


x-ray and neutron
CRYSTALLOGRAPHY

a powerful combination
by Robert B. Von Dreele

Determining the structure of a crystalline material remains the most

powerful way to understand that material’s properties–which may explain

why so many Nobel Prizes have been awarded in the field of crystal-

, lography. The standard tools of the crystallographer are single-crystal

and powder diffraction. introduced earlier in "Neutron Scattering-A

Primer.” What was not mentioned was that until twenty years ago

powder diffraction could not be used for solving a new crystal

structure, but only for determining the presence of known crystalline

had to be grown into large single crystals before crystallographers

could unravel the positions of each atom within the repeating

motif of a crystal lattice. This severe limitation disappeared after

H. M. Rietveld developed a workable approach for resolving the

known as Rietveld refinement. has opened up essentially all

crystalline materials to relatively rapid structure analysis.

This Escher painting shows a square lattice with a complicated unit cell, illustrating in two di-

1 0 -  “ mensions several kinds of symmetries found in real crystals. (We have darkened lines of the
original grid to emphasize the unit cell.) If the colors are ignored, this pattern has both four-
fold and twofold rotational symmetry as well as a number of mirror symmetry operations. When
the color is included, the fourfold rotation becomes a color-transformation operator. Similar
changes occur in the nature of the other symmetry operators as well. Reproduced with permis-
sion: © 1990 M. C. Escher Heirs/Cordon Art, Baarn, Holland.
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X-Ray and Neutron Crystallography

This article presents a further improvement in powder-pattern analysis–that of
combining x-ray and neutron diffraction data. We used this combination to make
the first unambiguous determination of the structures of certain high-temperature su-
perconductors and have since produced a portable software package for use by all
crystallographers who collect both x-ray and neutron data. Here we will discuss the
concepts and techniques that make the combination so useful and some of our recent
results, including the determination of fractional occupancies by different elements
at single atomic sites in a crystal. First, however, we need to extend the concepts on
diffraction introduced in the primer.

What Is a Crystal?

Most solids are crystals: They consist of very many repetitions of a single motif
or “unit cell,” of atoms. These repetitions occur at a regular array of points in three
dimensions, a “lattice.” The opening illustration is a two-dimensional analogue of a
crystal. The unit cell there is square, and contains several objects each arranged in
a particular way relative to the others. One question about this pattern is how much
information one needs in order to reproduce it. Clearly, one need only describe a
single object (a fish), the set of rules for positioning it and the other objects in the
unit cell (the fish of other colors), and the dimension of the unit cell itself. With only
this information the entire pattern can be laid out to infinity. The classification of
how the objects are positioned in the unit cell (in most crystals these positions are
symmetrical) and of how the unit cells repeat is the mathematical theory of spatial
symmetry, which is a branch of group theory (see the sidebar “Crystal Symmetry
Groups”).

The crystallographer’s goal is to measure the lengths and angles of the edges of
the unit cell (the “lattice parameters”) and, more important, the arrangement of the
atoms within the unit cell. Many kinds of arrangements are possible, for example,
the interlacing of long molecular chains in a crystallized protein, or the stacking of
metal and oxygen atoms in a superconducting oxide, but in any crystal the arrange-
ment is the same in every unit cell. Why should atoms and molecules form such or-
derly structures? A solid holds together because the atoms and molecules in it are
attracted to each other. Thus the minimum-energy configuration of the solid occurs
when its constituents are in as close contact as possible with their neighbors. This
criterion is usually realized by a regular array, just as bricks in a neat stack are in
closer contact and take up less space than bricks in a jumbled pile.

The unit cell of a crystal is extremely small, typically 10 angstroms (10-7 cen-
timeter) on a side, whereas the sides of crystals in a powder may be 1000 to 100,000
times larger. An equivalent stack of bricks, each 20 centimeters on a side, would ex-
tend between 200 meters and 20 kilometers, The disparity in size between a unit cell
and a crystal is so vast that we can model a crystal as if it contained an infinite num-
ber of unit cells in all directions. This approximation has an enormous simplifying
effect on a mathematical description of a crystal because we need to describe only
the unit cell and can ignore the crystal as a whole except to note that the unit cell
repeats indefinitely in all directions.

With these ideas in mind, we can start with crystallographic mathematics and
then connect it with the way a crystal scatters neutrons (reversing the plan of the
primer). How do we mathematically describe a crystal? First, the description must
reflect what we actually observe about a crystal. We “see” atoms in a crystal by scat-
tering neutrons or x rays from them, so the mathematical model needs to describe the
density of scattering power, p (r), a function of position, r, within the crystal. This
scattering density is smooth and usually real and positive. (In some special cases it
can be negative or even complex.) Second, the function needs to repeat infinitely in
all directions to match the repetition of the unit cells. In one dimension p(x) might
look like the curve in Fig. la, which gives the x-ray scattering density along one di-
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rection in molybdenum disulfide for two unit-cell repeats. The tallest peaks repre-
sent the scattering density around the molybdenum atoms; the smaller peaks on either
side correspond to the sulfur atoms. Like any periodic function, the variation of the
scattering density with position x along the repeat direction can be expressed as an
infinite sum of sine and cosine functions, or in other words, as a Fourier series in one
dimension:

Here n is an integer, a is the length of the unit cell in the x direction, and Qn =

Each term represents a stationary wave, or “Fourier component,” of scattering density
whose wavelength is a/n, so that in the repeat distance a the wave undergoes exactly
n oscillations. Thus the sum in Eq. 1 contains only waves that have a as a repeat

I distance. Each stationary wave has an amplitude F., which for the MoS2 structure is
either positive or negative. In the most general case Fn can be complex.

Just as the displacement, x, can be represented by a vector in one-dimensional

I one-dimensional “reciprocal space.” These “reciprocal-lattice” vectors define a row
of equally spaced points, labeled by the values of n. All the remaining reciprocal
space is empty. The points are called the “reciprocal lattice” because their spacing is
1/a, the reciprocal of the real-lattice spacing. (The name “reciprocal space” has the
same origin.) Their locations depend only on a, the periodicity of the real lattice, and
not on the contents of the unit cell. In Fig. 1c the amplitude Fn of the nth Fourier
component of p(x) for MoS2 is plotted at the reciprocal-lattice point n/a.

Thinking of the Qn's as one-dimensional vectors (the wave vectors of the Fourier

I components), we note from the definition of the Qn's and the discussion of diffrac-
tion in the primer that when the momentum transfer in a diffraction experiment

In crystallographic terminology the Fn's are called structure factors; unfortunately the

ever the nomenclature, crystallographers frequently describe crystals in reciprocal
space because the quantities they measure directly are the reciprocal-lattice vectors

I of Fig. 1 whose significance will be discussed later.
In order to extend Eq. 1 to descriptions of three-dimensional crystals, we replace

a real lattice whose three axes are mutually perpendicular, as shown in Fig. 3a. Then
the natural coordinates are orthogonal, and

Here a, b, and c are the repeat distances along the three axes of the unit cell, or lat-
tice spacings, and the integer triplet h = (hkl) gives the components of Qh along
the three axes of the reciprocal-lattice unit cell, measured in units of the reciprocal-
lattice repeat distances a* =  1 /a, b* = 1 /b, and c* = l/c. Thus, in analogy
with the one-dimensional case, the integer triplets h specify all the possible Qh val-
ues, that is, all the wave vectors of Fourier components of the three-dimensional
scattering-density distribution, Each Qh is perpendicular to a stack of parallel planes

tween those planes, commonly called the “d-spacing”. Each h labels a set of planes
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A ONE-DIMENSIONAL LATTICE
AND ITS RECIPROCAL-SPACE
REPRESENTATION

Fig. 1. (a) The x-ray scattering density

aiong one direction of molybdenum disulfide

illustrates a one-dimensional lattice with

a unit ceil of length a. (b) The first eight

Fourier components (n = O to 7) in Eq. 1

for the scattering-density function in (a).

