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SOLITONS
the SINE-
GORDON
Equation
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To understand quantitatively how soli-
tons can result from a delicate balance
of dispersion and nonlinearity, let us be-
gin with the linear, dispersionless, bi-
directional wave equation

By direct substitution into Eq. 1, it is

is a solution for any functions f and g.

“solitary waves,” one moving to the left
and one to the right.
the lumps are isolated, at t = O they

Hence, by our definition these solutions to
the linear, dispersionless wave equation
are solitons, although trivial examples of

The robustness of solltons is indicated in this
x projected space-time plot of the Interaction of

. a kink and an antikink in the sine-Gordon equa-

proach each other, interact nonlinearly, and
then emerge unchanged in shape, amplitude,
and velocity. The collision process is de-
scribed analytically by Eq. 9. (The figure was
made at the Los Alamos National Laboratory
by Michel Peyrard, University of Bourgogne,
France.)

Now consider an equation, still linear,
of the form

Such equations arise naturally in descrip-
tions of optically-active phonons in solid
state physics and in relativistic field the-
ories. An elementary (plane wave) solu-
tion of this equation has the form

where A is a constant, w is the frequency,
and k is the wave number. Substituting
into Eq. 2 shows that this plane wave can
be a solution of Eq. 2 only if

(4a)
so that

This relation between w and k is known
technically as a dispersion relation and
contains essential information about how
individual plane waves with different k’s
(and hence different w’s) propagate. In
particular, the group velocity,

measures how fast a small group of waves
with values of k peaked around a partic-

dispersion relation Eq. 4b,
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corresponding variety of real-world applications to problems in the natural sciences and
engineering. In fiber optics, conducting polymers and other quasi-one-dimensional sys-
tems, Josephson transmission lines, and plasma cavitons—as well as the surface waves
in the Andaman Sea!—the prevailing mathematical models are slight modifications of
soliton equations. There now exist several numerical and analytic perturbation tech-
niques for studying these “nearly” soliton equations, and one can use these to describe
quite accurately the behavior of real physical systems.

One specific, decidedly practical illustration of the application of solitons concerns
effective long-distance communication by means of optical fibers. Low-intensity light
pulses in optical fibers propagate linearly but dispersively (as described in “Solitons
in the Sine-Gordon Equation”). This dispersion tends to degrade the signal, and, as a
consequence, expensive “repeaters” must be added to the fiber at regular intervals to
reconstruct the pulse.

However, if the intensity of the light transmitted through the fiber is substantially
increased, the propagation becomes nonlinear and solitary wave pulses are formed.
In fact, these solitary waves are very well described by the solitons of the “nonlinear
Schrodinger equation,” another of the celebrated completely integrable nonlinear partial
differential equations. In terms of the (complex) electric field amplitude E(x, t), this
equation can be written
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so that (groups of) waves with different

locities. Now consider a general solu-
tion to Eq. 2, which, by the principle of
superposition, can be formed by adding
together many plane waves (each with a
different constant). Since the elementary
components with different wave numbers
will propagate at different group veloci-
ties, the general solution will change its
form, or disperse, as it moves. Hence,
the general solution to Eq. 2 cannot be a
soliton.

Next consider adding a nonlinear term
to Eq. 2. With considerable malice afore-
thought, we change notation for the de-
pendent variable and choose the nonlin-
earity so that the full equation becomes

the “sine-Gordon” equation. We can com-
pare Eq. 5 to our previous Eq. 2 by noting

to

higher.
Based on remarks made in the intro-

ductory section of the main text, we see
that Eq. 5 looks like a bunch of sim-
ple, plane pendulums coupled together by

fact, the sine-Gordon equation has many
physical applications, including descrip-

tions of chain-like magnetic compounds
and transmission lines made out of arrays
of Josephson junctions of superconduc-
tors. Also, the equation is one of the
celebrated completely integrable, infinite-
degree-of-freedom Hamiltonian systems,
and the initial-value problem for the equa-
tion can be solved exactly by the analytic
technique of the “inverse spectral trans-
form.” Since the details of this method
are well beyond the scope of a general
overview, we shall only quote the solu-
tions relevant to our discussion. First, just
as for the KdV equation (Eq. 10 in the
main text), one can find directly a single
solitary-wave solution:

(7)

T = mt.
Since this solution approaches O as

covt. As a consequence, it is known as
a “kink.” Importantly, it does represent a
physically truly localized excitation, be-
cause all the energy and momentum as-
sociated with this wave are exponentially
centered around the kink’s location. Sim-
ilarly, the so-called anti-kink solution

(8)

Are the kinks and anti-kinks solitons?

Here we can avail ourselves of the mira-
cle of integrability and simply write down
an analytic solution that describes the
scattering of a kink and an antikink. The

(9)
The dedicated reader can verify that as

rated kink and anti-kink approaching each
other at velocity v. For t near O they

the kink and anti-kink emerge with their
forms intact. Readers with less dedication
can simply refer to the figure, in which
the entire collision process is presented
in a space-time plot. Note that since the

is physically equivalent to one that inter-

In the interest of historical accuracy,
we should add one final point. The an-
alytic solution, Eq. 9, showing that the
kink and anti-kink are in fact solitons,
was actually known, albeit not widely,
before the discovery of the KdV soliton.
It had remained an isolated and arcane cu-
riosity, independently rediscovered sev-
eral times but without widespread impact.
That such solutions could be constructed
analytically in a wide range of theories
was not appreciated. It took the ex-
perimental mathematics of Zabusky and
Kruskal to lead to the soliton revolution. ■

The soliton corresponding to the nonlinear pulse moving with velocity v through the
optical fiber has the form

(13)

In the idealized limit of no dissipative energy loss, these solitons propagate without
degradation of shape; they are indeed the natural stable, localized modes for propagation
in the fiber. An intrinsically nonlinear characteristic of this soliton, shown explicitly in
Eq. 13, is the relation between its amplitude (hence its energy) and its width. In real
fibers, where dissipative mechanisms cause solitons to lose energy, the individual soliton
pulses therefore broaden (but do not disperse). Thus, to maintain the separation between
solitons necessary for the integrity of the signal, one must add optical amplifiers. based
on stimulated Raman amplification, to compensate for the loss.

Theoretical numerical studies suggest that the amplification can be done very
effectively. An all-optical system with amplifier spacings of 30 to 50 kilometers and
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