
The HEP Parallel Processor
by James W. Moore

A lthough there is an abundance of
concepts for parallel computing,
there is a dearth of experimental data

delineating their strengths and weaknesses.
Consequently, for the past three years per-
sonnel in the Laboratory’s Computing Di-
vision have been conducting experiments on
a few parallel computing systems. The data
thus far are uniformly positive in supporting
the idea that parallel processing may yield
substantial increments in computing power.
However, the amount of data that we have
been able to collect is small because the
experiments had to be conducted at sites
away from the Laboratory, often in “soft-

ware-poor” environments.
We recently leased a Heterogeneous Ele-

ment Processor (HEP) manufactured by De-
nelcor, Inc. of Denver, Colorado. This ma-
chine (first developed for the Army Ballistic
Research Laboratories at Aberdeen) is a
parallel processor suitable for general-pur-
pose applications. We and others throughout
the country will use the HEP to explore and
evaluate parallel-processing techniques for
applications representative of future super-
computing requirements. Only the beginning
steps have been taken, and many difficulties
remain to be resolved as we move from
experiments that use one or two of this
machine’s processors to those that use many.
But what are the principles of the HEP?

Parallel processing can be used separately
or concurrently on two types of information:
instructions and data. Much of the early
parallel processing concentrated on multiple-
data streams. However, computer systems
such as the HEP can handle both multiple-
instruction streams and multiple-data
streams. These are called MIMD machines.

The HEP achieves MIMD with a system
of hardware and software that is one of the
most innovative architectures since the ad-
vent of electronic computing. In addition, it
is remarkably easy to use with the FOR-
TRAN language. In its maximum configura-
tion it will be capable of executing up to 160
million instructions per second.

The Architecture

Figure 1 indicates the general architecture
of the HEP. The machine consists of a
number of process execution modules
(PEMs), each with its own data memory
bank. connected to the HEP switch. In
addition, there are other processors con-
nected to the switch, such as the operating

system processor and the disk processor.
Each PEM can access its own data memory
bank directly, but access to most of the
memory is through the switch.

In a MIMD architecture, entire programs
or, more likely, pieces of programs, called
processes, execute in parallel, that is, concur-
rently. Although each process has its own
independent instruction stream operating on
its own data stream, processes cooperate by
sharing data and solving parts of the same
problem in parallel, Thus. throughput can be
increased by a factor of N, where N is the
average number of operations executed con-
currently.

The HEP implements MIMD with up to
sixteen PEMs, each PEM capable of execut-
ing up to sixty-four processes concurrently.
It should be noted, however, that these upper

limits may not be the most efficient con-
figuration for a given, or even for most,
applications. Any number of PEMs can

cooperate on a job, or each PEM may be
running several unrelated jobs. All of the

instruction streams and their associated data
streams are held in main memory while the
associated processes are active.

How is parallel processing handled within
an individual PEM? This is done by “pipelin-
ing” instructions so that several are in dif-
ferent phases of execution at any one mo-
ment. A process is selected for execution
each machine cycle, a single instruction for
that process is started, and the process is
made unavailable for further execution until
that instruction is complete. Because most
instructions require eight cycles to complete,
at least eight processes must be executed
concurrently in order to use a PEM fully.
However, memory access instructions re-
quire substantially more than eight cycles.
Thus, in practice. about twelve concurrent
processes are needed for full utilization, and
a single HEP PEM can be considered a
“virtual” 8- to 12-processor machine. If a
given application is formulated and executed
using p processes (where p is an integer from
1 to 12), then execution time for the applica-
tion will be inversely proportional top.

Now what happens when individual PEMs
are linked together? Each PEM has its own
program memory to prevent conflicts i n
accessing instructions, and all PEMs are
connected to the large number of other data
memory banks through the HEP switch (a
high-speed, packet-switched network). One
result of these connections is that the number
of switch nodes increases more rapidly than
the number of PEMs. As one changes from a
1-PEM system toward the maximum 16-
PEM configuration, the transmittal time
through the HEP switch, called latency,

72 Fall 1983 LOS ALAMOS SCIENCE

Frontiers of Supercomputing

Memory
o

L
r

This portion of the program sets up
the variables to process an 100-col-
umn array using 12 concurrent
processes. $FIN remains set at
empty throughout the computations,
$COL will count up through the 100
columns, and $PROCS will count
down as the 12 processes die off.

This DC) loop CREATES the 12
processes. Each process does its
computations using SUBROUTINE
COL.

This statement, otherwise trivial,
stops the main program if $FIN is not
yet set to full.

This portion terminates each proc-
ess, counting down with $PROCS,
and then setting $FIN to full as the
last process is killed.

