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Monte Carlo
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‘Ol STAN ULAM, JOHN VON NEUMANN,

and the MONTE CARLO METHOD

he Monte Carlo method is a sta-

tistical sampling technique that

over the years has been applied

successfully to a vast number of
scientific problems. Although the com-
puter codes that implement Monte Carlo
have grown ever more sophisticated, the
essence of the method is captured in some
unpublished remarks Stan made in 1983
about solitaire.

“The first thoughts and attempts |
made to practice [the Monte Carlo
method] were suggested by a question
which occurred to me in 1946 as | was
convalescing from an illness and play-
ing solitaires. The question was what
are the chances that a Canfield solitaire
laid out with 52 cards will come out
successfully? After spending a lot of
time trying to estimate them by pure
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combinatorial calculations, | wondered
whether a more practical method than
“abstract thinking” might not be to

lay it out say one hundred times and
simply observe and count the number
of successful plays. This was already
possible to envisage with the begin-
ning of the new era of fast computers,
and | immediately thought of problems
of neutron diffusion and other ques-
tions of mathematical physics, and more
generally how to change processes de-
scribed by certain differential equations
into an equivalent form interpretable
as a succession of random operations.
Later... [in 1946, | ] described the idea
to John von Neumann and we began to
plan actual calculations.”

Von Neumann was intrigued. Statis-
tica sampling was aready well known

by Roger Eckhardt

in mathematics, but he was taken by
the idea of doing such sampling using
the newly developed electronic comput-
ing techniques. The approach seemed es-
pecially suitable for exploring the behav-
ior of neutron chain reactions in fission
devices. In particular, neutron multiplica-
tion rates could be estimated and used to
predict the explosive behavior of the var-
ious fission weapons then being designed.
In March of 1947, he wrote to Rob-
ert Richtmyer, at that time the Theoretical
Division Leader at Los Alamos (Fig. 1).
He had concluded that “the statistical ap-
proach is very well suited to a digital
trestment,” and he outlined in some de-
tail how this method could be used to
solve neutron diffusion and multiplica-
tion problems in fission devices for the
case “of ‘inert’ criticality” (that is, ap-
proximated as momentarily static config-
131
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Fig. 1. The first and last pages of von Neumann’s remarkable letter to Robert Richtmyer are shown above, as well as a portion of his tentative
computing sheet. The last illustrates how extensively von Neumann had applied himself to the details of a neutron-diffusion calculation.
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urations). ‘This outline was the first for-
mulation of a Monte Carlo computation
for an electronic computing machine.

In his formulation von Neumann used a
spherically symmetric geometry in which
the various materials of interest varied
only with the radius. He assumed that
the neutrons were generated isotropically
and had a known velocity spectrum and
that the absorption, scattering, and fission
cross-sections in the fissionable material
and any surrounding materials (such as
neutron moderators or reflectors) could be
described as a function of neutron veloc-
ity. Finally, he assumed an appropriate
accounting of the statistical character of
the number of fission neutrons with prob-
abilities specified for the generation of 2,
3, or 4 neutrons in each fission process.

The idea then was to trace out the
history of a given neutron, using ran-
dom digits to select the outcomes of the
various interactions along the way. For
example, von Neumann suggested that
in the compution “each neutron is rep-
resented by [an 80-entry punched com-
puter] card . .. which carries its character-
istics,” that is, such things as the zone of
material the neutron was in, its radial po-
sition, whether it was moving inward or
outward, its velocity, and the time. The
card also carried “the necessary random
values” that were used to determine at the
next step in the history such things as path
length and direction, type of collision, ve-
locity after scattering—up to seven vari-
ables in all. A “new” neutron was started
(by assigning values to a new card) when-
ever the neutron under consideration was
scattered or whenever it passed into an-
other shell; cards were started for several
neutrons if the original neutron initiated
a fission. One of the main quantities of
interest, of course, was the neutron mul-
tiplication rate—for each of the 100 neu-
trons started, how many would be present
after, say, 10~% second?

