
The Spirit of Play

Sp
a memoir for s ometime in early 1944 I passed the open door of a small office near my

Stan Ulam own: S. ULAM. He had arrived at Los Alamos only a few days before and
seemed unoccupied. We introduced ourselves—he a young mathematician, I

by David Hawkins an even younger philosopher, one with mathematical leanings. My field of
work was the philosophy of mathematics and science. I had listened in on the shop
talk of the theoretical physicists at Berkeley and knew their style. They thought of
me for managerial chores in the newly created Los Alamos laboratory. So I came,
as an administrative assistant to Robert Oppenheimer. Only later was I given the job
of writing a wartime history. I was in fact the sole representative of my trade at Los
Alamos, and the label “philosopher” usually caught curious attention. But Stan ignored
it. He had come as a new member of the Theoretical Division, although no one (he
slyly suggested) knew quite why. I later guessed that he had indeed been invited for
no particular reason other than the urging of John von Neumann. Stan’s version was
characteristic: “Physicists don’t know what to do with mathematicians.”

It was the beginning of a long personal and family friendship. But here I shall
restrict my recollections to associations of the thinner, more mathematical kind. We
soon discovered one strong common interest, in the foundations and uses of probability
theory. Some of Stan’s work (Lomnicki and Ulam 1934) had preceded that of Kol-
mogorov on the measure-theoretic formulation of probability. Mine had been on the
conceptual foundations, battled over since the time of Bernoulli and Leibnitz and closer
to the philosopy of physics.
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1 The Spirit of Play

one day Stan threw a problem at me, as if to bring our academic discussions back
to the concerns of a wartime laboratory. In the chain reaction that was to power

the atomic bomb, some fraction of the neutrons liberated by a fission induce other
fissions, which in turn liberate more neutrons that induce more fissions, and so on.
Suppose the number of induced fissions per fission is a random variable that can take
on the values i = O, 1, 2, . . . with probability Pi. (That is, p. is the probability that
the neutrons from a single fission induce no further fissions, p] is the probability that
they induce one further fission, and so on.) What then is the probability distribution
of the number of fissions occurring in the nth “generation” of such a process started
by a single fission? Although we didn’t know it at the time, the same problem—stated
differently—had been solved long before. One earlier version had been posed in terms
of the proliferation of a family name through male descendants. Assume that each
male Jones produces i male offspring with probability pi, i = O, 1,2, . . (and that this
probability does not vary from one generation to another). What then is the probability
that a given Jones has k males in the nth generation of his descendants?

I spent several evenings on the problem. By persistence rather than insight I
found the very simple solution (Hawkins and U1am 1944). A lot of algebraic solvent
evaporated and left behind an unexpected little crystal of a formula, the sort of outcome
that makes you ask why it hadn’t been obvious all along.

Let j’(x) be the Laplace  generating function of the sequence of probabilities

{PIIPI m.. } (That is let fb) be the function to which the infinite series PO +
PI-K + P2x2 + converges.) Then the probability that Jones has k grandsons (or k
second-generation male descendants) is the coefficient of .tL’ when ~z(.Y)  ~ j’ (#_(.K))  is
expanded in powers of .r. And in general the probability that Jones has k rzth-generation
male descendants is the coefficient of x~ when,ffl (x) E j’ & – I (x)) is similarly expanded.
Thus, to the biological process, that of reproduction, there corresponds an algebraic one,
that of iteration, in which the argument of a function is replaced by the function itself.
1’11 mention other related results and further applications later, but this was the essence
of our first venture into what was to develop into the theory of branching (we said
“multiplicative”) processes. *