Note that the phase of some of the waves is

offset by 180° with respect to others. (c) The

amplitudes Fn of the Fourier components from

(b) plotted in reciprocal space. The reciprocal

is a -1, the reciprocal of the lattice spacing
in real space. Note that some amplitudes are

negative (those of waves shifted in phase by

180° with respect to the waves with positive

S(Qn), plotted in reciprocal space. This
pattern of intensities would be obtained from

a diffraction experiment. This pattern reveals

the size of the unit cell, but as explained in

Fig. 2 does not yield a unique determination

of the contents of the unit cell.

136

Scattering Density

s

o

Mo

0.5 a 1.0 a 1.5 a

Fourier Components

s

2.0 a

0.5 a 1.0 a 1.5 a

Fourier Amplitudes, Fn

2.0 a

perpendicular to Qh. Together the h’s specify all the sets of planes that pass through
unit cells in a periodic way. Therefore just as in one dimension a sum over the wave

sions a sum over the wave vectors Qh, or over the h, is all we need to describe p (r)
for a crystal. The integer components hkl of h are identical to the Miller indices that
crystallographers use to label faces along which crystals break. More important, the

Qh are the special wave vectors Q at which Bragg scattering can occur, as defined in

are still perpendicular to
vided by the d-spacings.
vectors of the reciprocal

Note that the Qh must be defined in terms of the translation
lattice, which are no longer simply parallel to the translation
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(a) Scattering Density

(b) Fourier Components

n = 7
n = 6
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n = 4

n = 3
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n = 0
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(c) Fourier Amplitudes, Fn

Returning to the three-dimensional version of Eq. 1, we
by the dot product Qh • r and normalize the Fourier series by

replace the product Q nx

the unit-cell volume V.:

(2)

THE PHASE PROBLEM
CRYSTALLOGRAPHY

IN

Fig. 2. The same as Fig. 1, except that one

Fourier component has been phase-shifted

by 180° to produce an entirely different and
fictitious scattering density for MoS2. The

shifted wave and its amplitude are shown in

red. This example illustrates the ambiguity

that arises in diffraction experiments from
measuring the magnitudes of the Fn’s but not

their phases. Although the plot of the Fn’s

to a diffraction pattern, does not. Thus

diffraction experiments can not distinguish

the scattering density in Fig. 1 from that in

this figure. Determining the phases is called

“solving the structure” because only then can

the contents of the unit cell be determined.

(A specialist in this field would write equations such as this in crystallographic co-
ordinates, using h instead of Qh and defining r in terms of displacements along the
crystal axes instead of along the Cartesian directions; furthermore the displacements
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UNIT CELLS IN REAL AND
RECIPROCAL SPACE

Fig. 3. (a) A unit cell in real apace (solid lines)

and its associated reciprocal unit cell (dashed
lines), for a three-dimensional lattice whose

translation vectors, a, b, and c, are mutually

orthogonal. The reciprocal-lattice translation
vectors a*, b*, and c* are collinear with those

of the real-space lattice, but their lengths are
the reciprocals of the Iengtha of the real-space

the real-space bc, or (100), plane; similarly

the other reciprocal-lattice translation vectors

are normal to their corresponding planes. (b)
A unit cell and reciprocal unit cell for a lattice

in which none of the translation vectors a, b,

and c are orthogonal. The reciprocal-lattice

translation vectors a*, b*, and c* are no longer
collinear with their real-space counterparts

but they are still normal to the planes that

bound the unit cell, and their lengths are the
reciprocals of the spacings of those planes.

(c) The mathematical formulaa describing the
reciprocal-lattice translation vectors and the

wave Vectors Qh. (d) An example of part of

a set of planes and its d- spacing in a crystal

whose unit cell is that shown in (b). The

planes are labeled by h = (001) (parallel to

the ab plane), and their d -spacing is equal to

planes.
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(a) Orthorhombic Unit Cell

Reciprocal-Lattice

\ Unit Cell

(b) Trigonal Unit Cell

(001) planes

would be divided by the lattice spacings to give the components of a dimensionless
vector. This shorthand is convenient for many purposes and is used in the references
cited at the end of this article.) Equation 2 might appear extremely similar to the
Van Hove equation for diffraction, Eq. 2 in the Primer, but it is in fact a kind of in-
verse. We will cover that relationship in a moment, but first we need to more fully
consider what Eq. 2 implies about crystallographic mathematics.

From Eq. 2, we see that the reciprocal-space description of a crystal in three

ing to infinity in all directions from a single origin. These points are the comers of
an infinitely repeating reciprocal unit cell. Each amplitude Fh (positive, negative or

can be represented with the usual real and imaginary parts or as a “phase shift” of
the structure factor:

(3)

this section.
Figures 4 and 5 give examples of two-dimensional periodic scattering densities

and their representations in reciprocal space (their Fourier transforms). In two dimen-
sions the reciprocal-lattice vectors are perpendicular to sets of parallel lines (rather
than planes) in real space. Larger h values correspond to more closely spaced lines.
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As Figs. 4 and 5b show, the locations of the reciprocal-lattice points are determined

origin) give only the gross features of the structure, that is, the features whose size
is roughly on the order of’ the unit-cell dimensions. The much more numerous Fh

exact atom locations and anisotropic features of the thermal motion.

Determining Crystal Structures

A property of Fourier series is that they can be “inverted.” In crystallography,

this transformation goes from the real-space to the reciprocal-space description. Thus,
the inverse Fourier transform of Eq. 2 gives the amplitude in terms of the scattering
density:

(4)

The amplitude is first expressed as an integral to indicate that all of the space within
the unit cell is used. It is then expressed as a sum by using the convolution proper-
ties of Fourier integrals and series. A convolution is a type of multiplication. In this
case it is used to break up the integral into a sum over all the atoms in the unit cell;
the coefficient fi of the term for the ith atom is called the “scattering factor” of that
atom. The scattering factor of an atom is the Fourier transform of the scattering den-
sity in its vicinity and in this expression includes the “smearing” effect of any oscil-
lation (or thermally induced motion) of the atom about its average position. The so-
called coherent scattering length bcoh, i of neutron scattering is a scattering factor that
does not include the effects of thermal motion. (This article deals only with coher-
ent scattering, so in reference to scattering lengths the word “coherent” and the sub-
script “coh” will be suppressed from now on. ) The Fourier transform represented in
Eq. 2 implies that if the Fh are known, one can calculate the scattering density p(r),
which maps the locations and thermal motions of the atoms. Similarly, the transform
in Eq. 4 implies that, if the atom positions and thermal motions are known, then the
Fh can be calculated.