At the end of the letter, von Neumann
attached a tentative “computing sheet”
that he felt would serve as a basis for
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setting up this calculation on the ENIAC.
He went on to say that “it seems to me
very likely that the instructions given on
this ‘computing sheet’ do not exceed the
‘logical’ capacity of the ENIAC.” He es-
timated that if a problem of the type he
had just outlined required “following 100
primary neutrons through 100 collisions

[oarhl] nf tha nrimarv nantran ar itg Aa_
Lvaviij. . . Ul v }Jl uucu)« LUl vl vl 1w ue

scendants,” then the calculations would
“take about 5 hours.” He further stated,
somewhat optimistically, that “in chang-
ing over from one prnhlem of this cate-

Lh)

gory to another one, only a few numeri-
cal constants will have to be set anew on
one of the ‘function table’ organs of the
ENIAC.”

His treatment did not allow “for the
displacements, and hence changes of ma-
terial distribution, caused by hydrody-
namics,” which, of course, would have
to be taken into account for an explo-
sive device. But he stated that “I think
that I know how to set up this problem,
too: One has to follow, say 100 neu-
trons through a short time interval At
get their momentum and energy trans-
fer and generation in the ambient mat-
ter; calculate from this the displacement
of matter; recaiculate the history of the
100 neutrons by assuming that matter is
in the middle position between its orig-
inal (unperturbed) state and the above
displaced (perturbed) state;. .. iterating in
this manner until a “self-consistent” sys-
tem of neutron history and displacement
of matter is reached. This is the treat-

ment of the first time interval Ar. When

11 TIIU 1E10U UIIIIC IIVCI VAL LAE. VY aalax

it is completed, it will serve as a basis
for a similar treatment of the second time
interval. . . etc., etc.”

Von Neumann also discussed the treat-
ment of the radiation that is generated
during fission. “The photons, too, may
have to be treated ‘individually’ and sta-
tistically, on the same footing as the neu-
trons. This is, of course, a non-trivial
complication, but it can hardly consume
much more time and instructions than the
corresponding neutronic part. It seems

Monte Carlo

to me, therefore, that this approach will
gradually lead to a completely satisfac-
tory theory of efficiency, and ultimately
permit prediction of the behavior of all
possible arrangements, the simple ones as
well as the sophisticated ones. ”

And so it has. At Los Alamos in 1947,
the method was quickly brought to bear
on problems pertaining to thermonuclear
as well as fission devices, and, in 1948,
Stan was able to report to the Atomic
Energy Commission about the applica-
bility of the method for such things as
cosmic ray showers and the study of the
Hamilton Jacobi partial differential equa-
tion. Essentially all the ensuing work on
Monte Carlo neutron-transport codes for
weapons development and other applica-
tions has been directed at implementing
the details of what von Neumann out-
lined so presciently in his 1947 letter (see
“Monte Carlo at Work™).

n von Neumann’s formulation of the
Ineutron diffusion problem, each neu-
tron history is analogous to a single game
of solitare, and the use of random num-
bers to make the choices along the way
is analogous to the random turn of the
card. Thus, to carry out a Monte Carlo
calculation, one needs a source of ran-
dom numbers, and many technigues have
been developed that pick random num-
bers that are uniformly distributed on the
unit interval (see “Random-Number Gen-
erators”). What is really needed, how-
ever, are nonuniform distributions that
simulate probability distribution functions
specific to each particular type of de-
cision. In other words, how does one
ensure that in random flights of a neu-
tron, on the average, a fraction e/A
travel a distance x /) mean free paths or
farther without colliding? (For a more
mathematical discussion of random vari-
ables, probability distribution functions,
and Monte Carlo, see pages 68-73 of
“A Tutorial on Probability, Measure, and
the Laws of Large Numbers.”)

The history of each neutron is gener-
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DECISION POINTS
IN MONTE CARLO

Fig. 2. A schematic of some of the de-
cisions that are made to generate the
“history” of an individual neutron in a
Monte Carlo calculation. The nonuniform
random-number distributions g used in
those decisions are determined from a
variety of data.

g, Determined from
Properties of New Material

Length of Free Flight
in New Material

L'?
Crossing of
Material Boundary Collision
v \

Initial Velocity ‘and
Positiont of Neutron
v? x7?

