
STAN ULAM, JOHN VON NEUMANN,
and the MONTE CARLO METHOD

by Roger Eckhardt

The Monte Carlo method is a sta-
tistical sampling technique that
over the years has been applied
successfully to a vast number of

scientific problems. Although the com-
puter codes that implement Monte Carlo
have grown ever more sophisticated, the
essence of the method is captured in some
unpublished remarks Stan made in 1983
about solitaire.

“The first thoughts and attempts I
made to practice [the Monte Carlo
method] were suggested by a question
which occurred to me in 1946 as I was
convalescing from an illness and play-
ing solitaires. The question was what
are the chances that a Canfield solitaire
laid out with 52 cards will come out
successfully? After spending a lot of
time trying to estimate them by pure
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combinatorial calculations, I wondered
whether a more practical method than
“abstract thinking” might not be to
lay it out say one hundred times and
simply observe and count the number
of successful plays. This was already
possible to envisage with the begin-
ning of the new era of fast computers,
and I immediately thought of problems
of neutron diffusion and other ques-
tions of mathematical physics, and more
generally how to change processes de-
scribed by certain differential equations
into an equivalent form interpretable
as a succession of random operations.
Later... [in 1946, I ] described the idea
to John von Neumann and we began to
plan actual calculations.”

Von Neumann was intrigued.
tical sampling was already well

Statis-
known

in mathematics, but he was taken by
the idea of doing such sampling using
the newly developed electronic comput-
ing techniques. The approach seemed es-
pecially suitable for exploring the behav-
ior of neutron chain reactions in fission
devices. In particular, neutron multiplica-
tion rates could be estimated and used to
predict the explosive behavior of the var-
ious fission weapons then being designed.

In March of 1947, he wrote to Rob-
ert Richtmyer, at that time the Theoretical
Division Leader at Los Alamos (Fig. 1).
He had concluded that “the statistical ap-
proach is very well suited to a digital
treatment,” and he outlined in some de-
tail how this method could be used to
solve neutron diffusion and multiplica-
tion problems in fission devices for the
case “of ‘inert’ criticality” (that is, ap-
proximated as momentarily static config-
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Fig. 1. The first and last pages of von Neumann’s remarkable letter to Robert Richtmyer are shown above, as well as a portion of his tentative
computing sheet. The last illustrates how extensively von Neumann had applied himself to the details of a neutron-diffusion calculation.
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to me, therefore, that this approach will
gradually lead to a completely satisfac-
tory theory of efficiency, and ultimately
permit prediction of the behavior of all
possible arrangements, the simple ones as
well as the sophisticated ones. ”

And so it has. At Los Alamos in 1947,
the method was quickly brought to bear
on problems pertaining to thermonuclear
as well as fission devices, and, in 1948,
Stan was able to report to the Atomic
Energy Commission about the applica-
bility of the method for such things as
cosmic ray showers and the study of the
Hamilton Jacobi partial differential equa-
tion. Essentially all the ensuing work on
Monte Carlo neutron-transport codes for
weapons development and other applica-
tions has been directed at implementing
the details of what von Neumann out-
lined so presciently in his 1947 letter (see
“Monte Carlo at Work”).
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ated by making various decisions about els before interacting with a nucleus is unit interval (O, 1 ) into three subintervals
exponentially decreasing, making the se- in such a way that the probability of a

uniform random number being in a given
subinterval equals the probability of the
outcome assigned to that set.

In another 1947 letter, this time to Stan
Ulam, von Neumann discussed two tech-
niques for using uniform distributions of
random numbers to generate the desired
nonuniform distributions g (Fig. 3). The
first technique, which had already been

134



May 21, 1947
Mr. Stan Ulam
Post Office Box 1663
Santa Fe
New Mexico

Dear Stan :
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very next free flight are accumulated after
each collision. Random-Number

Generators
by Tony Warnock

R
andom numbers have applications in many areas: simulation, game-playing,
cryptography, statistical sampling, evaluation of multiple integrals, particle-
transport calculations, and computations in statistical physics, to name a few.

Since each application involves slightly different criteria for judging the “worthiness”
of the random numbers generated, a variety of generators have been developed, each
with its own set of advantages and disadvantages.

Depending on the application, three types of number sequences might prove
adequate as the “random numbers.” From a purist point of view, of course, a series of
numbers generated by a truly random process is most desirable. This type of sequence
is called a random-number sequence, and one of the key problems is deciding whether
or not the generating process is, in fact, random. A more practical sequence is the
pseudo-random sequence, a series of numbers generated by a deterministic process
that is intended merely to imitate a random sequence but which, of course, does not
rigorously obey such things as the laws of large numbers (see page 69). Finally, a
quasi-random sequence is a series of numbers that makes no pretense at being random
but that has important predefine statistical properties shared with random sequences.