A SQUARE LATTICE
AND ITS RECIPROCAL-SPACE
REPRESENTATION

Fig. 4. A lattice in real space (left) with fourfold
rotational symmetry and the corresponding

reciprocal lattice (right), which has the same

point symmetry (see “Crystal Symmetry

the reciprocal lattice differ from each other

because the real-space unit cell has six point

scatterers rather than one. Specifically, the
pattern of intensities reflects the sixfold

symmetry of the contents of the real unit cell.
(Photos reproduced with permission from

Cornell University Press.)
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●

● ● ●

do,

● ● ●

SIMPLE VERSUS COMPLEX UNIT CELL IN REAL AND RECIPROCAL SPACE

Fig. 5. Two-dimensional scattering densities
(left) and their corresponding intensity rep-
resentation in reciprocal space (right). The
real-space lattice in (a) is less symmetrical
than that in Fig. 4, having two-fold rotation
and inversion. The real-space figure shows a
unit cell and three sets of parallel lines (the
two-dimensional equivalent of parallel planes
in three dimensions) with the d-spacings of
those lines. Note that the set of lines indexed
h = (10) is not drawn through the point scat-
terers, because one need not think of those
lines as locations of atoms in a crystal, but
rather as defining periodic density variations
with a definite orientation and spacing. The
other sets of lines are drawn through the point
scatterers for clarity. The Qh vectors corres-
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pending to the labeled sets of lines are shown
in reciprocal space (right), along with a recip-
rocal unit cell. Each Qh vector is perpendicular
to the set of lines that h indexes, and its

spacings of that set of lines. Because the unit
cell contains only a single point scatterer, the

identical. (b) A real-space lattice in which each
point in (a) has been replaced by a five-point
pattern or “molecule.” This scattering density
does not even have inversion symmetry. The
points of its reciprocal lattice are in the same
positions as those of the reciprocal lattice in

the locations of the reciprocal-lattice points
provide information about lattice geometry

whereas the intensities provide information
about the contents of the unit cell. The heavy
lines correspond to h = (01); they and the light
lines together have h = (03). (The reciprocal-
lattice figures were made by shining a laser
beam through masks with holes punched
out at the real-lattice sites and recording the
diffracted light on film. With this method one
can photograph much of the two-dimensional
reciprocal lattice at once. Unfortunately,
scattering neutrons analogously from a plane
of atoms is not feasible. Neutrons interact so
weakly with matter that a beam perpendicular
to a single plane of atoms would pass through
practically unaffected.) (Photos reproduced
with permission from Cornell University
Press.)
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The Van Hove equation for elastic-scattering intensities given in the primer is
the convolution of Eq. 4 with itself:

where Ih is the measured scattering intensity at Q = Qh. Equation 5 shows how

tudes of the structure factors. In the last form of the convolution, the double sum-
mation covers all interatomic vectors in the crystal, which matches our picture of
coherent scattering as arising from interference effects between atoms. The double-
integral form also reflects interference effects, since the largest contributions come

In this formulation of the Van Hove equation, we recognize that both fi and p (r) can
be complex and that fi has a Q dependence, so we keep them inside the integral and
the sum. Although b i and p (r) are rarely complex in neutron diffraction, they are
quite often complex in x-ray scattering because atoms can absorb x rays and because
x-ray wavelengths are comparable to the size of the electron clouds from which they
scatter, whereas neutrons scatter from the nearly point-like nuclei. In this discussion
we have seen that by starting from a rather mathematical description of a crystal, we
can interpret its coherent scattering properties for either x rays or neutrons in a par-
ticularly clean way.

The Van Hove equation gives us the relationship between the array of inter-
atomic vectors and the observed intensities but, it also points out a major difficulty.
Using Eq. 2 requires knowing both the real and imaginary parts of the Fh, but a

cell or even their number. The central problem of crystallography is recovery of the
phases, so that the Fourier transform in Eq. 2 can be performed. The solution of this
problem, known as solving the crystal structure, is the subject of considerable effort
by crystallographers. The reader is encouraged to examine some of the references
listed at the end of this article. Figure 2 is a one-dimensional illustration of the am-
biguity. A new hypothetical scattering density p(x) has been constructed by shifting

alent to multiplying that wave’s amplitude, F3, by – 1, as seen in the graph of the

page. (Mathematically inclined readers can convince themselves that the Fh’s are
real if and only if the unit cell is centrosymmetric, as defined in “Crystal Symmetry

knowing whether the measured reciprocal lattice arises from the real-space scatter-
ing density of Fig, la or from the quite different density of Fig. 2a. In practice, the
crystallographer realizes from his or her knowledge of physics and chemistry that the
density in Fig. 2a makes no sense. Solving the structure of more complicated materi-

One possible use is to apply a Fourier transform to the Van Hove equation to get
a mapping of the interatomic vectors:

(6)

Equation 6 is effectively a map of the p(ri)p(rj) product for all vectors (ri –rj).

The transform can be performed with no knowledge of the crystal structure apart
from the unit-cell dimensions and point symmetry, which derive directly from the
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NEUTRON SCAITERING LENGTHS

Fig. 6. Neutron scattering lengths for all

the elements from hydrogen through xenon.

Every fourth element is marked. Each element

is made up of its natural mixture of isotopes.

Unlike x-ray scattering factors, neutron

scattering lengtha do not increase linearly

with atomic number. Instead they vary

erratically, not only from element to element

but from isotope to isotope.

diffraction data. In crystallographic parlance P(ri – rj) is known as the Patterson
function. It provides one of the routes to solving the crystal structure. Since the

dri)/Xr; ) Product is largest for vectors between strongly scattering atoms, the highest
features in the Patterson function correspond to vectors between pairs of such atoms
and can generally be interpreted to give their locations. This technique for solving
crystal structures, known as the heavy-atom method, is one of the oldest techniques
known. It is generally applicable only to x-ray diffraction data for materials whose
unit cells are composed of one strongly scattering heavy atom (typically a metal) and

1.5
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1

g
N
~ 0.5-
z
Q

o
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B F Al Cl SC Mn Cu As Rb Nb Rh In I

a large number of more weakly scattering light atoms (C, O, N, etc.). The heavy
atom positions can then be applied to Eq. 4 to get an estimate of the phase angles to
use in Eq. 2, which produces an approximation to p(r). This scattering-density map
usually shows enough atom postions to repeat the process and expand the solution
to include all the remaining atom positions, thus solving the structure. The heavy-
atom method is not so useful in the case of neutron scattering because the scattering
lengths of all atoms are the same within an order of magnitude (Fig. 6). The other
methods for solving crystal structures have their roots in the properties of the Pat-
terson function and its inverse, the Van Hove equation. The only exception is the
time-honored method of just guessing atom positions and using Eq. 4 to judge the
accuracy of the guess by comparing the calculated l~hla with observations.

The Geometry of Diffraction in Reciprocal Space

Let’s consider diffraction experiments that use monochromatic beams, that is,
those such that all the neutrons or x rays have the same wavelength A. Then, as
noted in [he discussion following Eq. 3 of the primer, one can see Bragg peaks only
when the planes that produce them are properly oriented with respect to the beam.
In a single-crystal diffraction experiment, the crystal is rotated, in an apparatus like
that shown in Fig. 7, so as to generate Bragg reflections with various values of h.
Then the detector is positioned to measure their l~hlz. A powder experiment involves
many crystals at once, all randomly oriented. We need to understand the effect of
different crystal orientations in both single-crystal and powder experiments.

As we have seen, the Qh vectors are perpendicular to sets of planes of the crys-
tal, and the h vectors correspond to the Miller indices that describe its faces. Thus
there is a connection between the physical appearance of a crystal and its reciprocal-
space description. Real space and reciprocal space are “hooked” together (see Fig. 3)
so that every feature found in real space corresponds to a feature in reciprocal space
via Fourier transformation. Therefore when we rotate the crystal, we also rotate its
reciprocal lattice.
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Figure 8 depicts Bragg scattering in reciprocal space. In terms of the reciprocal-
lattice vectors, we can write Bragg’s law simply as IQI = IQhl, using IQI = 4n(sin  O)/A
(see Fig. 5a of the Primer) and IQhl  = 2n/dh  where dh is the spacing of the planes
labeled by h. Thus depicting the elastic-scattering triangle (again in Fig. 5a of the
primer) in reciprocal space provides a useful geometric construction (here we mul-
tiply all the reciprocal-lattice distances by 27r in order to compare them with wave
vectors). Since for elastic scattering the initial and final wave vectors are equal in
magnitude, or Iki I = Ikf 1, all the possible kf fall on the surface of a sphere with ra-

lllblU151 11 D~dl I I

I u )11

dius 27r/A, commonly called the Ewald sphere. As seen in Fig. 8, the Ewald sphere
passes through the origin because Q = O, or equivalently k i = kf, corresponds to elas-
tic scattering in the forward direction. The Qh of a reciprocal-lattice point that falls
on the Ewald sphere is equal to the Q at which Bragg scattering occurs; the scatter-
ing angle 20 between ki and kf is shown on the figure. The construction makes it
easy to see the effect of rotating the crystal. When the crystal rotates, the reciprocal
lattice rotates with it so that each of its points moves on an arc centered at the or-
igin. As each point passes through the Ewald sphere, diffraction occurs for that Qh at
the corresponding scattering angle 0. This is the basis for conventional single-crystal
diffraction experiments. The intensity of the scattering seen by the detector when Qh
passes through the Ewald sphere is proportional to lFh12, but it also depends on the
angle that the Qh arc makes with the sphere surface (the so-called Lorentz correction
to the intensities).

