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Family Mixing and the Origin of Mass
The difference between weak eigenstates and mass eigenstates
Stuart Raby

sectors. The gauge sector describes the interactions of quarks and leptons

(fermions, or spin-1/2 particles) with the spin-1 gauge bosons that mediate
the strong, weak, and electromagnetic forces. This sector has great aesthetic appeal
because the interactions are derived from local gauge symmetries. Also, the three
families of quarks and leptons transform identically under those local symmetries
and thus have the same basic strong, weak, and electromagnetic interactions.

The Higgs sector describes the interactions of the quarks and leptons with the
spin-0 Higgs bosonk™ andh?. This sector is somewhat ad hoc and contains many
free parameters. The Higgs bosons were originally introduced to break the weak
isospin gauge symmetry of the weak interactions by giving mass to the weak
gauge bosons, the/ and thez®. TheW and thez® must be very heavy to explain
why the weak force is so weak. But in the Standard Model, interactions with those
Higgs bosons are also responsible for giving nonzero masses to the three families
of quarks and leptons. Those interactions must yield different masses for the parti-
cles from different families and must cause the quarks from different families to
mix, as observed in experiment. But neither the nine masses for the quarks and
charged leptons nor the four parameters that specify the mixing of quarks across
families are determined by any fundamental principle contained in the Standard
Model. Instead, those thirteen parameters are determined from low-energy experi-
ments and are matched to the free parameters in the Standard Model Lagrangian.

By definition, weak eigenstates are the members of the weak isospin doublets
that transform into each other through interaction with\ithieoson (see Figure 5
on page 38). Mass eigenstates are states of definite mass created by the interaction
with Higgs bosons. Those states describe freely propagating particles that are iden-
tified in detectors by their electric charge, mass, and spin quantum numbers. Since
the Higgs interactions cause the quark weak eigenstates to mix with each other,
the resulting mass eigenstates are not identical to the weak eigenstates.

Each set of eigenstates provides a description of the three families of quarks,
and the two descriptions are related to each other by a set of unitary rotations.
Most experimentalists are accustomed to seeing the Standard Model written in
the mass eigenstate basis because the quarks of definite mass are the ingredients
of protons, neutrons, and other metastable particles that the experimentalists
measure. In the mass eigenstate basis, the Higgs interactions are diagonal, and
the mixing across families appears in the gauge sector. In other words, the unitary
rotations connecting the mass eigenstate basis to the weak eigenstate basis appear
in the gauge interactions. Those rotation matrices could, in principle, appear in all
the gauge interactions of quarks and leptons; but they do not. The Standard Model
symmetries cause the rotation matrices to appear only in the quark charge-
changing currents that couple to Weboson.

The specific product of rotation matrices that appears in the weak charge-
changing currents is just what we call the CKM matrix, the unitaxy3mixing
matrix deduced by Cabibbo, Kobayashi, and Maskawa. The elements in the
CKM matrix have been determined by measuring, for example, the strengths
of the strangeness-changing processes, in which a strange quark from the second
family of mass states transforms into an up quark from the first family. So far,
family mixing has not been observed among the leptons, with the possible

The Standard Model of elementary particle physics contains two disjoint
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exception of neutrino oscillations. If oscillations are confirmed, the mixing
angles measured in the neutrino experiments will become part of a CKM mixing
matrix for the leptons.

This sidebar derives the form of the CKM matrix and shows how it reflects
the difference between the rotation matrices for the up-type quarks+2/3)
and those for their weak partners, the down-type qu&ks 1/3). This
difference causes the family mixing in weak-interaction processes and is an
example of the way in which the Higgs sector breaks the weak symmetry. We
will also show that, because the neutrino masses are assumed to be degenerate
(namely, zero), in the Standard Model, the rotation matrices for the neutrinos can
be defined as identical to those for their weak partners, and therefore the CKM
matrix for the leptons is the identity matrix. Thus, in the minimal Standard Model,
in which neutrinos are massless, no family mixing can occur among the leptons,
and individual-lepton-family number is conserved.

This discussion attributes the origin of mixing to the mismatch between weak
eigenstates and mass eigenstates caused by the Higgs sector. A more fundamental
understanding of mixing would require understanding the origin of fermion masses
and the reason for certain symmetries, or approximate symmetries, to hold in
nature. For example, a fundamental theory of fermion masses would have to
explain why muon-family number is conserved, or only approximately conserved.
It would also have to explain why ti€ — KO mixing amplitude is on the order
of G,:2 and not larger. The small amount of family mixing observed in nature
puts severe constraints on any theory of fermion masses. Developing such a theory
is an outstanding problem in particle physics, but it may require a significant
extension of the Standard Model.