Length ofLF’-‘?ree Flight
Crossing of
Material Boundary Collision

gv and gx Assumed
¢ from Initial Conditions

g; Determined from
Matenal Properties

g, Determined by
Known Branching Ratios

Scattering

Fission

Absorption

New Velocity
v'?

Chain
Terminated

g, Determined from
Scattering Cross Sections
and Incoming Velocity

~

A

gn. gv( R gv?u ... Determined

from Fission Cross Sections

ated by making various decisions about
the physical events that occur as the neu-
tron goes along (Fig. 2). Associated with
each of these decision points is a known,
and usually nonuniform. distribution of
random numbers g that mirrors the prob-
abilities for the outcomes possible for the
event in question. For instance, return-
ing to the example above, the distribu-
tion of random numbers g¢; used to de-
termine the distance that a neutron trav-

134

els before interacting with a nucleus is
exponentially decreasing, making the se-
lection of shorter distances more proba-
ble than longer distances. Such a distri-
bution simulates the observed exponen-
tial falloff of neutron path lengths. Simi-
larly, the distribution of random numbers
gx used to select between a scattering,
a fission, and an absorption must reflect
the known probabilities for these differ-
ent outcomes. The idea is to divide the

unit interva (O, 1) into three subintervals
in such a way that the probability of a
uniform random number being in a given
subinterval equals the probability of the
outcome assigned to that set.

In another 1947 letter, this time to Stan
Ulam, von Neumann discussed two tech-
niques for using uniform distributions of
random numbers to generate the desired
nonuniform distributions g (Fig. 3). The
first technique, which had already been
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ANOTHER VON NEUMANN LET Y

Fig. 3. In this 1947 letter to Stan Ulam, von

Neumann discusses two methods for gen-
erating the nonuniform distributions of ran-
dom numbers needed in the Monte Carlo
method. The second paragraph summarizes
the inverse-function approach in which (x')
represents the uniform distribution and (s’)
the desired nonuniform distribution. The
rest of the letter describes an alternative ap-
proach based on two uniform and indepen-
dent distributions: (xi) and (y'). In this lat-
ter approach a value x' from the first set is
accepted when a value y' from the second
set satisfies the condition y < f(x'), where
f(¢') d¢ is the density of the desired distri-
bution function. (it should be noted that in
von Neumann’s example for forming the ran-
dom pairs £ = sin x and 7 = COS X, he proba-
bly meant to say that x Is equidistributed be-
tween 0 and 360 degrees (rather than “300”).
Also, his notation for the tangent function is
tg,” so that the second set of equations for
‘ and 7 are just half-angle (y = X /2) trigono-
netric identities.)
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proposed by Stan, uses the inverse of the
desired function /' = g~!. For example,
to get the exponentially decreasing distri-
bution of random numbers on the interval
(0,oc) needed for path lengths, one ap-
plies the inverse function f(x) = — Inx to
a uniform distribution of random numbers
on the open interval (0, 1).

What if it is difficult or computation-
ally expensive to form the inverse func-
tion, which is frequently true when the
desired function is empirical? The rest of
von Neumann’s letter describes an alter-
native technique that will work for such
cases. In this approach rwo uniform and
independent distributions (x') and (y') are
used. A value x' from the first set is
accepted when a value y’ from the sec-
ond set satisfies the condition y' < f(x*),
where f(£7)d¢ is the density of the de-
sired distribution function (that is, g(x) =
JFx)dx).

