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HISTORICAL PERSPECTIVE

From Turing and von Neumann
to the Present

by Necia G. Cooper

automaton—a mechanism that is rel-
atively self-operating; a device or machine
des igned to  fo l low automat ica l ly  a
predetermined sequence of operations or
respond to encoded instructions.

The notion of automata in the sense of
machines that operate on their own from
encoded instructions is very ancient, and one
might say that mechanical clocks and music
boxes fall under this category. The idea of
computing machines is also very old. For
instance. Pascal and Leibnitz outlined vari-
ous schematics for such machines. In the
latter part of the 18th century Baron de
Kempelen built what was alleged to be the
first chess-playing machine. Remarkable as
it appeared. alas, it was a fake operated by a
person hidden within it!

The modern theory of automata can be
traced to two giants in the field of
mathematics. Alan Turing and John von
Neumann. These two men laid much of the
logical foundation for the development of
present-day electronic computers, and both
were involved in the practical design of real
computing machines.

Before World War II Turing had proved
the logical limits of computability and on the
basis of this work had designed in idealized
terms a universal computer, a machine that
could perform all possible numerical com-
putations. This idealized machine is now
known as a Turing machine. (All modern
computers have capabilities equivalent to
some of the universal Turing machines.)
During World War H Turing successfully
applied his logical talent to the real and
urgent problem of breaking the Nazi in-
telligence code. a feat that played a crucial
role in the Allied victory.

Prior to World War II von Neumann was
aware of Turing’s work on computing ma-
chines and realized how useful such ma-
chines would be for investigating nonlinear
problems in mathematical physics, in
particular. the fascinating problem of
turbulence. Numerical calculations might,
for example, elucidate the mysterious role of
t h e  R e y n o l d s  n u m b e r  i n  t u r b u l e n t
phenomena. (The Reynolds number gives
roughly the ratio of the inertial forces to the
viscous forces. A flow that is regular be-
comes turbulent when this number is about
2000.) He was convinced that the best

mathematics proceeds from empirical sci-
ence and that numerical calculation on elec-
tronic computers might provide a new kind
of empirical data on the properties of
nonlinear equations. Stan Ulam suggests that
the final impetus for von Neumann to work
energetically on computer methods and de-
sign came from wartime Los Alamos, where
it became obvious that analytical work alone
was often not sufficient to provide even
qualitative answers about the behavior of an
atomic bomb. The best way to construct a
computing machine thus presented a prac-
tical as well as a theoretical problem.

Starting in 1944 von Neumann formulated
methods of translating a set of mathematical
procedures into a language of instructions
for a computing machine. Before von Neu-
mann’s work on the logical design of com-
puters, the few existing electronic machines
had to be rewired for each new problem. Von
Neumann developed the idea of a fixed “flow
diagram” and a stored “code,” or program,
that would enable a machine with a fixed set
of connections to solve a great variety of
problems.

Von Neumann was also interested, as was
Turing, in discovering the logical elements
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and organization required to perform some
of the more general types of functions that
human beings and other life forms carry out
and in trying to construct, at least at an

abstract level, machines that contained such
capabilities. But whereas Turing was prima-
rily interested in developing “intelligent” au-
tomata that would imitate the thinking and
decision-making abilities of the human brain,
von Neumann focused on the broader prob-
lem of developing a general theory of com-
plicated automata, a theory that would en-
compass both natural automata (such as the
human nervous system and living organisms)
and artificial automata (such as digital com-
puters and communication networks).