To discuss mixing as it appears in the Standard Model, it is necessary to explic-
itly write down the parts of the Standard Model Lagrangian that contain the
Yukawa interactions between the fermions and the Higgs bosons (responsible for
fermion masses) and the weak gauge interaction between the fermions #hd the
boson (responsible for charge-changing processes such as beta decay). But first,
we must define some notation. As in the sidebar “Neutrino Masses” on page 64,
we describe the fermion states by two-component left-handed Weyl spinors.
Specifically, we have the fields, d,, u d° &, » , ande®, where the family
indexi runs from one to three. The are the fields for the three up-type quanks
¢, andt with electric charg® = + 2/3, the d; are the fields for the three down-
type quarkd, s, andb with Q = —1/3, the g stand for the three charged leptons
e, u, and7 with Q = —1, and they, stand for the three neutrinag, Yy andv,_
with Q = 0. The fieldsy; andu,®, for example, are defined as follows:

u; annihilates the left-handed up-type quaykand creates the right-handed
up-type antiquarkiy in family i, and

u,® annihilates the left-handed up-type antiquarkand creates the right-handed
up-type quarkug in family i.

To describe the Hermitian conjugate fielql%and uiCT, interchange the words
annihilate and create used above. Tius;®, and their Hermitian conjugates
describe the creation and annihilation of all the states of the up-type quarks.

The down-type quark fields and the charged lepton fields are similarly defined.
For the neutrinos, only the fields containing the stateg and v are observed,;

the fields»;© are not included in the Standard Model. In other words, the Standard
Model includes right-handed charged leptons, but it has no right-handed neutrinos
(or left-handed antineutrinos).
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The Pauli Matrices for Spin-1/2
Particles

The Pauli spin matrices generate all
rotations of spin-1/2 particles.

Spin-1/2 particles have only two
possible spin projections along, say

the 3-axis: spin up, or s; = +1/2, and
spin down, or s; = —1/2. The step-up
operator o™ raises spin down to spin
up, the step-down operator o~
lowers spin up to spin down, and o3
gives the value of the spin projection
along the 3-axis. The basis set for

the spin quantized along the 3-axis

is given by

() wa (3)

and the matrices are given by
01 0 —i
o= ( 1 o) & =< i 0)

1 0
"3=<o —1) :
Defining the matrices o~ as
o = Zlet = i)

one arrives at the following
commutation relations:

[63, 0*] =+ 207, and
[ct, o ]=063.

The Weak Eigenstate BasisWe begin by defiing the theory in terms of the
weak eigenstates denoted by the subscript O and the color red.capigcifie
weak gauge coupling to th¥ is given by

K7

weak —

+ %(W; I+ w3 1)
where the charge-raising weak currétitis defned as

= ;LIOiTEM doi + 75" e @
and the charge-lowering curreitt” is defned as

wt = IZ dy T U + 5T TRy - 3)

The constang in Equation(1) specifes the strength of the weak interactions, and
the o™ is a four-component space-time vector given by—(dl), where thes! are

the standard Pauli spin matrices for spin-1/2 particles jwitlx, y, z, the spatial
directions. These X 2 matricesact on the spin components of the spin-1¢&§

and are totally independent of the family indeiEach term in the charge-raising

and charge-lowering currents connects states from the same family, which means
the weak interactions in Equation (1) are diagonal in the weak eigenstate basis. In
fact, those interactions deé the weak eigenstates.

To understand the action of the currents, consider rl$teté'rm,u0Jr okdp, in
the charge-raising curredt. It annihilates a left-handed down quark and creates a
left-handedup quark ¢, - U ) and, thereby, raises the electric charge by one
unit. Electric charge is conserved becausetiefield creates &V~ (see top dia
gram at right). The ffst term in the charge-lowering currei#’ does the reverse:
do" a*u, annihilates a left-handed up quark and creates a left-handed down quark
(Ug. — dp,) and,thereby, lowers the electric charge by one unit; at the same time,
the W~ field creates &Vt (see bottom diagram at right). Thus, the members of
each painy anddg; transform into each other under the action of the charge-
raising and charge-lowering weak currents and therefore are, bytidefia weak
isospin doublet. The quark doublets ang, (ly), (c,, Sp), and {,, by), and the lep
ton doublets areify, €y), (v,0, 10), @and o, 7). The frst member of the doublet
has weak isotopic chardg"’ = +1/2, and the second member g6 = —1/2.