Because a powder consists of a multitude of small crystals, the reciprocal-space
picture has to be modified from that given for a single crystal. Instead of an array of
points, the Qh vectors define a set of nested spheres, each one corresponding to the
multitude of directions that each Qb points for all the crystals that make up the pow-
der (Fig. 9). Then the orientation of the powder sample is immaterial, and the Ewald
sphere for the illuminating radiation intersects all the Qh spheres with IQhl < 47r/A,
Thus diffraction occurs simultaneously at a variety of angles. The observed intensity
again depends on l~h 12, and the Lorentz correction depends on the angle at which the
Ewald sphere and the Qh sphere intersect. In addition, the crystal symmetry may re-
quire that related h vectors have the same length and therefore that their respective
spheres exactly coincide. For example, in the cubic crystal structure for salt (NaCl),
the Qh vectors with h = (1 O O), (O 10), (00 1), (1 O O), (O – 10), and (00–1) all have
identical lengths and identical F: values. The measured intensity at the correspond-
ing angle is proportional to 61 F1W12;  the factor of 6 is the reflection multiplicity. A
powder pattern then contains all the intensity information inherent in the reciprocal

SINGLE-CRYSTAL DIFFRACTOMETER

Fig. 7. A single-crystal diffractometer with

three axes for positioning the cryatal  in the

incident besm so that s particular set of

planes in the cryatal  scatters the Incident

radiation in the plana containing the detector

arm. The detector angle can be set at the

proper 2f3 to observe the reflection (once a

preliminary x-ray experiment haa determined

the oriantatlon and size of the reciprocal unit

cell).
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SINGLE-CRYSTAL DIFFRACTION
IN RECIPROCAL SPACE

Fig. 8. A reciprocal-spsce representation of

single-crystsl diffraction of monochromatic

rediation of wavelength X. A sphere%of redius

Ikil = 27r/A is drawn through the origin of

the reciprocal Iattic+the  “Ewald  sphere.”

Since diffraction is an elastic process, the

wave vectors of the incident and scattered

radiation, ki and kf, have equal length and can

be drewn ao that they are radii of the sphere. A

few of the points of the reciprocal lattice touch

the surface of the Ewald  sphere. Note thst the

Qh vector for each such point coincides with

Q, the third side of the scattering triangle.

In other words, Q=Qh (a version of Bragg’s

law) and diffraction occurs at the angle 28

between ki and kf. Rotation of the crystal

corresponds to rotating the reciprocal lattice,

causing other points to touch the Ewald

aphere and diffraction to occur at other

scattering angles.

Reciprocal-
Latfica
Origin

lattice, but all the directions of the vectors are lost along with the phases of the struc-
ture factors. This situation was neatly summarized long ago by W. H. Bragg in his
1921 Presidential Address to the Physical Society.

All the spectra of the different planes are thrown together on the same dia-
gram, and must be disentangled. This is not so difficult as it might seem.
. . . The spectra of the organic substances show how very diversijed  they
are, and illustrate the power of a method of analysis which promises to be
of great use, since every crystal has its own characteristic spectrum.

Despite Bragg’s optimism about interpretation of a powder pattern, only recently
has there been any real progress in powder pattern analysis. The classical use of
x-ray powder patterns has been analytical, to enable identification of crystalline phases
in an unknown mixture. This is usually achieved by matching the line positions and
relative intensities against a compendium of such values obtained by measuring pat-
terns of pure materials. Commercial x-ray powder diffractometers come with soft-
ware packages that do the matching automatically. The computer file of standard
materials maintained by the Joint Commission on Powder Diffraction Standards now
contains over 50,000 entries. Our problem, however, is to unravel a powder pattern
and extract the crystal structure responsible for the observed intensity distribution.

Crystal Structures from Powder Patterns

For a long time the only way a powder pattern could be interpreted to give
the crystal structure was a variation on the methods used for single-crystal diffrac-
tion data. The first step consists of identifying the vectors h (or h, k, 1), that give
rise to the peaks in the pattern thus identifying the crystal lattice and its parameters
a, b, and c. This process, known as indexing the pattern, can be complex for low-
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(a) Reciprocal-Space Geometry

Ewald Sphere
/

I
(b) Powder-Diffraction Pattern
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symmetry crystals but is quite easy for cubic structures. In that case the relationship
between h and d-spacing gives

# = a’
h2 + k2 + 12

(7),

where a is the cubic-lattice spacing. One need only number the peaks starting from
the origin, skipping those numbers that are not sums of three squares of integers
(7, 15,23,28, etc.), and then tally up the possible hkl combinations for each peak.
Then the intensities of individual peaks are measured and converted to structure fac-
tor magnitudes. These could then be used to “solve” the structure (remember this is
a puzzle because of the lost complex character of ~h). The main problem with this
technique is that only for very simple structures are the peaks in a powder pattern
sufficiently separated to allow measurement of individual peak intensities. One can
index the pattern of almost any substance and thus find a description of the lattice.
However, the peaks are usually so heavily overlapped that extraction of individual
peak intensities is impossible, and the magnitudes of most of the individual structure
factors are unknown.

POWDER DIFFRACTION IN
RECIPROCAL SPACE

Fig. 9. (a) A reciprocal-space representation

of powder diffraction of monochromatic

radiation. The reciprocal-lattice points for a

powder are smeared out onto the surfaces

of a nested set of spheres, all of which

intersect the Ewald  aphere if dh > A/2.

Thus diffraction from all planes whose d-

spacing is greater than or equal to A/2 can

be recorded in a single measurement with

single-wavelength radiation. (b) The powder

diffraction pattern that would be recorded

from a crystal having this reciprocal lattice.

For clarity, the intensities are shown here but

are not plotted on the reciprocal lattice in (a)

(whereaa  they were in Figs. 4 and 5).
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OVERLAPPING PEAKS IN
DIFFRACTION PA71ERN

Fig. 10. A small segment of a

fllght  powder-diffraction patfern

A POWDER

tima-of-

showing

the total intensity and contributions to it

from background and from severel Bragg

reflections. Note that four Bragg reflaetions

contribute to the left-most observed peak.
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About twenty years ago H. M. Rietveld suggested a solution to this problem. He
recognized that a mathematical expression could be written to represent the observed
intensity IC at every position Q in a powder-diffraction pattern:

1.(Q) = Zb(Q) + ~ lh (Q). (8)

This expression has a contribution from the background and from each of the Qh that
are in the vicinity of Q (Fig. 10). Unlike the stick-diagram representation of a pow-
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der pattern shown in Fig. 9, a real powder pattern suffers from line broadening, so
diffraction from the planes labeled by h contributes not only at Qh but at all nearby
Q. The pattern in Fig. 10 also exhibits line anisotropy,  which arises from the asym-
metry of the spallation-neutron pulse. In the Rietveld method one models the ob-
served pattern by considering the factors that affect both the line shape and its inten-
sity. The adjustable parameters for the model are then refined by a nonlinear least-
squares process that is similar to the process very commonly used in single-crystal x-
ray structure analysis. The l~h 12 parameters obtained from the fit are a reconstruction
of the real ]Fh 12; the parameters for line broadening and anisotropy  provide informa-
tion about particle sizes, structural defects, and other phenomena that distort the ideal
Bragg pattern.