What is meant by the term “com-
plicated”? As von Neumann put it, it is not a
question of how complicated an object is but
rather of how involved or difficult its
purposive operations are. In a series of
lectures delivered at the University of Illinois
in 1949, von Neumann explored ideas about
what constitutes complexity and what kind
of a theory might be needed to describe
complicated automata. He suggested that a
new theory of information would be needed
for such systems, one that would bear a
resemblance to both formal logic and
thermodynamics. It was at these lectures
that he explained the logical machinery
necessary to construct an artificial automa-
ton that could carry out one very specific
complicated function, namely, self-reproduc-
tion. Such an automaton was also logically
capable of constructing automata more com-
plex than itself. Von Neumann actually
began constructing several models of self-
reproducing automata. Based on an inspired
suggestion by Ulam, one of these models was
in the form of a “cellular” automaton (see
the preceding article in this issue by Stephen
Wolfram for the definition of a cellular
automaton).

From the Illinois lectures it is clear that
von Neumann was struggling to arrive at a
correct definition of complexity. Although
his thoughts were still admittedly vague, they
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do seem, at least in some respects, related to
the present efforts of Wolfram to find univer-
sal features of cellular automaton behavior
and from these to develop new laws,
analogous to those of thermodynamics, to
describe self-organizing systems.

Von Neumann suggested that a theory of
information appropriate to automata would
build on and go beyond the results of Turing,
Godel, Szilard, and Shannon.

Turing had shown the limits of what can
be done with certain types of informa-
tion—namely, anything that can be de-
scribed in rigorously logical terms can be
done by an automaton.  and,  conversely.

anything that can be done by an automaton
can be described in logical terms. Turing
constructed. on paper, a universal automa-
ton that could perform anything that any
other automaton could do. It consisted of a
finite automaton, one that exists in a finite
number of states, plus an indefinitely ex-
tendible tape containing instructions. “The
importance of Turing’s research is just this:”
said von Neumann, “that if you construct an
automaton right, then any additional require-
ments about the automaton can be handled
by sufficiently elaborate instructions. This is
true only if [the automaton] is sufficiently
complicated. if it reaches a certain minimum
level of complexity” (John von Neumann,
Theory of Self-Reproducing Automata,

edited and completed by Arthur W. Burks,
University of Illinois Press, 1966, p. 50).

Turing also proved that there are some
things an automaton cannot do. For exam-
ple, “YOU cannot construct an automaton
which can predict in how many steps an-
other automaton which can solve a certain
problem will actually solve it. . . . In other
words, you can build an organ which can do
anything that can be done. but you cannot
build an organ which tells you whether it can
be done” (ibid., p. 51). This result of Turing’s
is connected with Godel’s work on the

hierarchy of types in formal logic. Von
Neumann related this result to his notion of
complexity. He suggested that for objects of

low complexity, it is easier to predict their
properties than to build them, but for objects
of high complexity, the opposite is true.

Von Neumann stated that the new theory

of information should include not only the
strict and rigorous considerations of formal
logic but also statistical considerations. The
reason one needs statistical considerations is
to include the possibility of failure. The
actual structure of both manmade and
artificial automata is dictated by the need to
achieve a state in which a majority of all
failures will not be lethal. To include failure,
one must develop a probabilistic system of
logic. Von Neumann felt that the theory of
entropy and information in thermodynamics
and Shannon’s information theory would be
relevant.

Szilard had shown in 1929 that entropy in
a physical system measures the lack of
information; it gives the total amount of
missing information on the microscopic
structure of the system. Entropy defined as a
physical quantity measures the degree of
degradation suffered by any form of energy.
“There are strong indications that informa-
tion is similar to entropy and that the
degenerative processes of entropy are
paralleled by degenerative processes in the
processing of information” (ibid., p. 62).

Shannon’s work focused on the problem
of transmitting information. He had de-
veloped a quantitative theory of measuring
the capacity of a communication channel, a
theory that included the role of redundancy.
Redundancy makes it possible to correct
errors and “is the only thing which makes it
possible to write a text which is longer than,
say, ten pages. In other words, a language
which has maximum compression would
actually be completely unsuited to conveying
information beyond a certain degree of com-
plexity, because you could never find out
whether a text is right or wrong” (ibid., p.
60).