Finally, note that* andJ*T are left-handed currents. They contain only the
fermion fieldsf, and not the fermionéidsf,°, which means that they create and
annihilate only left-handed fermioffig (and right-handed antlferm|orﬁ§R The
right-handed fermiong) (and left-handed antlfermloﬁgl_) are simply impervi
ous to the charge-changing weak interactions, and thereforig® tre weak
isotopic singlets. They are invariant under the weak isospin transformations.

Weak isospin symmetry, like strong isospin symmetry from nuclear physics and
the symmetry of rotations, is an SU(2) symmetry, which means that there are three
generators of the group of weak isospin symmetry transformations. Those-genera
tors have the same commutation relations as the Pauli spin matrices. (The Pauli
matrices, shown at left, generate all the rotations of spin-1/2 particles)* el
J#T are the raising and lowering generators of weak isospin analogetisand
o~ . The generator analogous to d&{ds J;* given by

|

and the time components of these three currents obey the commutation relations
[0, 301 = 2J30. In general, the time component of a current is the charge

Los Alamos Scienc&lumber 25 1997

The Oscillating Neutrino

density, whereas the spatial component is e fbimilarly, J3° is the weak iso
topic charge density. It contains terms of the fcﬁtgﬁ'fo, which are number opera
torsN; that count the number éfparticles minus the number bfantiparticles
present. When this density is integrated oveséice, it yields the weak isotopic
chargel ;.

f JP)Bx = 13V

Now, let us consider the Higgs sector. The fermietd$ interact with the Higgs
weak isospin doublett, h®) through the Yukawa interactions given by

Lyukawa™= %UCOi (Yp)ij [Uoy hO = dgj b1 + A% (Younij [Uoy (DT + oy (00T + €5 Miepron [ ()T + ey (0T,

whereY,,,, Ygowr and\(Iepton are the complex X 3 Yukawa matrices that give

the strengths of the interactions between the fermions and the Higgs bosons.
Because the Higgselids form a weak isospin doublet, each expression in brackets
is an inner product of two weak doublets, making an isospin singlet. Thus, each
term in the Lagrangian is invariant under the local weak isospin symmetry since The charge-raising weak
the conjugate éilds (for exampley©y) are weak singlets. The lepton terms in
Equation (5) are introduced in the sidebar “Neutrino Masses” (page 64), where
masses are shown to arise directly from the Yukawa interactions bd®zhae a

interaction in the fi rst family

+ — t o
(Wp. I sirst family ~ W; Up' ot dy

nonzero vacuum expectation valuie?s = v/\V/2that causes each type of fermion g u
to feel an everpresent interaction. These interactions yield mass terms given by
‘EBYukawa_’ S*Ema\ss: ucOi mp )ij UO] <% + CICOi %owr)ij dq <hOt> + eCOi (Yleptor)ij eq <hOt> (6) _

w

Notice that each term iff .. contains a product of two fermiorefilsf,,

which, by definition, annihilates a left-handed fermion and creates a right-handed
fermion. Thus, these Yukawa interactiorip the handedness of fermions, a-pre
requisite for giving nonzero masses to the fermions. These terms resemble the
Dirac mass terms introduced in the sidebar “Neutrino Masses,” except that the
matricesYyp, Ygown andYiepton@renotdiagonal. Thus, in the weak eigenstate
basis, the masses and the mixing across families occur in the Higgs sector.

|
Y
|
|

A down quark changes to an up
quark with the emission ofa W~

The Mass Eigenstate Basis and the Higgs Sectdet us examine the theory in
the mass eigenstate basis. Wil fthis basis by diagonalizinge Yukawa
matrices in the mass terms of Equation (6). In general, each Yukawa matrix is The charge-lowering weak
diagonalized by two unitary 8 3 transformation matrices. For example,
the diagonal Yukawa matrix for the up quahfﬁﬁ is given by

interaction in the fi rst family

(W,; J“T)first family ~ W,l: dOJr ot ug .

v = VR L 7
Yop = VRY VT () u d

where matrix\/R acts on the right-handed up-type quarks in takelsiu®,, and

matrix V,, L acts on the left-handed up-type quarksiinThe diagonal elements |

of Y are Q, A, A ), the Yukawa interaction strengths for all the up-type quarks: |

the up charm, and top, respectively. Matrlli’gpuﬁ,vn anlee ton are similarly Y

diagonalized. Ifu, andu®, are the ®lds in the weak elgenstate thelds in [

the mass elgenstatlﬂP andu are defied by the unitary transformations An up quark changes to a down
quark with the emission of a ~ W™.

W+

uSy=uVR and uy =V, tTu . (8)

Since theVs are unitary transformationg!V = VW' = I, we also have
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c—,c yRT —\v L
ut=u Ve Tand u=V -y, .

