in
common. Instead of gradual increase of all
the higher modes, the energy is exchanged,

essentially, among only a certain few. It
is, therefore, very hard to observe the rate
of “thermalization” or mixing in our prob-
lem, and this was the initial purpose of the
calculation.

If one should look at the problem from
the point of view of statistical mechanics,
the situation could be described as follows:
the phase space of a point representing our
entire system has a great number of dimen-
sions. Only a very small part of its volume
is represented by the regions where only one
or a few out of all possible Fourier modes
have divided among themselves almost all
the available energy. If our system with
nonlinear forces acting between the neigh-
boring points should serve as a good exam-
ple of a transformation of the phase space
which is ergodic or metrically transitive,
then the trajectory of almost every point
should be everywhere dense in the whole
phase space. With overwhelming proba-
bility this should also be true of the point
which at time t = O represents our initial
configuration, and this point should spend
most of its time in regions corresponding to
the equipartition of energy among various
degrees of freedom. As will be seen from
the results this seems hardly the case. . . .

In a linear problem the tendency of the
system to approach a fixed “state” amounts,
mathematically, to convergence of iterates
of a transformation in accordance with an
algebraic theorem due to Frobenius and Per-
ron. . . . Such behavior is in a sense diamet-
rically opposite to an ergodic motion and
is due to a very special character, linearity
of the transformations of the phase space.
The results of our calculation on the nonlin-
ear vibrating string suggest that in the case
of transformations which are approximately
linear, differing from linear ones by terms
which are very simple in the algebraic sense
(quadratic or cubic in our case), something
analogous to the convergence to eigenstates
may obtain. . . . ■
Editor’s note: The interpretation of the unex-
pected recurrences is now different. See David
Campbell’s discussion on page 244.