Von Neumann emphasized the ability of
living organisms to operate across errors.
Such a system “is sufficiently flexible and
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well organized that as soon as an error
shows up in any one part of it, the system
automatically senses whether this error mat-
ters or not. If it doesn’t matter, the system
continues to operate without paying any
attention to it. If the error seems to be
important, the system blocks that region out.
by-passes it and proceeds along other chan-
nels. The system then analyzes the region
separately at leisure and corrects what goes
on there. and if correction is impossible the
system just blocks the region off and by-
passes it forever. . . .

“To apply the philosophy underlying
natural automata to artificial automata we
must understand complicated mechanisms
better than we do, we must have elaborate
statistics about what goes wrong, and we
must have much more perfect statistical
information about the milieu in which a
mechanism lives than we now have. An
automaton cannot be separated from the
milieu to which it responds” (ibid., pp .
71-72).

From artificial automata “one gets a very
strong impression that complication, or
productive potentiality in an organization, is
degenerative, that an organization which
synthesizes something is necessarily more
complicated. of a higher order, than the
organization it synthesizes” (ibid., p. 79).

But life defeats degeneracy. Although the
complicated aggregation of many elementary
parts necessary to form a living organism is
thermodynamically highly improbable, once
such a peculiar accident occurs. the rules of
probability do not apply because the or-
ganism can reproduce itself provided the
milieu is reasonable—and a reasonable
milieu is thermodynamically much less im-
probable. Thus probability leaves a loophole
that is pierced by self-reproduction.

Is it possible for an artificial automaton to
reproduce itself? Further, is it possible for a
machine to produce something that is more
complicated than itself in the sense that the
offspring can perform more difficult and
involved tasks than the progenitor? These
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A three-dimensional object grown from a single cube to the thirtieth generation (dark
cubes). The model shows only one octant of the three-dimensional structure. This

figure and the two others illustrating this article are from R. G. Schrandt and S. M.
Ulam, “On Recursively Defined Geometrical Objects and Patterns of Growth,” Los
Alamos Scientific Laboratory report LA-3762, November 1967 and are also reprinted
in Arthur W. Burks, editor, Essays on Cellular Automata, University of Illinois Press,
1970.

questions arise from looking at natural au-
tomata. In what sense can a gene contain a
description of the human being that will
come from it? How can an organism at a
low level in the phylogenetic order develop
into a higher level organism?

From his comparison of natural and
artificial automata, von Neumann suggested
that complexity has one decisive property,
namely, a critical size below which the
process of synthesis is degenerative and
above which the process is explosive in the
sense that an automaton can produce others

that are more complex and of higher poten-
tiality than itself. However, to get beyond the
realm of vague statements and develop a
correct formulation of complexity, he felt it
was necessary to construct examples that
exhibit the “critical and paradoxical
properties of complication” (ibid., p. 80).

To this end he set out to construct, in
principle, self-reproducing automata, autom-
ata “which can have outputs something
like themselves” (ibid., p. 75). (All artificial

automata discussed up to that point. such as
Turing machines, computing machines, and
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(a) (b)

the network of abstract neurons discussed by
McCulloch and Pitts (“A Logical Calculus
of the Ideas Immanent in Nervous Activity,”
Bulletin of Mathematical Biophysics, 1943),
had inputs and outputs of completely dif-
ferent media than the automata them-
selves.)

"There is no question of producing matter
out of nothing. Rather, one imagines au-
tomata which can modify objects similar to
themselves, or effect syntheses by picking up
parts and putting them together, or take
synthesized entities apart” (ibid., p. 75).

Von Neumann drew up a list of unam-

biguously defined parts for the kinematic
model of a self-reproducing automaton. Al-
though this model ignored mechanical and
chemical questions of force and energy, it did
involve problems of movement, contact,
positioning, fusing, and cutting of elements.