This approach has been so successful that it has led to a renaissance in powder
diffraction, and this technique of treating powder-diffraction data is now known as
Rietveld refinement.

How Are X-Ray and Neutron Diffraction Complementary?

In generating a model to perform the inverse Fourier transform shown in Eq. 4,
we postulate a set of atom positions and assign a scattering factorfi  to each atom,
which is the Fourier transform of the scattering density about its position. However,
because x rays and neutrons scatter by different mechanisms, the corresponding scat-
tering factors are quite different. Neutrons are scattered primarily by atomic nuclei.
Since the nuclear dimensions are roughly 100,000 times smaller than the neutron
wavelength, the nuclei act like point scatterers and neutron scattering factors (scatter-
ing lengths or b ‘s) are independent of IQ/. Also, nuclear scattering is a combination
of “potential” scattering and “resonance” scattering. Potential scattering depends on
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the number of nuclear particles and resonance scattering results from neutron absorp-
tion by the nucleus. These two factors sometimes add and sometimes subtract to give
neutron scattering lengths that vary erratically from one element to another and from
one isotope to another (see Fig. 6).

On the other hand, x-ray scattering occurs primarily by interaction with the elec-
trons that surround an atom. Consequently, the strength of the scattering depends
on the number of electrons that surround an atom so that the scattering power of an
atom increases with atomic number. Thus, x-ray scattering factors are usually ex-

30~ ‘-RA’SCA”ER’NGFACT”RS
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20
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5

co
Fe
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co’
Mg
o

I I 1 I I I I I I
o 2 4 6 8
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pressed as some multiple of the scattering power of one electron. In addition, the
spatial extent of the electron cloud around an atom is roughly the same as the x-ray
wavelength, so the x-ray scattering factor falls off with increasing /Q1. The scattered
intensity also has a contribution from anomalous dispersion when the x-ray energy
is near an absorption edge for the scattering atom. The absorption edge for an inner
electron shell of an element is the minimum energy at which an atom can absorb an
x ray and consequently eject an electron from that shell. The scattering factor can be
strongly modified by this process and acquire both real and imaginary components
that are only partially dependent on IQI. Thus the scattering factors for x rays look
like those shown in Fig. 11.

Given these differences we would expect x-ray and neutron powder-diffraction
patterns to be very different. Figure 12 shows idealized x-ray and neutron patterns
calculated for MgTi03, the primary constituent of the mineral geikielite. The patterns
were generated for essentially identical diffractometer experiments (impossible in real
life) but are startlingly different. In fact, the strongest peak in the x-ray pattern (at
about 32°) is completely absent in the neutron pattern! The reason for the extreme
difference between the two patterns lies in the scattering factors for titanium, mag-
nesium, and oxygen for x-rays and neutrons. The x-ray scattering factors are simply
proportional to the atomic number; thus ~Ti > & > fo. However, the neutron Scatter-
ing length of titanium is negative and that of oxygen is only slightly larger than that
of magnesium, or bo > bM~ > () > bTi. Therefore the neutron structure factor for
each reflection is very different from the x-ray structure factor, and the peak heights
in the two powder-diffraction patterns are very different.

The complementarily of x-ray and neutron powder patterns then eliminates one
of the most basic problems in crystal-structure analysis. Because the complex na-
ture of the structure factors is lost in any diffraction measurement and the directional
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Fig. 11. X-ray scattering factors for the atoms

O, Mg, Ti, Fe, and Co. The gray curve Iabaled

Co’ gives the scattering factor of Co when the

energy of the incident x rays is a few eV below

the K absorption edge of Co. At this energy,

anomalous dispersion reduces the scattering

fsctor by about 6 electrons at sII Q.
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DIFFERENCES BETWEEN X-RAY
NEUTRON POWDER PATTERNS

Fig. 12. A comparison of simulated x-ray

and neutron powder patterns for MgTi03 at a

wavelength of 1.54 A. The neutron scattering
lengths of Mg, Ti, and O are very different

from their x-ray scattering factors, so peaks

that are prominent in one pattern are small

or even invisible in the other. Thus the two

patterns give different information about the
structure of the crystal.

character of reciprocal space also is lost in a powder-diffraction experiment, the
Rietveld refinement of a single powder pattern may not yield a unique answer. Clearly,
if a crystal-structure model of atom positions, etc., produces calculated patterns that
match both a neutron powder pattern and an x-ray powder pattern, that model is
more likely to be unique (and correct). To capitalize on this notion we have devel-
oped a computer program that will perform a combined x-ray and neutron Rietveld
refinement of a crystal structure. The remainder of the article presents some applica-
tions of this approach.

(a) Neutron Powder Pattern (b) X-ray Powder Pattern

20 40 60 20 40 6

20 (degrees)

Examples of Combined Rietveld Refinements

One of the most difficult structural problems is to determine the identity of the
atoms that occupy a particular site within a crystal structure. Generally an atom is
identified by its scattering power relative to the other atoms in the structure. In addi-
tion, the distances between it and its nearest neighbors also help in this identification
process, The large body of structural work in the literature provides the expected in-
teratomic distances for a particular pair of atoms. The problem becomes much more
difficult, however, when more than one kind of atom can occupy a particular site.

)

The 123 High-Temperature Superconductor. Our first example of an atom-
identification problem concerns the high- Tc. 123 superconductor YBa2Cu307_x. This
material had been investigated at great length by many groups throughout the world,
and its structure had been established with little ambiguity within a few months of its
discovery by Chu and coworkers at the University of Houston. Almost all structural
results came from Rietveld refinements of neutron powder-diffraction data obtained
at either reactor or spallation sources, and the atom identities were assigned largely
by analogy to other structures as well as by their scattering powers. By unfortunate
coincidence the neutron scattering lengths of yttrium and copper are virtually iden-
tical, leaving open the possibilities that the assignments of these two atom locations
were in fact reversed or that each site was sometimes occupied by yttrium and some-
times by copper. Either case would have considerable impact on any theory proposed
to explain the superconductivity. However, the x-ray scattering factors for these two
atoms are very different, and by combining some x-ray powder data with the neutron
data one can easily resolve this ambiguity.
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Here at LANSCE we performed both time-of-flight neutron and x-ray powder-
diffraction experiments, collecting six powder patterns for this material The entire set,
comprising about 25,000 data points, was subjected to a combined Rietveld refine-
ment involving approximately 120 adjustable parameters. These parameters included
the 33 needed to describe the crystal structure of YBazCuqOT_,,  namely, atomic po-
sitions, fractional occupancies, thermal parameters, and lattice parameters. The rest
characterized details of the powder-diffraction patterns and included coefficients for
the background, the peak shapes, and intensity correction factors as well as the six
scaling factors. The resulting structure, shown in Fig. 13, was dramatically more pre-
cise than any of the previous single-measurement results and satisfactorily resolved
the metal-site occupancy issue. We found no evidence of any interchange between
the metal atoms on their respective sites. Our result had been expected from crystal-
chemistry considerations based on comparison of interatomic distances and ionic
radii, but this work provided a clear and unambiguous determination.