This acceptance-rejection technique of
von Neumann’s can best be illustrated
graphically (Fig. 4). If the two numbers
x' and y' are selected randomly from the
domain and range, respectively, of the
function f, then each pair of numbers rep-
resents a point in the function’s coordi-
nate plane (x',y’). When y' > f(x!) the
point lies above the curve for f(x), and x'
is rejected; when y¢ < f(x’) the point lies
on or below the curve, and x‘ is accepted.
Thus, the fraction of accepted points is
equal to the fraction of the area below the
curve. In fact, the proportion of points se-
lected that fall in a small interval along
the x-axis will be proportional to the av-
erage height of the curve in that interval,
ensuring generation of random numbers
that mirror the desired distribution.

fter a series of “games” have been
Aplayed, how does one extract mean-
ingful information? For each of thou-
sands of neutrons, the variables describ-
ing the chain of events are stored, and this
collection constitutes a numerical model
of the process being studied. The collec-
tion of variables is analyzed using sta-
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THE ACCEPTANCE-REJECTION
METHOD

Fig. 4. If two independent sets of random
numbers are used, one of which (x') ex-
tends uniformly over the range of the distri-
bution function f and the other (yi) extends
over the domain of f, then an acceptance-
rejection technique based on whether or not
y' < f(x') will generate a distribution for
(xi) whose density is f(xi) ax’.

Reject x; since y; > f{xq).

\ (X1 ~,y1)
F(x)

' /

o (X2, ¥2)

Accept xp since y» < f(xz).

[y

—

X
tistical methods identical to those used
to analyze experimental observations of
physical processes. One can thus extract
information about any variable that was
accounted for in the process. For exam-
ple, the average energy of the neutrons at
a particular time is calculated by simply
taking the average of all the values gen-
erated by the chains at that time. This
value has an uncertainty proportional to
VV /(N — 1), where V is the variance
of, in this case, the energy and N is the
number of trials, or chains, followed.

It is, of course, desirable to reduce sta-
tistical uncertainty. Any modification to
the stochastic calculational process that
generates the same expectation values but
smaller variances is called a variance-

reduction technique. Such techniques
frequently reflect the addition of known
physics to the problem, and they reduce
the variance by effectively increasing the
number of data points pertinent to the
variable of interest.

An example is dealing with neutron ab-
sorption by weighted sampling. In this
technique, each neutron is assigned a unit
“weight” at the start of its path. The
weight is then decreased, bit by bit at each
collision, in proportion to the absorption
cross section divided by the total collision
cross section. After each collision an out-
come other than absorption is selected by
random sampling and the path is contin-
ued. This technique reduces the variance
by replacing the sudden, one-time process
of neutron absorption by a gradual elim-
ination of the neutron.

Another example of variance reduction
is a technique that deals with outcomes
that terminate a chain. Say that at each
collision one of the alternative outcomes
terminates the chain and associated with
this outcome is a particular value x, for
the variable of interest (an example is
x; being a path length long enough for
the neutron to escape). Instead of col-
lecting these values only when the chain
terminates, one can generate considerably
more data about this particular outcome
by making an extra calculation at each
decision point. In this calculation the
know value x; for termination is multi-
plied by the probability that that outcome
will occur. Then random values are se-
lected to continue the chain in the usual
manner. By the end of the calculation,
the “weighted values” for the terminat-
ing outcome have been summed over all
decision points. This variance-reduction
technique is especially useful if the prob-
ablity of the alternative in question is low.
For example, shielding calculations typi-
cally predict that only one in many thou-
sands of neutrons actually get through the
shielding. Instead of accumulating those
rare paths, the small probabilities that a
neutron will get through the shield on its

Los Alamos Science Special Issue 1987



very next free flight are accumulated after
each collision.

he Monte Carlo method has proven

to be a powerful and useful tool. In
‘act, “solitaire games”™ now range from
he neutron- and photon-transport codes
‘hrough the evaluation of multi-dimen-
sional integrals, the exploration of the
oroperties of high-temperature plasmas,
and into the quantum mechanics of sys-
‘ems too complex for other methods.

Quite a handful. m }
.

@

v
14
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Monte Carlo

Random-Number
Generators

by Tony Warnock

cryptography, statistical sampling, evaluation of multiple integrals, particle-

transport calculations, and computations in statistical physics, to name a few.
Since each application involves dlightly different criteria for judging the “worthiness’
of the random numbers generated, a variety of generators have been developed, each
with its own set of advantages and disadvantages.