Von Neumann changed his initial ap-
proach after extensive discussions with
Ulam. Ulam suggested that the proof of
existence and construction of a self-

reproducing automaton might be done in a
simpler, neater way that retained the logical
and combinatorial aspects of the problem
but eliminated complicated aspects of
geometry and motion. Ulam’s idea was to
construct the automaton in an indefinitely
large space composed of cells. In two
dimensions such a cellular structure is equiv-
alent to an infinite checkerboard. The ele-
ments of the automaton are a set of allow-
able states for each cell. including an empty,

A “contest’’ between two patterns, one of  lines within squares (shaded) and one of dots
within squares, growing in a 23 by 23 checkerboard. Both patterns grow by a recursive
rule stating that the newest generation (represented by diagonal lines or by dots in an
x shape) may occupy a square if that square is orthogonally contiguous to one and
only one square occupied by the immediately preceding generation (represented by
perpendicularly bisecting lines or by dots in a + shape). In addition, no piece of either
pattern may survive more than two generations. Initially, the line pattern occupied
only the lower left corner square, and the dot pattern occupied only the square
immediately to the left of the upper right corner square. (a) At generation 16 the two
patterns are still separate. (b) At generation 25 the two patterns engage. (c)At 32
generations the dot pattern has penetrated enemy territory. (d) At 33 generations the
dot pattern has won the contest.

or quiescent, state, and a transition rule for
transforming one state into another. The rule
defines the state of a cell at time interval t+1
in terms of its own state and the states of
certain neighboring cells at time interval t.
Motion is replaced by transmitting informa-
tion from cell to cell; that is, the transition
rule can change a quiescent cell into an
active cell.

Von Neumann’s universal self-reproduc-
ing cellular automaton, begun in 1952, was a
rather baroque construction in which each
cell had twenty-nine allowable states and a
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neighborhood consisting of the four cells
orthogonal to it. Influenced by the work of
McCulloch and Pitts, von Neumann used a
physiological simile of idealized neurons to
help define these states. The states and
transition rules among them were designed
to perform both logical and growth opera-
tions. He recognized. of course. that his
construction might not be the minimal or
optimal one, and it was later shown by
Edwin Roger Banks that a universal self-
reproducing automaton was possible with
only four allowed states per cell.

The logical trick employed to make the
automaton universal was to make it capable
of reading any axiomatic description of any
other automaton, including itself, and to
include its own axiomatic description in its
memory. This trick was close to that used by
Turing in his universal computing machine.
The basic organs of the automaton included
a tape unit that could store information on
and read from an indefinitely extendible
linear array of cells, or tape, and a construct-
ing unit containing a finite control unit and
an indefinitely long constructing arm that
could construct any automaton whose de-
scription was stored in the tape unit. Realiza-
tion of the 29-state self-reproducing cellular
automaton required some 200,000 cells.

Von Neumann died in 1957 and did not
complete this construction (it was completed
by Arthur Burks). Neither did he complete
his plans for two other models of self-
reproducing automata. In one, based on the
29-state cellular automaton, the basic ele-
ment was to be neuron-like and have fatigue
mechanisms as well as a threshold for excita-
tion. The other was to be a continuous model
of self-reproduction described by a system of
nonlinear partial differential equations of the
type that govern diffusion in a fluid. Von
Neumann thus hoped to proceed from the
discrete to the continuous. He was inspired
by the abilities of natural automata and
emphasized that the nervous system was not
purely digital but was a mixed analog-digital
system.
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Much effort since von Neumann’s time
has gone into investigating the simulation
capabilities of cellular automata. Can one
define appropriate sets of states and transi-
tion rules to simulate natural phenomena’?
Ulam was among the first to use cellular
automata in this way. He investigated
growth patterns of simple finite systems,
simple in that each cell had only two states
and obeyed some simple transition rule.
Even very simple growth rules may yield
highly complex patterns, both periodic and
aperiodic. “The main feature of cellular
automata,” Ulam points out, “is that simple
recipes repeated many times may lead to
very complicated behavior. Information