Vanadium-Doped Iron-Cobalt Alloy. The atom-identification problem in our sec-
ond example is considerably more difficult. The alloy FeCo is well known as an ex-
cellent soft ferromagnet with a high saturation magnetization and low permeability
and is of great use commercially. To improve its machinability, a small amount of
vanadium (about 290) is added to the alloy. This alloy is also a well-known exam-
ple of a second-order ~-brass transition: At high temperatures the two metals occupy
sites of the body-centered cubic structure at random, but below 720” C the alloy or-
ders so that atoms of the two metals tend to occupy alternate sites (Fig. 14). It had
been presumed that in the low-temperature phase the vanadium atoms randomly oc-

A HIGH-T. SUPERCONDUCTOR

Fig. 13. A perspective drawing of the structure

of YBa2Cu@_X  as deduced from a combined

x-ray and neutron Rietveld  refinement. The

ellipsoids represent the extent of 99eA of

the atomic thermal motion. The Cu and O

stems sre labeled with numbers to distinguish

inequivalent Iocationa. Combined x-ray

and neutron data proved that there is no

interchange between the Cu atoms at these

sites and the Y atoms at the site in the middle

of the figure.
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ORDER-DISORDER TRANSITION
IN THE ALLOY FeCo

Fig. 14. A schemstlc  representation of the

@brsss transition in FeCo, the iron-cobslt

slloy containing equsl quantities of Fe snd

Co. in the high-tempersture form on the ieft,

esch site Is occupied st rsndom by either

Fe or Co. The slioy becomes ordered beiow

720° C to form the structure on the right.

Esch Fe stem is surrounded by Co stems, just

as the Co stem in the figure is surrounded by

Fe stems.

cupy either the Fe site or the Co site in the structure, but no definitive determination
had been attempted. Because the Fe/Co ordering is incomplete, solution of the prob-
lem required determining the fraction of the Fe-rich and the Co-rich sites occupied
by Fe, Co, and V. This is not possible with a single-radiation experiment and is ex-
tremely difficult with a two-radiation experiment. Conventional x-ray powder data is
particularly insensitive to the ordering because Fe and Co have essentially the same
x-ray scattering factors and that for V is only about 1570 smaller. In fact the ,B-brass
transition for this material is virtually invisible to x rays. We resolved this site-

Above 720”C Beiow 720”C

distribution problem by collecting neutron time-of-flight and shortwavelength x-ray
data sets that covered a range of Q sufficient to independently determine the thermal-
motion parameters. In addition, we performed synchrotrons x-ray experiments at Stan-
ford University. The tunability of synchrotrons x-ray radiation allowed us to strongly
modify the x-ray scattering factors of the three metals by collecting powder data near
each of their respective K absorption edges. The strong anomalous dispersion re-
duced the x-ray scattering factor for each metal in turn by about 6 to 8 electrons
from the dispersionless value given in Fig. 11 and thus provided sufficient contrast
between that atom and the others. The entire suite of data, consisting of some 18
powder patterns with a total of about 22,000 data points, was subjected to a com-
bined Rietveld refinement to determine the fractional occupancies for Fe, Co, and V
at the two sites. The result clearly showed that the V strongly preferred the Co-rich
site over the Fe-rich site and that for this particular sample the Fe/Co ordering was
N 80%. These results are not obtainable by any other means.

T*-Phase High-Temperature Superconductors. Our final example is an extension
of the idea used for the FeCo alloy. The problem is to determine the site preferences
of the strontium, lanthanum, and rare-earth ions in the so-called T*-phase  supercon-
ductors. These materials have the general formula Lal.8–,R,Sro.zC@4,  where R is
a rare-earth metal, and all have approximately the same structure. They have been
synthesized with all the rare earths between Pr and Ho as R. Only those with Sm,
Eu, and Gd and x & 0.9 form bulk superconductors and then only when annealed
at high 02 pressures. As shown in Fig. 15, one end of the T-phase unit cell resem-
bles the KzNiF4-like  structure of LazCu04_x  (called the T-phase), the first high-T,.
material to be discovered (by Bednorz  and Mitller). The other end of the unit cell re-
sembles the structure of the so-called T’ superconducting phase, Cc-doped NdzCu04.
Each end has sites for the Sr, La, and R ions; the sites at the T-phase-like end are
larger than those at the T’-like end. Consideration of the various atomic radii and
the metal-oxygen distances for the two types of sites had led to the assumption that
the larger ions (S#+ and La3+) occupy the larger T-phase sites, whereas the smaller
rare-earth ions and the remaining La3+ occupy the smaller T’-phase sites. We ex-

152smo  ~Sro,2Cu04 with neutrons at LANSCE andamined the superconductor  L~,g
with synchrotrons radiation at the National Synchrotrons Light Source at Brookhaven
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National Laboratory. We tuned the synchrotrons radiation to absorption edges of La,
Sm, and Sr to sufficiently modify their scattering factors. We also collected a fourth
x-ray data set at a wavelength far from any edges. We found that the ordering exists
but is incomplete: About 10% of the Sm3+Ions appear on the larger T site, presum-
ably because the ions are nearly the same size, with a Sm3+/La3+ ionic-radius ratio of
0.935. We also examined another superconductor, Lao9Gdd30.2CuO+ in which the

3+ = o.gig), The strong absorpt ion bY ‘d

ions are of more disparate sizes (Gd3+/La
precluded collection of a neutron powder pattern, but the four x-ray data sets were

Nd(Ce)

(’-) N(o 0
0

-’”
T’ Phase

La(Sr)

T Phase

sufficient to unambiguously determine the two site distributions for the three kinds
of atoms. In this case the ions were well segregated into the two sites by their size.
Since the two materials have similar superconductivity properties, this ordering evi-
dently has little effect on the superconductivity.

Conclusion

As one can see from this discussion, the science of powder diffraction has come
a long way from its beginnings as a largely analytical tool. The Rietveld refinement
technique has enabled the determination of crystal structures of considerable com-
plexity and in fact was the first to accurately reveal the structures of the supercon-
ducting copper oxides. The power of this method can be further enhanced by proper
combination of diffraction data from several radiation sources to improve the inter-
atomic contrast and eliminate the ambiguities in powder structure refinements. ■

(

(

La(Sr)

Gd(La)

uuu

●

T* Phase

T*-PHASE SUPERCONDUCTOR

Fig. 15. The structure of the T’-phaae

superconductor (right) combines those of

the j and T phases, two other structures

of M2CU04 (where M can be a Ianthanide

element or Sr in the compounds of interest

for superconductivity). The T’ phase (left) has

Cc-doped Nd on the M sites (the parentheses

around the “Cc” symbol indicate that the

amount of Ce is much less than the amount of

Nd). The T phase (middle) has larger sites for

M, which are occupied by Sr-dopad La. The

T* phase has La, Sr, and Gd on the M sitea.

The larger La and Sr ions occupy the sites in

the top half of the unit cell, which are identical

to thoae in the T phase. The smaller Gd (dark

gray) ions and the rest of the La occupy the

smaller T’ sites in the bottom half.
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Crystal Symmetry Groups

s ymmetry plays an important role
in crystallography. The ways in
which atoms and molecules are

arranged within a unit cell and unit cells
repeat within a crystal are governed by
symmetry rules. In ordinary life our
first perception of symmetry is what
is known as mirror symmetry. Our
bodies have, to a good approximation,
mirror symmetry in which our right side
is matched by our left as if a mirror
passed along the central axis of our
bodies. Our hands illustrate this most
vividly; so much so that the image is
carried over to crystallography when
one speaks of a molecule as being either
“right”- or “left”- handed. Those of us
who live in an old-fashioned duplex
will also recognize that such houses are
built with mirror symmetry so that the
arrangement of the rooms, hallways, and
doors are disposed about an imaginary
mirror passing through the common
wall between the two halves of the
house. There are many other examples
of this kind of mirror symmetry in
ordinary life. We can also see more
complex symmetry in the patterns
around us. It can be found in wallpaper
patterns, floor-tile arrays, cloth designs,
flowers, and mineral crystals. The basic
mathematics of symmetry also applies
to music, dance (particularly folk and
square dance), and even the operations
needed to solve Rubik’s cube.

