
Neutron Scattering-A Primer

The Mathematical Foundations
of Neutron Scattering

I trons scattered by any assembly of nuclei. His result makes use of Fermi ob-
servation that the actual interaction between a neutron and a nucleus may be

replaced by an effective potential that is much weaker than the actual interaction.
This pseudo-potential causes the same scattering as the actual interaction but is weak
enough to be used in the perturbation expansion derived by Max Born. The Born ap-
proximation says that the probability of an incident plane wave of wave vector k be-
ing scattered by a weak potential V (r) to become an outgoing plane wave with wave
vector k’ is proportional to

(1)

where the integration is over the volume of the scattering sample. (We should note
that even though individual nuclei scatter spherically, V (r) represents the potential
due to the entire sample, and the resulting disturbance for the assembly of’ atoms is a
plane wave.)

The potential to be used in Eq. 1 is Fermi’s pseudo-potential. which, for a single

vector r coincides with rj. Thus, for an assembly of nuclei, such as a crystal, the
potential V (r) is the sum of individual neutron-nuclei interactions:

(2)

where the summation is over all the nuclear sites in the crystal.
Using Eqs. 1 and 2, Van Hove was able to show that the scattering law—that is,

the number of neutrons scattered per incident neutron-can be written as

(3)

Note that the sum here is over pairs of nuclei j and k and that the nucleus labeled j
is at position r;(f) at time t, whereas the nucleus labeled k is at position rk(0) at time
t = 0. The angular brackets (. .) denote an average over all possible starting times
for observations of the system, which is equivalent to an average over all the possible
thermodynamic states of the sample.

The position vectors rj in Eq. 3 are quantum-mechanical operators that have
to be manipulated carefully. Nevertheless, it is instructive to ignore this subtlety
and treat the equation as if it described a system obeying classical mechanics be-
cause such an approach clarifies the physical meaning of the equation. The sum over
atomic sites in Eq. 3 can then be rewritten as
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in which the Dirac delta function appears again, this time in terms of r and a differ-
ence vector between the position of nucleus j at time t and that of nucleus k at time
zero.

Let us suppose for the moment that the scattering lengths of all the atoms in our
sample are the same (b j = bk = b). In this case, the scattering lengths in Eq. 4 can be
removed from the summation, and the right side becomes

(5a)

and N is the number of atoms in the sample. The delta function in the definition of
G(r, t) is zero except when the position of an atom k at time zero and the position
of atom j at time t are separated by the vector r. Because the delta functions are
summed over all possible pairs of atoms to obtain G (r, t), this function is equal to
the probability of an atom being at the origin of a coordinate system at time zero
and an atom being at position r at time t. G (r, t) is generally referred to as the time-
dependent pair-correlation function because it describes how the correlation between
two particles evolves with time.

Van Hove’s neutron-scattering law (Eq. 3) can now be written as

(6)

forms of the time-dependent pair-correlation function. This general result gave a uni-
fied description for all neutron-scattering experiments and thus provided the frame-
work for defining neutron scattering as a field.

Fourier transform of a function that gives the probability of finding two atoms a cer-
tain distance apart-is responsible for the power of neutron scattering. By inverting
Eq. 6, information about both structure and dynamics of condensed matter may be
obtained from the scattering law.

Coherent and Incoherent Scattering

Even for a sample made up of a single isotope, all of the scattering lengths that
appear in Eq. 3 will not be equal. This is because the scattering length of a nucleus
depends on its spin state, and most isotopes have several spin states. Generally, how-
ever, there is no correlation between the spin of a nucleus and its position in a sam-
ple of matter. For this reason, the scattering lengths that appear in Eq. 3 can be av-
eraged over the nuclear spin states without affecting the thermodynamic average (de-
noted by the angular brackets).

value of b2 (b2). In terms of these quantities, the sum in Eq. 3 can
the nuclear spins to give

and the average
be averaged over

where Ajk is shorthand for the integral in Eq. 3. The first term on the right side of
Eq. 7 represents the so-called coherent scattering, whereas the second represents
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the incoherent scattering. Thus, we can define the coherent and. incoherent scattering
lengths as

(8)

The expression for the coherent scattering law is a sum over both j and k and
thus involves correlations between the position of an atom j at time zero and the
position of a second atom k at time t. Although j and k are occasionally the same
atom, in general they are not the same because the number N of nuclei in the sample
is large. We can thus say that coherent scattering essentially describes interference
between waves produced by the scattering of a single neutron from all the nuclei in
a sample. The intensity for this type of scattering varies strongly with the scattering
angle.

Incoherent scattering, on the other hand, involves correlations between the posi-
tion of an atom j at time zero and the position of the same atom at time t. Thus, in
incoherent scattering, the scattered waves from different nuclei do not interfere with
each other. For this reason, incoherent scattering provides a good method of exam-
ining processes in which atoms diffuse. In most situations, the incoherent scattering
intensity is isotropic; that is, it is the same for any scattering angle. This effect of-
ten allows incoherent scattering to be ignored when observing coherent scattering
because the incoherent effects just add intensity to a structureless background.

The values of the coherent and incoherent scattering lengths for different ele-
ments and isotopes do not vary in any obviously systematic way throughout the peri-
odic table. For example, hydrogen has a large incoherent scattering length (25.18 fer-
mis) and a small coherent scattering length (–3.74 fermis). Deuterium, on the other
hand, has a small incoherent scattering length (3.99 fermis) and a relatively large co-
herent scattering length (6.67 fermis). As mentioned in the main article, the differ-
ence between the coherent scattering lengths of hydrogen and deuterium is the basis
of an isotopic-labeling technique, called contrast matching, that is especially impor-
tant in applications of neutron scattering to structural biology and polymer science.

Diffraction
One of the important applications of Van Hove’s equation (Eq. 3) is the scatter-

ing law for diffraction, which we develop here for a crystal containing a single iso-

neutron diffractometers actually integrate over the energies of scattered neutrons.

to be evaluated at t = O for diffraction. The result, for a crystal containing a single
isotope, is

(9)
j,k

where the atomic positions rj and rk are evaluated at the same instant.
If the atoms in a sample were truly stationary, the thermodynamic averaging

brackets could be removed from Eq. 9 because rj and rk would be constant. In re-
ality the atoms oscillate about their equilibrium positions and only spend a fraction
of their time at these positions, When this is taken into account, the thermodynamic
average introduces another factor, called the Debye-Wailer factor, and Eq. 9 then be-
comes
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,
1’

librium position and diffracted intensity is now also called S (Q), the structure factor.
This equation is the basis of any crystallographic analysis of neutron-diffraction data.

Small-Angle Scattering.

An important simplification of Eq. 3 occurs when the scattering angle is small.
This approximation leads to the formula for one of the most popular neutron-scatter-
ing techniques—SANS, or small-angle neutron scattering.

Although Eq. 3 correctly describes neutron scattering at any scattering angle,
when the magnitude of Q is very small compared to a typical interatomic distance,
the exponential factors in Eq. 3 do not vary much from atom to atom, and the sum
over the atomic sites may be replaced by an integral. As a result, the small-angle
scattering law for coherent, elastic scattering from an assembly of “objects” (such as
those depicted in Fig. 13 in the main text) can be written

where b (r) is the scattering-length density and the integral extends over the entire
sample. To calculate b (r) for a large molecule, for example, we simply add up the
coherent scattering lengths of the atoms in the molecule and divide by the molecular
volume. Equation 11 is essentially a coarse-grained version of the “truth” given by
Eq. 3 and is valid only when Q is small. However, it is the basic analytic tool of
small-angle scattering. ■
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