Physical Random-Number Generators

Games of chance are the classic examples of random processes, and the first
inclination would be to use traditional gambling devices as random-number generators.
Unfortunately, these devices are rather slow, especially since the typical computer
application may require millions of numbers per second. Also, the numbers obtained
from such devices are not always truly random: cards may be imperfectly shuffled,
dice may not be true, wheels may not be balanced, and so forth. However, in the early
1950s the Rand Corporation constructed a million-digit table of random numbers using
an electrical “roulette wheel.” (The device had 32 slots, of which 12 were ignored; the
others were numbered from O to 9 twice.)

Classical gambling devices appear random only because of our ignorance of initial
conditions; in principle, these devices follow deterministic Newtonian physics. Another
possibility for generating truly random numbers is to take advantage of the Heisenberg
uncertainty principle and quantum effects, say by counting decays of a radioactive
source or by tapping into electrical noise. Both of these methods have been used to
generate random numbers for computers, but both suffer the defects of slowness and
ill-defined distributions (however, on a different but better order of magnitude than
gambling devices).

I 37



Monte Carlo

For instance, although each decay in a radioactive source may occur randomly
and independently of other decays, it is not necessarily true that successive counts in
the detector are independent of each other. The time it takes to reset the counter,
for example, might depend on the previous count. Furthermore, the source itself

constantly changes in time as the number of remaining radioactive particles decreases
exponentially. Also, voltage drifts can introduce bias into the noise of electrical devices.

There are, of course, various tricks to overcome some of these disadvantages. One
can partially compensate for the counter-reset problem by replacing the string of bits
that represents a given count with a new number in which all of the original 1-1 and O-O
pairs have been discarded and all of the original O-1 and 1-0 pairs have been changed
to O and 1, respectively. This trick reduces the bias caused when the probability of a
O is different from that of a 1 but does not completely eliminate nonindependence of
successive counts.

A shortcoming of any physical generator is the lack of reproducibility. Repro-
ducibility is needed for debugging codes that use the random numbers and for making
correlated or anti-correlated computations. Of course, if one wants random numbers
for a cryptographic one-time pad, reproducibility is the last attribute desired, and time
can be traded for security. A radioactive source used with the bias-removal technique
described above is probably sufficient.

Arithmetical Pseudo-Random Generators

The most common method of generating pseudo-random numbers on the computer
uses a recursive technique called the linear-congruential, or Lehmer, generator. The
sequence is defined on the set of integers by the recursion formula

or, in binary,

(1)
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to form the normal number

1101110010111011110001001 101010111100110111101111 . . . .

If the number is blocked into 5-digit sets

11011,10010, 11101, 11100,01001, 10101,01111,00110,11 110, 11111,..., (2)

it becomes a sequence of numbers in base 2 that satisfy all linear statistical conditions
for randomness. For example, the frequency of a specific 5-bit number is (1/2)5.

Sequences of this type do not “appear” random when examined; it is easy for a
person to guess the rule of formation. However, we can further disguise the sequence
by combining it with the linear-congruence sequence generated earlier (Seq. 1). We do
this by performing an exclusive-or (XOR) operation on the two sequences:
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and

11011, 10010,11101,11100,01001, 10101,01111,00110, 11110,111 11,... (2)

yield

Of course, if Seq. 3 is carried out to many places, a pattern in it will also become
apparent. To eliminate the new pattern, the sequence can be XOR’ed with a third
pseudo-random sequence of another type, and so on.

This type of hybrid sequence is easy to generate on a binary computer. Although
for most computations one does not have to go to such pains, the technique is especially

attractive for constructing “canonical” generators of apparently random numbers.
A key idea here is to take the notion of randomness to mean simply that the

sequence can pass a given set of statistical tests. In a sequence based on normal
numbers, each term will depend nonlinearly on the previous terms. As a result, there
are nonlinear statistical tests that can show the sequence not to be random. In particular,
a test based on the transformations used to construct the sequence itself will fail. But,
the sequence will pass all linear statistical tests, and, on that level, it can be considered
to be random.

What types of linear statistical tests are applied to pseudo-random numbers?
Traditionally, sequences are tested for uniformity of distribution of single elements,
pairs, triples, and so forth. Other tests may be performed depending on the type of
problem for which the sequence will be used. For example, just as the correlation
between two sequences can be tested, the auto-correlation of a single sequence can be
tested after displacing the original sequence by various amounts. Or the number of
different types of “runs” can be checked against the known statistics for runs. An
increasing run, for example, consists of a sequential string of increasing numbers
from the generator (such as, 0.08, 0.21, 0.55, 0.58, 0.73, . . .). The waiting times
for various events (such as the generation of a number in each of the five intervals
(o, 0,2), (0.2, 0,4), ..., (0.8, 1)) may be tallied and, again, checked against the known
statistics for random-number sequences.