The rules that govern symmetry are
found in the mathematics of group the-
ory. Group theory addresses the way in
which a certain collection of mathemat-
ical “objects” are related to each other.
For example, consider all the positive
and negative integers and zero. They
can constitute a group because under
certain circumstances the relationships

between the integers obey the rules of
group theory:
● There must be defined a procedure for

combining two elements of the group
to form a third. For the integers one
can choose the addition operation so
that a + b = c is the operation to be
performed and u, b, and c are always
elements of the group.

● There exists an element of the group,
called the identity element and de-
noted f, that combines with any other
element to give the second one un-
changed. In the case of the integers,
the identity element is zero because
any integer plus zero gives that inte-
ger (a + O = a).

● For every element of the group, there
exists another element that combines
with the first to give the identity
element; these are known as inverse
elements. The negative integers
constitute the inverses of the positive
integers because their pairwise sums
all equal zero, the identity element
(a + (–a) = 0).

● Group operations in sequence obey
the associative law. For addition of
integers this means that (a + b) + c =
a+(b+c). Notice that the commutative
law, a + b = b + a, is not required even
though it is true for this particular
group.
You might be tempted to say that the

positive integers, when related by mul-
tiplication (a x b = c), also constitute
a group with the identity element now
being one (a x 1 = a). In fact, the pos-
itive integers do not constitute a group
under these conditions because, to obey
the group-theory rules, the noninteger
inverses ( 1 /a) as well as all the ratio-
nal fractions (b/a) would have to be
included. The expanded set of positive

rational numbers is a group under
multiplication, and both it and the
integer group already discussed are
examples of infinite groups because
they each contain an infinite number
of elements.

In the case of a symmetry group,
an element is the operation needed to
produce one object from another. For
example, a mirror operation takes an
object in one location and produces
another of the opposite hand located
such that the mirror doing the operation
is equidistant between them (Fig. 1).
These manipulations are usually called
symmetry operations. They are com-
bined by applying them to an object se-

THE MIRROR SYMMETRY OPERATION

Fig. 1. A pair of left- and right-"footed” boots
Illustrates the mirror-plane symmetry operation.
The right boot can be positioned identically
on the left boot by reflection through a mirror
between them and vice versa.

quentially. For example, doing a mirror
operation twice on a right-handed object
will, with the first operation, move it to
the left-handed position, and with the
second operation, place it back on its
original right-handed position. In fact,
applying a mirror operation twice in
succession is equivalent to the identity
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operation, so that a mirror operation is
its own inverse.

The two operations, mirror and iden-
tity, obey the four rules of group theory,
and thus constitute one of the simplest
symmetry groups. A mathematical rep-
resentation of these operations is

m -1 = m a n d

mm
–‘ = mm = 1.

Further, a “multiplication table”
between these two operations can be set
up to show the products that any pair of
symmetry operations gives in this finite
group (Fig. 2).

There are three types of symmetry
operations in crystallography. The sim-
plest type is the set of translation oper-
ations needed to fill a two-dimensional
infinite plane or a three-dimensional in-
finite space. These operations form a
group by themselves and have essen-
tially the same characteristics as the
example group of integers discussed
above. The difference is that the trans-
lation group has two or three sets of
integers depending on whether a two-
dimensional plane or a three-dimen-
sional space is filled. These translation
operations make the concept of a unit
cell possible, because once the unit cell
for a crystal is specified, it takes only
the right combination of translation op-
erations to construct the full crystal lat-
tice.

There is also a type of translation
operation that relates objects within
a unit cell so that the same objects
are found at coordinates that are half
multiples of unit-cell distances along
two or three of the axes. These last
operations are, for example, responsible
for the face- and body-centered lattices
found in three dimensions (Fig. 3). The
possible combinations of this full set of
translations for plane- and space-filling
arrays (along with the restrictions on the
rotation-symmetry operations that will

be discussed next) gives only five possi-
ble plane lattices and fourteen possible
space lattices (Fig. 3).

The second type of crystallographic
symmetry is rotation. For it to be a
valid symmetry operation, however, the

where n is an integer. The rotation-
symmetry operations will then all be
multiples of this rotation angle. For ex-
ample, if n = 6 the rotation angle is
60 degrees and the operations can be
represented by the unique set 1C6, 

2C6,
3C 6 (=

1C z), 
4C 6,

5C 6, and 6C 6 (= I ) in
which the subscript gives the fraction of

A FINITE SYMMETRY GROUP

Fig. 2. This example of a simple, finite group
obeying all the rules of group symmetry
consists solely of the Identity element, 1,
and the mirror-plane symmetry operation, m.
The multiplication table shown above for the
group gives the products for any pairwise
application of the two symmetry operations.

a full circle for each operation (here
1/6) and the superscript gives the mul-
tiple of 60 degrees used for the rotation
(Fig. 4). Because 6C6 is the identity
operation, these six rotation operations
constitute a group, symbolized by C&

If the symmetry is local with no
translation component, then the integer
n can take on any value from one to
infinity. An object that has the extreme

which an infinitesimally small rotation
leaves looking the same (ignoring any
painted design). However, when the
rotation symmetry is part of a plane- or
space-filling symmetry with translation
operators, only five different rotation
angles (n = 1, 2, 3, 4, or 6) can be
used. Replication of a unit cell with
a rotation symmetry other than these
cannot fill a plane surface or three-
dimensional space without leaving voids
or having overlapping regions. The
situation is more complicated in the
three-dimensional case because a unit
cell may also have different rotation
symmetry in different directions. Many
different groups result from the various
combinations of these rotations.

An extension to the concept of ro-
tation symmetry is to include in each
rotation operator a translation compo-
nent (Fig. 5). The resulting objects are
helical or screwlike; hence, these oper-
ations are called screw rotations. These
symmetry operations are most prevalent
in crystal lattices in which the unit-cell
repeat requirement means that the trans-
lation operations have the same integer
fraction, or some simple multiple, as the
rotation operations. For example, the
screw rotation 61 describes an opera-
tion in which the rotation of 60 degrees
is accompanied by a translation of 1/6
of the unit cell along the rotation axis.
The 64 screw rotation has the same 60-
degree rotation but this time is accom-
panied by a translation of 4/6 of the unit
cell along the axis. A sufficient num-
ber of these is superimposed to give the
required unit-cell translation (Fig. 5),
and the resulting arrangement is differ-
ent from that obtained with a 61 screw
rotation.