In this new mass basif, in Equation (6) takes the form

mass

A

‘Egmass: Z uCi YIup Ui <h0> + diC QI(.jown di <h0> + eci QIieptong <h0>
|

A ~i A
= izuci Mup Ui + &€ Mgoun G + €5 Mleptonel ' 9)
where the matricedl' = Y'v/\/2 are diagonal, and the diagonal elements are just
the masses of the fermions. In particular, we can write out the three terms for the

up-type quarksi, ¢, andt:

DU I\?Iiup U = A, U u<h%> + A, c®c<h®>+ A €t <hO>

I
= A, VIV2WCu + A vIV2CSc+ A VIV2 €t

=m,uu+mcc+mitt, (10)
with the masses of the up, charm, and top quarks given by
m, = )\uv/\/i, m. = /\Cv/\/ﬁ, andm, = )\tv/\/§ .

Thus, the Higgs sector deéis the mass eigenstate basis, and the diagonal elements
of the mass matrices are the particle masses.

Mixing in the Mass Eigenstate BasisNow, let us write the weak gauge interac
tion with theW in the mass eigenstate. Recall that

9 _
Peak= t %(W;J“ + WMJ“T) ,

but to write the charge-raising weak curréhtin the mass eigenstate, we
substitute Equation (8) into Equation (2),

=_Z uiT(Vu'-)il(EM(Vd'-T),(J-dj + ylore

and to rewrite the charge-lowering curréft, we substitute Equation (8) into
Equation (3):
W = 2 dylrug + ety
i

:.Z. diT(VdL)ikgu(VuLT)kjuj + QTg,u,,i

= % AT T (Vo) Ty U + 6Tt (12)
where Verm = V5 V4T (13)
Thus, the charge-raising and charge-lowering quark currentsoadéagonal

in the mass eigenstate basis. Instead, they contain the comgl&xn3ixing
matrix Voky- This matrix would be the identity matrix were it not for the
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difference between the rotation matrices for the up-twwksvb and those for

the down-typequarksvd'-. It is that difference that determines the amount of

family mixing in weak-interaction processes. For that reason, all the mixing can be
placed in either the up-type or down-type quarks, and by convention, the CKM
matrix places all the mixing in the down-type quarks. The weak eigenstates for the
down-type quarks are often dedd asd”.

d'=Veud =VEVHTd=Vtd, , (14)
in which case, the up-typeeak partners td’ becomeu':
u=Viu=u.

When all the mixing is placed in the down-type quarks, the weak eigenstates for
the up-type quarks are the same as the mass eigenfdéesould just as easily
place the mixing in the up-type quarks by defg a set of &ldsu’ given in

terms of the mass eigenstateandV,.) Independent of any convention, the
weak currentd* couple quark mass eigenstates from different families. The form
of the CKM matrix shows that, from the Higgs perspective, the up-type and
down-type quarks look different. It is this mismatch that causes the mixing across
quark families. If the rotation matrices for the up-type and down-type left-handed
quarks were the same, that is,\/[]‘L = Vd'-, the CKM matrix would be the

identity matrix, and there would be no family mixing in weak-interaction
processes. The existence of the CKM matrix is thus another example of the way
in which the mass sector (through the Higgs mechanism) breaks the weak isospin
symmetry. It also breaks nuclear isospin symmetry (the symmetry between
up-type and down-type quarks), which acts symmetrically on left-handed and
right-handed quarks.

Note that the mixing matriceg® associated with the right-handed fermions
do not enter into the Standard Model. They do, however, become relevant in
extensions of the Standard Model, such as supersymmetric or left-right-symmetric
models, and they can add to family-number violating processes.

Finally, we note that, because the neutrinos are assumed to be massless in the
Standard Model, there is no mixing matrix for the leptons. In general, the leptonic
analog to the CKM matrix has the form

Viepton = Vvatle_ T
But we are free to choose any basis for the neutrinos because they all have the
same mass. By choosing the rotation matrix for the neutrinos to be the same as
that for the charged leptong- = V.-, we have

vy = VeLT v and g, = Vel-Jr e .
The leptonic part of, for example, the charge-raising current is
iz”ofr otey _i%j AVA )jo (Ve T)jkek = iZViT kg
and the leptonic analog of the CKM matrix is the identity matrix. This choice
of eigenstate would not be possible, however, if neutrinos have different masses.
On the contrary, the neutrinos would have a wellrdefimass eigenstate and there
would likely be a leptonic CKM matrix different from the identity matrix. It is this

leptonic mixing matrix that would be responsible for neutrino oscillations as well
as for family-number violating processes suctuas e+ v. n

Number 25 1997Los Alamos Science

The Oscillating Neutrino