Depending on the application, three types of number seguences might prove
adequate as the “random numbers.” From a purist point of view, of course, a series of
numbers generated by a truly random process is most desirable. This type of sequence
is called a random-number sequence, and one of the key problems is deciding whether
or not the generating process is, in fact, random. A more practical sequence is the
pseudo-random sequence, a series of numbers generated by a deterministic process
that is intended merely to imitate a random sequence but which, of course, does not
rigorously obey such things as the laws of large numbers (see page 69). Finaly, a
quasi-random sequence is a series of numbers that makes no pretense at being random
but that has important predefine statistical properties shared with random sequences.

Random numbers have applications in many areas: simulation, game-playing,

Physical Random-Number Generators

Games of chance are the classic examples of random processes, and the first
inclination would be to use traditional gambling devices as random-number generators.
Unfortunately, these devices are rather slow, especially since the typical computer
application may require millions of numbers per second. Also, the numbers obtained
from such devices are not always truly random: cards may be imperfectly shuffled,
dice may not be true, wheels may not be balanced, and so forth. However, in the early
1950s the Rand Corporation constructed a million-digit table of random numbers using
an electrical “roulette wheel.” (The device had 32 dots, of which 12 were ignored; the
others were numbered from O to 9 twice.)

Classical gambling devices appear random only because of our ignorance of initial
conditions; in principle, these devices follow deterministic Newtonian physics. Another
possibility for generating truly random numbers is to take advantage of the Heisenberg
uncertainty principle and quantum effects, say by counting decays of a radioactive
source or by tapping into electrical noise. Both of these methods have been used to
generate random numbers for computers, but both suffer the defects of slowness and
ill-defined distributions (however, on a different but better order of magnitude than
gambling devices).
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For instance, although each decay in a radioactive source may occur randomly
and independently of other decays, it is not necessarily true that successive counts in
the detector are independent of each other. The time it takes to reset the counter,
for example, might depend on the previous count. Furthermore, the source itself
constantly changes in time as the number of remaining radioactive particles decreases

exponentialy. Also, voltage drifts can introduce bias into the noise of electrical devices.

There are, of course, various tricks to overcome some of these disadvantages. One
can partially compensate for the counter-reset problem by replacing the string of bits
that represents a given count with a new number in which all of the original 1-1 and O-O
pairs have been discarded and all of the original O-1 and 1-0 pairs have been changed
to O and 1, respectively. This trick reduces the bias caused when the probability of a
O is different from that of a 1 but does not completely eliminate nonindependence of
successive counts.

A shortcoming of any physical generator is the lack of reproducibility. Repro-
ducibility is needed for debugging codes that use the random numbers and for making
correlated or anti-correlated computations. Of course, if one wants random numbers
for a cryptographic one-time pad, reproducibility is the last attribute desired, and time
can be traded for security. A radioactive source used with the bias-removal technique
described above is probably sufficient.

Arithmetical Pseudo-Random Generators

The most common method of generating pseudo-random numbers on the computer
uses a recursive technique called the linear-congruential, or Lehmer, generator. The
sequence is defined on the set of integers by the recursion formula

Xp+l =Axp +C  (mod M),

where x, is the nth member of the sequence, and A, C, and M are parameters that can
be adjusted for convenience and to ensure the pseudo-random nature of the sequence.
For example, M, the modulus, is frequently taken to be the word size on the computer,
and A, the multiplier, is chosen to yield both a long period for the sequence and good
statistical properties.

When M is a power of 2, it has been shown that a suitable sequence can be
generated if, among other things, C is odd and A satisfies A =5 (mod 8) (that is, A — 5
is a multiple of 8). A simple example of the generation of a 5-bit number sequence
using these conditions would be to set M = 32 (5 bits), A =21, C =1, and xy = 13.
This yields the sequence

13,18,27,24,25,14,7,20,5,10. ..,

or, in binary,

01101,10010, 11011, 11000, 11001,01110,00111, 10100, 00101, 01010, .. .. (1)