analysts might look at some final pattern and
infer that it contains a large amount of
information, when in fact the pattern is
generated by a very simple process. Perhaps
the behavior of an animal or even ourselves
could be reduced to two or three pages of
simple rules applied in turn many times!"
(private conversation. October 1983).
Ulam’s study of the growth patterns of
cellular automata had as one of its aims “to
throw a sidelight on the question of how
much ‘information’ is necessary to describe
the seemingly enormously elaborate struc-
tures of living objects” (ibid.). His work with
Holladay and with Schrandt on an electronic
computing machine at Los Alamos in 1967
produced a great number of such patterns.
Properties of their morphology were

surveyed in both space and time. Ulam and
Schrandt experimented with “contests” in
which two starting configurations were al-
lowed to grow until they collided. Then a
fight would ensue, and sometimes one con-
figuration would annihilate the other. They
also explored three-dimensional automata.

Another early investigator of cellular
automata was Ed Fredkin. Around 1960 he
began to explore the possibility that all
physical phenomena down to the quantum
mechanical level could be simulated by
cellular automata. Perhaps the physical
world is a discrete space-time lattice of

A pattern grown according to a recursive
rule from three noncontiguous squares
at the vertices of an approximately equi-
lateral triangle. A square of the next
generation is formed if (a) it is con-
tiguous to one and only one square of the
current generation, and (b) it touches no
other previously occupied square except
if the square should be its “grand-
parent. ” In addition, of this set of pro-
spective squares of the (n+l)th genera-
tion satisfying condition (b), all squares
that would touch each other are
eliminated. However, squares that have
the same parent are allowed to touch.

information bits that evolve according to
simple rules. In other words, perhaps the
universe is one enormous cellular automa-
ton.

There have been many other workers in
this field. Several important mathematical
results on cellular automata were obtained
by Moore and Holland (University of Mich-
igan) in the 1960s. The “Game of Life,” an
example of a two-dimensional cellular
automaton with very complex behavior, was
invented by Conway (Cambridge University)
around 1970 and extensively investigated for
several years thereafter.
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Cellular automata have been used in bio-
logical studies (sometimes under the names
of “tessellation automata” or “homogeneous
structures”) to model several aspects of the
growth and behavior of organisms. They
have been analyzed as parallel-processing
computers (often under the name of “iter-
ative arrays”). They have also been applied
to problems in number theory under the
name “stunted trees” and have been con-
sidered in ergodic theory, as endomorphisms
of the “dynamical” shift system.

A workshop on cellular automata at Los
Alamos in March 1983 was attended by
researchers from many different fields. The
proceedings of this workshop will be pub-
lished in the journal Physica D and will also
be issued as a book by North-Holland
Publishing Co.

In all this effort the work of Stephen
Wolfram most closely approaches von Neu-
mann’s dream of abstracting from examples
of complicated automata new concepts rele-

vant to information theory and analogous to
the concepts of thermodynamics. Wolfram
has made a systematic study of one-dimen-

sional cellular automata and has identified
four general classes of behavior, as described
in the preceding article.

Three of these classes exhibit behavior
analogous to the limit points, limit cycles,
and strange attractors found in studies of
nonlinear ordinary differential equations and
transformation iterations. Such equations

characterize dissipative systems. systems in
which structure may arise spontaneously
even from a disordered initial state. Fluids
and living organisms are examples of such
systems. (Non-dissipative systems, in con-
trast, tend toward disordered states of max-
imal entropy and are described by the laws
of thermodynamics.) The fourth class mim-
ics the behavior of universal Turing ma-
chines. Wolfram speculates that his identifi-
cation of universal classes of behavior in
cellular automata may represent a first step
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in the formulation of general laws for com-
plex self-organizing systems. He says that
what he is looking for is a new con-
cept—maybe it will be complexity or maybe
something else—that like entropy will be
always increasing (or decreasing) in such a
system and will be manifest in both the
microscopic laws governing evolution of the
system and in its macroscopic behavior. It
may be closest to what von Neumann had in
mind as he sought a correct definition of’
complexity. We can never know. We can
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