Stan was delighted with my solution, and I, the rank amateur, was flattered. He
already knew quite a lot about the deceptively simple operation of iteratively substituting
a function for its own argument, and I got a lesson or two. In the course of these
discussions, we got on to such topics as space-filling curves, turbulence, and what have
recently come to be called catastrophes, in which deterministic laws lead rigorously
to results we can only describe as chaotic. A good many years later when we were
reminiscing about all of this, I complained that we had almost been pioneers in such
matters. Why hadn’t we pursued them? Stan’s reply: “It’s because there are so many
of them guys and so few of us!”
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*I should also mention a prior Los Alamos paper by S. Frankel.  which may lie buried in the 1943 series
of Los Alamos reports. Frankel had thought in terms of a continuous time parameter instead of discrete
generations. That approach leads to a one- parameter family of generating functions embedding our,f, (.~).
The problem actually has an even earlier origin. It was discussed by Darwin’s cousin Francis Galton in
1889 and then by A. Lotka in 1939. Later, in 1945, Erwin Schrodinger  addressed the problem, and I recall
seeing the title of a relevant Russian paper (obviously declassified!)  of about the same date. A section of
Feller’s classic text on probability theory (Feller 1968) is devoted to branching processes; a full develop-
ment is that of T. E. Harris (Harris 1963).
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I know very little in detail of the wide range of Stan’s work and his repertoire. In
this memoir I shall confine myself to matters we corresponded about or worked on

jointly. I do this partly because some of these may not be otherwise known and partly
because they affected my own mathematical avocation in a way that throws some light
on the character of Stan Ulam, teacher. I never sat in on any of his courses, to be
sure, though I sometimes heard him lecture. The teaching I shall speak of is that I
occasionally received, over many years, one-to-one. In talking about all this I shall
refer to some work of mine that shows the nature of the Ulam influence; it is minor
work but still a mirror of our associations. And I enjoy bringing these pieces together
for the first time.

Stan was indeed a superb teacher, of a kind not very common. One part of
his secret was a quite extraordinary talent for turning forbidding topics into attractive
problems, attractive because they seemed promising, seemed to open up some larger
area. Another part is a quality I am tempted to describe as meritorious laziness. Though
Stan could, on occasion, himself engage in intense and concentrated work, as a teacher
he would give you the challenge and then—let you do the work. I remember feeling a
bit resentful. I did all the work on that first little paper, and he could have added more!
But what he really added was to my confidence. For Stan no ego was invested.

Later, when I was at the University of Colorado, Stan and I both did some further
work on branching processes. He, with C. J. Everett, had generalized the whole
scheme by including “particles” of different types (Everett and Ulam 1948). This
generalization, in its physical applications, allowed offspring and progenitors to differ
from each other, for example, in their spatial or dynamical, and hence also in their
reproductive, characteristics.

My own related work was inspired partly by a conversation we had about one of the
great and vital mysteries of mathematics. The Greeks got on to it, long before Euclid,
in the discovery that geometrical facts could be represented arithmetically, while those
of arithmetic could be seen in the mirror of geometry. In our own day the pendulum has
swung far toward the arithmetical, whether analytic or digital, side. Rather typically
Stan took the “wrong” side, that of geometry. “Draw a curve,” he said, “of a nice
simple function. Now draw another curve parallel to it. The relation is very simple to
see and understand, but algebraically it can be quite messy.” How is it possible that
relationships that are so complicated in one domain can be mapped into another where
they appear so simple, or vice versa?

The generating-function transformation I had used in that first problem of ours is
an elegant elementary example; it belongs to a wider family with many applications in
applied mathematics, including probability theory. We had extended its use a bit, and it
was Stan’s challenge to extend it further, as he did in the work with Everett. To me the
challenge was to explore the relevance of this transformation to other operations of a
stochastic nature. Long known of course is the fact that addition of independent random
variables corresponds to multiplication of their generating functions. What could one
say about other arithmetical operations-division, say, or the logarithm—when random
variables take the place of simple numbers?
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The Spirit of Play

SOME RANDOM NUMBERS

The random numbers below are a small frac-
tion of the 10,000 generated in the early 1900s
by L. H. C. Tlppett, then a member of the Bio-
metric Laboratory at University College, Lon-
don. Tippett generated the numbers, which
were used in statistical sampling procedures,
by selecting 40,000 single digits from census
reports and combining them by fours. The
collection of numbers was originality handwrit-
ten; the excerpt here is reprinted, with per-
mission, from a version published in 1959
by Cambridge University Press (Random Sam-
pling Numbers, Tracts for Computers, edited
by E. S. Pearson, Number 15),

3
4
4
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Here, finally, I should mention another component of Stan’s work, one that I can also
trace back to early Los Alamos days. It grew later to very substantial proportions.