If a generator of pseudo-random numbers passes these tests, it is deemed to be a
“good” generator, otherwise it is “bad.” Calling these criteria “tests of randomness” is
misleading because one is testing a hypothesis known to be false. The usefulness of
the tests lies in their similarity to the problems that need to be solved using the stream
of pseudo-random numbers. If the generator fails one of the simple tests, it will surely
not perform reliably for the real problem. (Passing all such tests may not, however, be
enough to make a generator work for a given problem, but it makes the programmers
setting up the generator feel better.)
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the basis of the Metropolis
technique of evaluating integrals by the Monte Carlo method,

Now if the points are taken from a random or a psuedo-random sequence, the
statistical uncertainty will be proportional to 1/@. However, if a quasi-random se-
quence is used, the points will occupy the coordinate space with the correct distribution
but in a more uniform manner, and the statistical uncertainty will be proportional to
l/N. In other words, the uncertainty will decrease much faster with a quasi-random
sequence than with a random or pseudo-random sequence.

How are quasi-random sequences generated? One type of sequence with a very
uniform distribution is based on the radical-inverse function. The radical-inverse

uniform distribution and is useful in mutiple integration or multi-dimensional sampling.
There are many other types of random, pseudo-random, or quasi-random sequences

than the ones I have discussed here, and there is much research aimed at generating
sequences with the properties appropriate to the desired application. However, the
examples I have discussed should illustrate both the approaches being taken and the
obstacles that must be overcome in the quest of suitable “random” numbers. ■
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Monte Carlo
at Work

by Gary D. Doolen
and John Hendricks

Every second nearly 10,000,000,000 “random” numbers are being generated on
computers around the world for Monte Carlo solutions to problems that Stan
Ulam first dreamed of solving forty years ago. A major industry now exists

that has spawned hundreds of full-time careers invested in the fine art of generating
Monte Carlo solutions—a livelihood that often consists of extracting an answer out of a
noisy background. Here we focus on two of the extensively used Monte Carlo solvers:
MCNP, an internationally used neutron and photon transport code maintained at Los
Alamos; and the “Metropolis” method, a popular and efficient procedure for computing
equilibrium properties of solids, liquids, gases, and plasmas.

MCNP

In the fifties, shortly after the work on the Monte Carlo method by Ulam, von
Neumann, Fermi, Metropolis, Richtmyer, and others, a series of Monte Carlo transport
codes began emerging from Los Alamos. The concepts on which these codes were
based were those outlined by von Neumann (see “Stan Ulam, John von Neumann, and
the Monte Carlo Method”), but a great deal of detailed work was needed to incorporate
the appropriate physics and to develop shorter routes to statistically valid solutions.

From the beginning the neutron transport codes used a general treatment of the ge-
ometry, but successive versions added such features as cross-section libraries, variance-
reduction techniques (essentially clever ways to bias the random numbers so that the
guesses will cluster around the correct solution), and a free-gas model treating ther-
malization of the energetic fission neutrons. Also, various photon transport codes were
developed that dealt with photon energies from as low as 1 kilo-electron-volt to the
high energies of gamma rays. Then, in 1973, the neutron transport and the photon
transport codes were merged into one. In 1977 the first version of MCNP appeared
in which photon cross sections were added to account for production of gamma rays
by neutron interactions. Since then the code has been distributed to over two hundred
institutions worldwide.*

The Monte Carlo techniques and data now in the MCNP code represent over three
hundred person-years of effort and have been used to calculate many tens of thousands
of practical problems by scientists throughout the world. The types of problems include
the design of nuclear reactors and nuclear safeguard systems, criticality analyses, oil
well logging, health-physics problems, determinations of radiological doses, spacecraft
radiation modeling, and radiation damage studies. Research on magnetic fusion has
used MCNP heavily.

The MCNP code features a general three-dimensional geometry, continuous energy
or multigroup physics packages, and sophisticated variance reduction techniques. Even
very complex geometry and particle transport can be modeled almost exactly. In fact,
the complexity of the geometry that can be represented is limited only by the dedication
of the user.

*The MCNP code and manual can be obtained from the Radiation Shielding Information Center (RSIC),
P.O. Box X, Oak Ridge, TN 37831.
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PAIR-DISTRIBUTION FUNCTION

This plot gives the probability of pairs of

charged particles in a plasma being sep-
arated by a certain distance. The prob-

abilities are plotted as a function of the

distance between the pair of particles (in-
creasing from left to right) and tempera-
ture (decreasing from front to back). At
the left edge, both the distance and the
probability are zero; at the right edge, the
probability has become constant in value.
Red indicates probabilities below this con-
stant value, yellow and green above. As
the temperature of the plasma decreases,
lattice-like peaks begin to form in the pair-

distribution function. The probabilities, gen-
erated with the Metropolis method described
in the text, have been used for precise tests

of many theoretical approximations for plas-
ma models.
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