138
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This type of generator has the interesting (or useful, or disastrous) property,
illustrated by Seq. 1, that the least significant bit always has the alternating pattern
101010.... Further, the next bit has a pattern with period 4 (0110 above), the third bit
has period 8, and so forth. Ultimately, the most significant bit has period M, which
becomes the period of the sequence itself. Our example uses a short 5-bit word, which
generates a sequence with a period of only 32. It is not unusual in many computer
applications, however, to use many more bits (for example, to use a 32-bit word to
generate a sequence with period M = 232),

One must be careful not to use such sequences in a problem with structures having
powers of 2 in their dimensions. For example, a sequence with period 232 would be
a poor choice if the problem involved, say, a 3-dimensional lattice with sides of 128
(= 27) because the structure of the sequence can then interact unfavorably with the
structure of the problem. Furthermore, there would be only 232 /(27)* = 2048 possible
states. The usual assumption in Monte Carlo computations is that one has used a
“representative” sample of the total number of possible computations—a condition that
is certainly not true for this example.

One method of improving a pseudo-random-number generator is to combine two
or more unrelated generators. The length of the hybrid will be the least common
multiple of the lengths of the constituent sequences. For example, we can use the
theory of normal numbers to construct a sequence that has all the statistical features
of a “truly random” sequence and then combine it with a linear-congruential sequence.
This technique yields a hybrid possessing the strengths of both sequences—for example,
one that retains the statistical features of the normal-number sequence.

We first construct a normal number, that is, a number in base b for which each
block of K digits has limiting frequency (1/b)€. A simple example in base 2 can be
constructed by concatenating the sequence of integers

1,10,11,100,101,110,111, 1000, 1001, 1010,1011, 1100, 1101, 1110, 1111, ...
to form the normal number

1101110010111011110001001 101010111100110111101111 . . ..
If the number is blocked into 5-digit sets
11011,10010, 11101, 11100,01001, 10101,01111,00110,11 110, 11111,..., (2

it becomes a sequence of numbers in base 2 that satisfy al linear statistical conditions
for randomness. For example, the frequency of a specific 5-bit number is (1/2)°.

Sequences of this type do not “appear” random when examined; it is easy for a
person to guess the rule of formation. However, we can further disguise the sequence
by combining it with the linear-congruence sequence generated earlier (Seq. 1). We do
this by performing an exclusive-or (XOR) operation on the two sequences:

Los Alamos Science Special Issue 1987
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01101, 10010,11011, 11000, 11001,01110,00111, 10100,00101,01010,... (1)

and
11011, 10010,11101,11100,01001, 10101,01111,00110, 11110,111 11,.. (2)
yield
{0110, 00000, 00110, 00100, 10000, 11011, 01000, 10010, 11011, 10101,....  (3)

Of course, if Seg. 3 is carried out to many places, a pattern in it will also become
apparent. To eliminate the new pattern, the sequence can be XOR'ed with a third
pseudo-random sequence of another type, and so on.

This type of hybrid sequence is easy to generate on a binary computer. Although
for most computations one does not have to go to such pains, the technique is especially
attractive for constructing “canonical” generators of apparently random numbers.

A key idea here is to take the notion of randomness to mean simply that the
sequence can pass a given set of statistical tests. In a sequence based on normal
numbers, each term will depend nonlinearly on the previous terms. As a result, there
are nonlinear statistical tests that can show the sequence not to be random. In particular,
a test based on the transformations used to construct the sequence itself will fail. But,
the sequence will pass al linear statistical tests, and, on that level, it can be considered
to be random.

What types of linear statistical tests are applied to pseudo-random numbers?
Traditionally, sequences are tested for uniformity of distribution of single elements,
pairs, triples, and so forth. Other tests may be performed depending on the type of
problem for which the sequence will be used. For example, just as the correlation
between two sequences can be tested, the auto-correlation of a single sequence can be
tested after displacing the original sequence by various amounts. Or the number of
different types of “runs’ can be checked against the known statistics for runs. An
increasing run, for example, consists of a sequentia string of increasing numbers
from the generator (such as, 0.08, 0.21, 0.55, 0.58, 0.73, . . .). The waiting times
for various events (such as the generation of a number in each of the five intervals
(0, 0,2), (0.2,0,4), ..., (0.8, 1)) may be talied and, again, checked against the known
statistics for random-number sequences.