One beginning I recall was to discuss a stochastic branching process that requires
the “mating” of two “particles” from one generation in order to produce “offspring”
for the next: sexual reproduction. Here the branching goes in both time directions,
backward genealogically and forward by descent. The theory of this branching is
essentially nonlinear. “Sex,” Stan said, “is quadratic!” I had indeed examined one
kind of nonlinear stochastic process, a chain reaction in which depletion of fuel, or
of nutrient in the case of bacterial reproduction, is a factor. This led to a stochastic
version of the well-known logistic curve of growth, which at first rises exponentially
and then tapers off to a zero or negative slope. My work had a certain mathematical
interest because it showed that the statistical fluctuations in such a nonlinear process
can also change its average character; they don’t “average out.”

Such work as this might have stayed in abeyance except for Stan’s development
of other and much broader interests, namely in mathematical models of growth and
reproduction. I remember approaching him with my own new-found interest in Claude
Shannon’s work on information theory and in the discovery of Watson and Crick. I
wanted to define a measure of biological complexity, or organization, in information-
theory terms, and we were immediately at loggerheads, He wanted to insist that very
simple instructions could produce very complex patterns and I that such simplicity
would nevertheless limit the variety of such patterns. Each of us was defending a
different meaning of “complex.” I already knew of his work (or play) with computer-
generated growth patterns (Ulam 1962) but hadn’t realized fully the range of ideas he
was bent on exploring. Once more it was that flanking move. The genetic instruction

“SEX,” Stan said, “IS QUADRATIC”

In this quote Stan was expressing a broad
mathematical view of sex as a branching pro-
cess in which some interaction, or “mating,”
between “male” and “femaie” members of a
species is required for reproduction. An ex-
ampie is the deadly mating of male and female
biack widow spiders.

Oddiy enough, the animai kingdom inciudes
some species, nameiy, a few of the tapeworms,
that reproduce without any mating.

The demography of a sexually reproducing
species depends on (among other factors) a
product of the maie and femaie populations-
hence the adjective’ ’quadratic.” For mathe-
matical simplicity mating is often assumed to
be random, as it is for the ornamental ginkgo,
or maidenhair, tree.

Ginkgo
biloba
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of biological growth and reproduction is a vast and still mostly uncharted domain for
investigation. But once more the “village idiot” could invent all kinds of very simple
processes bordering that domain. The idea of “growing” elaborate dendritic patterns,
“organisms,” by the endless repetition of a few simple “genetic” instructions, applied
in each cycle to the results of previous cycles, was another in the category of iterative
processes that lay beyond the range of standard methods. It later became the basis for
the famous “game of life’ ’—was Stan its first inventor? I don’t know. I connect this
work also with Stan’s important work on the nature of and approach to equilibrium
in even slightly nonlinear iterative processes. In the years following he became quite
deeply involved in more realistic problems of genetics, but I mostly lost touch.

One of these problems, now well known and used in molecular genetics, came from
Stan’s deep familiarity with measure theory. Suppose a deck of cards can be shuffled
only by several allowable operations. Knowing these and the end result of a shuffling,
find the smallest number of allowable operations that accomplishes the given result, and
call it the “distance” between the two orderings. Two decks of cards, or two nucleic acid
strands, might appear very different in an item-by-item comparison yet be by shuffling
history very close. Stan was a visiting professor at the University of Colorado’s medical
school when he worked on this, and I have a nice story from Theodore Puck. Stan got
so interested in the mathematics (now not an iterative process) that he seemed to be
ignoring the relevant biology. Reproached, he mended his ways. But he began his final
talk on the subject with an imperative: “Ask not what mathematics can do for biology;
ask rather what biology can do for mathematics!”

In the sixties and seventies I became more and more concerned with practical and
theoretical work relating to elementary-school education in mathematics and science,

to “school-doctoring.” Toward this new career of mine Stan was-tolerant. We enjoyed
good conversations but little time for shared work. It was only last year that I was
suddenly recalled to our earliest association, catching up on some work he had done
in population genetics and related matters. With characteristic initial disregard for
humdrum scholarship, he had reinvented and extended some of the existing theory,
developed first by R. A. Fisher and Sewall Wright.