The one facet common to the trans-
lation, rotation, and screw operations is
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THE BRAVAIS SPACE LATTICES

Fig. 3. The fourteen unit cells depicted above
represent the only possible ways that space
can be filled without gaps or overlaps between
cells, that is, consonant with the restrictions
of translation and rotation symmetry. The
cubic cells at the top all have three orthogonal
sides of equal length; the body-centered (/)
and face-centered cubic cells (F) cannot be
fully specified without also using translation
operations in terms of half-cell distances. The
tetragonal and orthorhombic cells also have
sides that are mutually orthogonal, but either
one side differs in length from the other two
sides (tetragonal) or all three sides differ in
length (orthorhombic). The monoclinic and
triclinic cells have three unequal lengths but
now either one angle (monoclinic) or all three
angles (triclinic) between the sides do not
equal 90 degrees. The rhombohedral cell can
be thought of as a cubic cell that has been
stretched or squeezed along a diagonal: the
three sides are equal but the three angles,
although equal, are not 90 degrees. The
hexagonal cell has two angles of 90 degrees
and one of 120 degrees; only two of its three
sides are equal.

that none of these change the handed-
ness of an object, and changing hand-
edness is the major feature of the third
type of crystallographic symmetry. We
have already mentioned the mirror-
symmetry operation that relates right-
and left-handed objects across a plane.
A similar operation is inversion (Fig. 6)
in which right- and left-handed ob-
jects are arranged on opposite sides
of a point, called an inversion center.
The presence of an inversion center in
a crystal is one of the primary classi-
fication features for crystal structures:
such crystal structures are centrosymmet-
ric. An example of the importance of
inversion centers is that almost all bio-
logically important molecules (proteins,
amino acids, et cetera) do not have a
self-contained inversion center and exist

Orthorhombic P Orthorhombic C Orthorhombic I Orlhorhombic F

Monoclinic P Monoclinic C Triclinic P

Rhombohedral Trigonal and Hexagonal P

in nature only in one-handed forms. screw operations, mirror reflection can
Thus, they always crystallize in noncen- be combined with a fractional transla-
trosymmetric crystal structures because tion (always one-half of the unit cell)
the other-handed molecules do not exist. to form a new operation (Fig. 7). This

In analogy to the operations combin- is known as a glide operation, and the
ing rotations with translations to form mirror part of the operation occurs at
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SCREW ROTATIONS

Axis of Rotation

ROTATION OPERATIONS

Fig. 4. The C6 rotation symmetry group
consists of all the rotations about an axis
a that carry an object through angles that
are multiples of 60 degrees. Two of the
operations in the symmetry group, 1C6 and
2C6, are labeled in the figure; 6C6 is the
identity operation that carries the object a full
360 degrees back into itself.

a glide plane. Just as for the screw
operation, glide operations are only
found in crystal lattices where the
repetition of translation and reflection
can extend indefinitely. Similarly, an
inversion operation can be combined
with a rotation (Fig. 8). Because this
operation occurs about a point, however,
it is found in both isolated objects and
in extended lattices,

When these operations are combined
in ways that form two-dimensional pla-
nar arrays, only 17 unique plane groups
are found. With three dimensions, the
combination of operations gives just 92
centrosymmetric and 138 noncentrosym-
metric space groups for a total of 230.

An additional type of operation worth
considering is one that in a two-dimen-
sional plane would, say, change the
color of the object (see the opening
figure of the main article). The sim-
plest case is a “black-white” operator,

Axis of Rotation

64

Axis of Rotation

and such a color-reversal operator can
also be combined with the other oper-
ators discussed earlier. An application
of this type of operation is to describe
the ordering of magnetic moments found
in some materials by neutron scatter-
ing. Frequently, the moments arrange
themselves in an alternating pattern so
that every other one is “up” and all the
others are “down.” The symmetry of
these arrangements can be described
by including the color-reversal opera-
tion, which expands the total number

Fig. 5. a) The 61 screw rotation is the
application of a 60-degree rotation about
a given axis of the unit cell followed by a
translation along that axis of one-sixth of
the unit-cell distance. This combination of
symmetry operations is repeated successively
along the full length of the unit cell (in the
figure, the tetrahedrons generated by each
successive combination of operations are
numbered consecutively). Note that the
placement of the tetrahedrons in this figure
resembles the placement of the tetrahedrons
for rotation alone (Fig. 4) except that the
circle has been “stretched out” into an arc
because of the vertical translation along the
axis of rotation. After six rotation-translation
operations, the tetrahedron has returned to its
original orientation but is translated a full unit
along one of the cell’s axes. b) The 64 screw
rotation is the same as the 61 screw rotation
except the translation is now for four-sixths
(two-thirds) of the unit distance. To fill in the
whole pattern, the next rotation-translation
operation (which ends up one-third of the way
into the next unit distance) and successive
operations are superimposed on the original
unit distance. Note that in the figure the
dashed line has been eliminated (because
successive operations are superimposed),
but the tetrahedrons generated by successive
operations are still numbered consecutively.
After three of these combined operations,
the tetrahedron will have moved an integral
number of unit distances (and thus can be
pictured at either the bottom or top of the
figure) but will have rotated only 180 degrees.
In this manner, the tetrahedron ends up on
both sides of the axis at each point along
the way. Once again, after six combined
operations the tetrahedron has assumed its
original orientation.

of space groups to 1728 in 36 Bravais
lattices.

Because there is an intimate relation-
ship between the arrangement of atoms
found in real space and the pattern of
structure factors in reciprocal space,
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INVERSION CENTER

Fig. 6.
accomplished by “reflecting” everything
throughs point or “inversion center” between
the objects. The three dashed lines drawn
between tips on the tetrahedrons and passing
through the inversion center illustrate this
operation.

the symmetry of real space must have
counterparts in reciprocal space. How-
ever, some of the symmetry aspects
of reciprocal space may at first glance
be surprising. Unlike crystallographic
real space, which consists of a multi-
tude of identical unit cells each with its
own origin, reciprocal space has just
a single origin and an infinite array of
reciprocal-lattice points associated with
differing and possibly complex num-
bers (Fh ‘s). Thus, none of the trans-
lational aspects of the crystallographic
symmetry can show up in the recipro-
cal lattice other than in the dimensions
of the reciprocal lattice itself. How-
ever, the rotation, mirror, and inversion
symmetries present in the lattice are

on the reciprocal-lattice (that is, in the
diffraction pattern). For example, the
intensities and locations of the two-
dimensional diffraction patterns shown
in Figs. 4 and 5 in the main article have
the same rotation and mirror symme-
tries as the two-dimensional patterns of
scatterers that generated those patterns.

What of the other possible symmetry
elements? A diffraction pattern almost
always has a center of inversion—an
inversion center is absent only for a
noncentrosymmetric crystal contain-
ing an atom with a complex scattering
factor. Half-cell translations and screw
and glide-plane operations are revealed
by systematic extinctions, that is, cer-
tain classes of reciprocal-lattice points
with zero intensity. For example, in the
diffraction pattern for a face-centered
cubic lattice, the only points that have
a nonzero intensity are those for which
the hkl indices are all even (for exam-
ple, 422) or all odd (for example, 31 1).
Likewise, a glide operation whose glide
plane is perpendicular to the c crystallo-
graphic axis and whose glide direction
is parallel to the a axis causes the points
with hkO indices and odd h to have zero
intensity (for example, 120, whereas 210
has nonzero intensity). Systematic extinc-

THE GLIDE OPERATION

Fig. 7. Here, mirror reflection and translation
for one-half the unit distance are combined
to form a glide operation. Note that the
tetrahedron on the right side of the glide
plane Is the mirror Image of the tetrahedrons
on the left aide; however, each tetrahedron is
displaced a half unit from the last one.

Axis of Rotation

AN INVERSION-ROTATION OPERATION

combination of s 60-degree rotation followed
by an inversion. Note that the three
tetrahedrons above the plane are the same
as the tetrahedrons in Fig. 4 for rotations
of O, 120, and 240 degrees (that is, I, 2C6,
and 4C6). This happens because performing
two successive 6 operations is equivalent
to performing the 2C6 operation (or two
1C6 operations). Lines showing the first
combination of a 60-degree rotation and
inversion operation are given on the figure
as well as consecutive numbers for the
successively generated tetrahedrons.

tions arise because the symmetry opera-
tion causes all the atoms to scatter with
destructive interference for particular
reciprocal-lattice points.

Thus, by examining both the symme-
try of a diffraction pattern and the sys-
tematic extinctions, a crystallographer
can usually identify one or two possible
space groups for any crystal. However,
some ambiguity may remain because
of cases in which pairs of space groups
display the same diffraction symmetry
and systematic extinctions. ■
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