If a generator of pseudo-random numbers passes these tests, it is deemed to be a
“good” generator, otherwise it is “bad.” Calling these criteria “tests of randomness’ is
misleading because one is testing a hypothesis known to be false. The usefulness of
the tests lies in their similarity to the problems that need to be solved using the stream
of pseudo-random numbers. If the generator fails one of the simple tests, it will surely
not perform reliably for the real problem. (Passing all such tests may not, however, be
enough to make a generator work for a given problem, but it makes the programmers
setting up the generator feel better.)
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Monte Carlo

Quasi-Random Numbers

For some applications, such as evaluating integrals numerically, the use of quasi-
random sequences is much more efficient than the use of either random or pseudo-
random sequences. Although quasi-random sequences do not necessarily mimic a
random sequence, they can be tailored to satisfy the equi-distribution criteria needed
for the integration. By this I mean, roughly speaking, that the numbers are spread
throughout the region of interest in a much more uniform manner than a random or
pseudo-random sequence.

For example, say one needs to find the average of the quantity f (x) over the set of
coordinates x, knowing the distribution of coordinate values p(x) for the system being
considered. Ordinarily, the average is given by the expression

(f) = J po)f (x)dx
Soadx

Rather than evaluating this integral, however, one can evaluate f(x) at a series of
random points. If the probability of picking a particular point x is proportional to the

statistical weight p(x), then (f) is given by the expression

) = Zf(x,-)/N :

where N is the total number of points chosen. This idea is the basis of the Metropolis
technique of evaluating integrals by the Monte Carlo method,

Now if the points are taken from a random or a psuedo-random sequence, the
statistical uncertainty will be proportional to /@. However, if a quasi-random se-
guenceis used, the points will occupy the coordinate space with the correct distribution
but in a more uniform manner, and the statistical uncertainty will be proportiona to
[/N. In other words, the uncertainty will decrease much faster with a quasi-random
sequence than with a random or pseudo-random seguence.

How are quasi-random seguences generated? One type of sequence with a very
uniform distribution is based on the radical-inverse function. The radical-inverse
function ¢(NV,b) of a number N with base b is constructed by

1. writing the number in base b (for example, 14 in base 3 is 112);
2. reversing the digits (112 becomes 211); and
3. writing the result as a fraction less than 1 in base b (211 becomes 211/1000 in

base 3 and, thus, ¢(14,3) = .211).

A sequence based on the radical-inverse function is generated by choosing a prime
number as the base b and finding ¢(1, b), #(2, b), #(3,b), $(4,b),.... For a problem
with k dimensions, the first k primes are used, and (¢(N,b;1),dN ,b3),... p(N , b))
becomes the Nth point of the k-dimensional sequence. This sequence has a very
uniform distribution and is useful in mutiple integration or multi-dimensional sampling.

There are many other types of random, pseudo-random, or quasi-random sequences
than the ones | have discussed here, and there is much research aimed at generating
sequences with the properties appropriate to the desired application. However, the
examples | have discussed should illustrate both the approaches being taken and the
obstacles that must be overcome in the quest of suitable “random” numbers. »
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Monte Carlo
at Work

by Gary D. Doolen
and John Hendricks

computers around the world for Monte Carlo solutions to problems that Stan

Ulam first dreamed of solving forty years ago. A major industry now exists
that has spawned hundreds of full-time careers invested in the fine art of generating
Monte Carlo solutions—a livelihood that often consists of extracting an answer out of a
noisy background. Here we focus on two of the extensively used Monte Carlo solvers:
MCNP, an internationally used neutron and photon transport code maintained at Los
Alamos; and the “Metropolis’ method, a popular and efficient procedure for computing
equilibrium properties of solids, liquids, gases, and plasmas.

E very second nearly 10,000,000,000 “random”™ numbers are being generated on

MCNP

In the fifties, shortly after the work on the Monte Carlo method by Ulam, von
Neumann, Fermi, Metropolis, Richtmyer, and others, a series of Monte Carlo transport
codes began emerging from Los Alamos. The concepts on which these codes were
based were those outlined by von Neumann (see “Stan Ulam, John von Neumann, and
the Monte Carlo Method”), but a great deal of detailed work was needed to incorporate
the appropriate physics and to develop shorter routes to statistically valid solutions.