Fig. 2. An example of HEP FORTRAN,

74 Fall 1983 LOS ALAMOS SCIENCE

Frontiers of Supercomputing

quickly becomes substantial. Such latency
increases the number of processes that must
be running in each PEM to achieve full
utilization. Although there is not enough
data yet to provide good estimates on how
fast latency actually increases with the num-
ber of PEMs, experience with a 2-PEM
system suggests that a 4-PEM system will
require about twenty concurrent processes in
each PEM.

Process Synchronization

A critical issue in MIMD machines is the
synchronization of processes. The HEP
solves this problem in a simple and elegant
manner, Each 64-bit data word has an extra
bit that is set to full each time a datum is
stored and is cleared to empty each time a
datum is fetched, In addition, two sets of
memory instructions are employed. One set
is used normally throughout most of the
program. This set ignores the extra bit and
will fetch or store a data word regardless of
whether the bit is full or empty. Data may
then be used as often as required in a
process.

The second set of instructions is defined
through the use of asynchronous variables,
Typically, this set is used only at the start or
finish of a process, acting as a barrier against
interference from other processes, The set
will not fetch from an empty word or store
into a full word. Thus, to synchronize several
processes an asynchronous variable is de-
fined that can only be accessed, using the
second set of instructions, at the appropriate
time by each process. A process that needs
to fetch an asynchronous variable will not do
so if the extra bit is empty and will not
proceed until another process stores into the
variable, setting it full. Because the full and
empty properties of this extra bit are im-

plemented in the HEP hardware at the user
level. requiring no operating system interven-
tion. the usual synchronization methods
(semaphores, etc.) can be used, and process
synchronization is very efficient.

LOS ALAMOS SCIENCE Fall 1983

FORTRAN Extensions to Support
Parallelism

Only two extensions to standard FOR-
TRAN arc required to exploit the parallelism
inherent in the HEP: process creation and
asynchronous variables. Standard FOR-
TRAN can. in fact, handle both, but the
current HEP FORTRAN has extensions
specifically tailored to do so.

These extensions allow the programmer to
create processes in parallel as needed and
then let them disappear once they are no
longer needed. Also the number of PEMs
being used will vary with the number of
processes that are created at any given
moment.

Process creation syntax is almost identical
to that for calling subroutines: CALL is re-
placed by CREATE, However, in a normal
program, once a subroutine is CALLed, the
main program stops; in HEP FORTRAN.
the main program may continue while a
CREATEd process is being worked on. If
the main program has no other work, it may
CALL a subroutine and put itself on equal
footing with the other processes until it exits
the subroutine. A process is eliminated when
it reaches the normal RETURN statement.

We can illustrate these techniques by
showing how the HEP is used to process an
array in which each column needs to be
processed in the same manner but in-
dependently of the other columns (Fig. 2).

First, one defines a subroutine that can
process a single column in a sequential
fashion. We could usc this subroutine by
creating a process for each Column and then
scheduling all the processes in parallel, but
there is a limit on the number of processes
that each PEM can handle. A better tech-
nique would be to CREATE eight to twelve
processes per PEM and let the processes
self-schedule. Each process selects a column
from the array, does the computation for
that column, then looks for additional col-
umns to work on. Several asynchronous
variables are the key to this technique. Each

process that is not computing checks the first

of’ these variables both to see if it can start a
computation and, if so, which column is next
in line. At the end of that computation and
regardless of what stage any other process
has reached. the process checks again to see
if there are further columns to be dealt with.
If not, the process is terminated. A second
asynchronous variable counts down as the
processes die off. When the last operating
process completes its computation. a number
is stored in a third, previously empty
asynchronous variable, setting its extra bit to
full. This altered variable is a signal to the
main program that it may use the recently
generated data. This method tends to smooth
irregularities in process execution time aris-
ing from disparities in the amount of process-
ing done on the individual columns and,
further, does not require changes if the
dimension of the array is changed.

More elegant syntactic constructs can be
devised. but the HEP extensions are work-
able. For well-structured code, conversion to
the HEP is quite easy, For more complex
programs the main difficulty is verifying that
the parallel processes defined are in fact
independent. No tools currently exist to help
with this verification.

Early Experience with the HEP

Several relatively small FORTRAN codes
have been used on the HEP at Los Alamos.
One such code is SIMPLE, a 2000-line, two-
dimensional, Lagrangian, hydro-diffusion
code. By partitioning this code into proc-
esses, about 99 per cent of it can be executed
in parallel. The speedup on a 1-PEM system
is close to linear for up to eleven processes
and then flattens out, indicating that the
PEM is fully utilized, To achieve this degree
of speedup on any MIMD machine requires
a very high percentage of parallel code. How
difficult it will be to achieve a high percent-
age of parallelism on full-scale production
codes is an open question, but the potential
payoff is significant. ■

U.S. GOVERNMENT PRINTING OFFICE 1983 — 776-101/1007 75