I had known generally about this work but had missed one small paper, one in
which he and Jan Mycielski formulated the basic theory of stochastic pairing, the
branching process involved in sexual reproduction (Mycielski and Ulam 1969). Its
main focus was not, however, on the fluctuational aspect of the process but on the
average distribution and evolution of mutations within a species. The paper set forth
three measures of the “distance” between two individuals. I shall mention only one
of these, proposed by Mycielski. It is simply the sum, over the present generation
and all past generations, of symmetric differences in genealogy; that is, the number of
entries present in one family tree and absent from the other, plus the number present
in the other and absent from the one. Since sexual reproduction is already a stochastic
process, this measure is genetically crude (for example, it ignores sibling diversity).
But it is surely a plausible first (or if you wish, zeroth) approximation—a measure of
purely genealogical, not yet of genetic, distance.

Stan had done (as he often had for other problems) some Monte Carlo simulations
assuming a constant population size of 2N, random pairing between the N males and
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female ancestors.

32

A n

16

8
4

therefore given by

Equation 2 does not lend itself to derivation of an elegant recurrence relation between

in which (4)

which, when doubled to include male ancestors, is just the result obtained by Kahane
and Marr.

48 Los Alamos Science Special Issue 1987



The Spirit of Play

LOS Alamos Science Special Issue 1987 49



be “bad” in the other. If the two are long separated, genealogical distances become
very great, and the original gene pool may finally fission into those of separate species.

For such reasons we may consider a pattern of assortative mating that involves
random pairing within subpopulations and rates of migration between them that decrease
with some measure of distance. Successive generations in one subpopulation will
gradually acquire more ancestors in the others. In the long run complete mixing
will occur, but genealogical distances can now spread over a wide range. If the rate
of mutation is assumed to be low but constant, genetic distances will increase with

genealogical.
All this seemed at first quite difficult to mathematize, but surprisingly it is not.

Shared ancestries and genealogical distances can be expressed in closed algebraic forms
that depend only on the rates of diffusion between the subpopulations and their sizes.
I leave the subject at this point. Stan’s work in biomathematics went further in other
areas, but this extension of early work I think would have pleased him.

I mentioned above that Stan was a bit standoffish about my involvement in work
relating to the education of children. I was playing with them instead of him, my

mathematical mentor! But I heartily forgive him. Some of what I had learned from him,
that very spirit of play, I could take to the struggles for better science and mathematics
teaching in the schools. Children don’t have to be taught how to engage in serious play,
usually, but teachers and other “educators” frequently do. They too often have lost the
art, overwhelmed by mistaken notions of some puritan or utilitarian origin. Stan never
lost it. ■

David Hawkins earned his academic degrees in phi-
losophy: an A.B. and M.A. from Stanford Univer-
sity and a Ph.D. from the University of California,
Berkeley. (The title of his doctoral dissertation,
“A Causal Interpretation of Probability,” reflects a

combined interest in the humanities and science that
continues to this day,) In 1943, after short teaching
stints at Stanford and Berkeley, he joined the newly
created Los Alamos laboratory, serving first as ad-
ministrative aide to J, Robert Oppenheimer and later
as historian, A year at George Washington Univer-
sity was followed in 1947 by a move, which proved
permanent, to the University of Colorado, Boulder.
He is now a Distinguished Professor Emeritus at that
institution. Hawkins has devoted much of his pro-
fessional life to projects concerning the teaching of
mathematics and science. In 1970 he helped create
the University of Colorado’s Mountain View Cen-
ter for Environmental Education, an advisory center
for preschool and elementary teachers, and is still a
participant in its activities. He has enjoyed leaves
of absence at several colleges and universities in the
United States and abroad and has been honored with
a fellowship at the Institute for Advanced Study, a
MacArthur Fellowship, membership in the Coun-
cil of the Smithsonian Institution, and chairmanship
of the Colorado Humanities Program. In addition to
numerous journal articles, he has written four books:
Science and the Creative Spirit: Essays on Human-
istic Aspects of Science (Harcourt Brown, editor;
1958), The Language of Nature: An Essay in the
Philosoophy of  Science ( 1964), The Informed Vision:
Essays on Learning and Human Nature (1974), and
The Science and Ethics of Equality (1977).
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