From the beginning the neutron transport codes used a general treatment of the ge-
ometry, but successive versions added such features as cross-section libraries, variance-
reduction techniques (essentially clever ways to bias the random numbers so that the
guesses will cluster around the correct solution), and a free-gas model treating ther-
malization of the energetic fission neutrons. Also, various photon transport codes were
developed that dealt with photon energies from as low as 1 kilo-electron-volt to the
high energies of gamma rays. Then, in 1973, the neutron transport and the photon
transport codes were merged into one. In 1977 the first version of MCNP appeared
in which photon cross sections were added to account for production of gamma rays
by neutron interactions. Since then the code has been distributed to over two hundred
institutions worldwide.*

The Monte Carlo techniques and data now in the MCNP code represent over three
hundred person-years of effort and have been used to calculate many tens of thousands
of practical problems by scientists throughout the world. The types of problems include
the design of nuclear reactors and nuclear safeguard systems, criticality analyses, ail
well logging, health-physics problems, determinations of radiological doses, spacecraft
radiation modeling, and radiation damage studies. Research on magnetic fusion has
used MCNP heavily.

The MCNP code features a general three-dimensional geometry, continuous energy
or multigroup physics packages, and sophisticated variance reduction techniques. Even
very complex geometry and particle transport can be modeled almost exactly. In fact,
the complexity of the geometry that can be represented is limited only by the dedication
of the user.

*The MCNP code and manual can be obtained from the Radiation Shielding Information Center (RSIC),
P.O. Box X, Oak Ridge, TN 37831.
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The Metropolis Method

The problem of finding the energy and configuration of the lowest energy state of
a system of many particles is conceptually simple. One calculates the energy of the
system, randomly moves each particle a small distance, and recalculates the energy. If
the energy has decreased, the new position is accepted, and the procedure continues
until the energy no longer changes.

The question of how to calculate equilibrium properties of a finite system at a
given temperature is more difficult, but it was answered in a 1953 Journal of Chemical
Physics article by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, who decided
that the calculation should follow the same steps for finding the minimum energy but
with one important change. When a move results in an increased energy, one accepts
the new position with probability e ~2£/T, where AE is the change in energy and T is
the temperature. This procedure gives the equilibrium solution for any physical system,
In fact, a system with many particles can be solved with only a few lines of code and
a fast computer.

Although calculations for short-range forces are much easier than for long-range
forces (such as the Coulomb force), the Metropolis technique has been used for most
physical systems in which the forces between particles are known. Wayne Slattery,
Hugh DeWitt, and one of the authors (GD) applied the technique to a neutral Coulomb
plasma consisting of thousands of particles in a periodic box. The purpose was to
calculate such physical properties as the temperature at which this type of plasma
freezes and the pair distribution function, which is the probability of finding one particle
at a given distance from another (see accompanying figure). Because the uncertainty
in a Monte Carlo result is proportional to 1/ VN, where N is the number of moves
of a single particle, several million moves requiring several hundred Cray hours were
needed to obtain accurate results for the plasma at many temperatures.

As computers become faster and their memories increase, larger and more compli-
cated systems are being calculated far more accurately than even Stan Ulam probably
expected. &

PAIR-DISTRIBUTION FUNCTION

This plot gives the probability of pairs of
charged particles in a plasma being sep-
arated by a certain distance. The prob-
abilities are plotted as a function of the
distance between the pair of particles (in-
creasing from left to right) and tempera-
ture (decreasing from front to back). At
the left edge, both the distance and the
probability are zero; at the right edge, the
probability has become constant in value.
Red indicates probabilities below this con-
stant value, yellow and green above. As
the temperature of the plasma decreases,
lattice-like peaks begin to form in the pair-
distribution function. The probabilities, gen-
erated with the Metropolis method described
in the text, have been used for precise tests
of many theoretical approximations for plas-
ma models.
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