


Discrete Fluids

over the last few years the tantaliz-
ing prospect of being able to per-
form hydrodynamic calculations

orders-of-magnitude faster than present
methods allow has prompted considerable
interest in lattice gas techniques. A few
dozen published papers have presented
both advantages and disadvantages, and
several groups have studied the possibil-
ities of building computers specially de-
signed for lattice gas calculations. Yet the
hydrodynamics community remains gen-
erally skeptical toward this new approach.
The question is often asked, “What cal-
culations can be done with lattice gas
techniques?” Enthusiasts respond that in
principle the techniques are applicable to
any calculation, adding cautiously that in-
creased accuracy requires increased com-
putational effort. Indeed, by adding more
particle directions, more particles per site,
more particle speeds, and more variety
in the interparticle scattering rules, lattice
gas methods can be tailored to achieve
better and better accuracy. So the real
problem is one of tradeoff: How much
accuracy is gained by making lattice gas
methods more complex, and what is the
computational price of those complica-
tions? That problem has not yet been well
studied. This paper and most of the re-
search to date focus on the simplest lattice
gas models in the hope that knowledge of
them will give some insight into the es-
sential issues.

We begin by examining a few of the
features of the simple models. We then
display results of some calculations. Fi-
nally, we conclude with a discussion of
limitations of the simple models.

Features of Simple
Lattice Gas Methods

We will discuss in some depth the
memory efficiency and the parallelism of
lattice gas methods, but first “we will touch
on their simplicity, stability, and ability to

model complicated boundaries.
Computer codes’ for lattice gas meth-

ods are enormously simpler than those
for other methods, Usually the essential
parts of the code are contained in only a
few dozen lines of FORTRAN. And those
few lines of code are much less com-
plicated than the several hundred lines
of code normally required for two- and
three-dimensional hydrodynamic calcula-
tions.

There are many hydrodynamic prob-
lems that cause most standard codes (such
as finite-difference codes, spectral codes,
and particle-in-cell codes) to crash. That
is, the code simply stops running because
the algorithm becomes unstable. Stability
is not a problem with the codes for lattice
gas methods. In addition, such methods
conserve energy and momentum exactly,
with no roundoff errors.

Boundary conditions are quite easy to
implement for lattice gas methods, and
they do not require much computer time.
One simply chooses the cells to which
boundary- conditions apply and updates
those cells in a slightly different way.
One of three boundary conditions is com-
monly chosen: bounce-back, in which
the directions of the reflected particles
are simply reversed; specular, in which
mirror-like reflection is simulated; or dif-
fusive, in which the directions of the re-
flected particles are chosen randomly.

We consider next the memory effi-
ciency of the lattice gas method, When
the two-dimensional hydrodynamic lat-
tice gas algorithm is programmed on a
computer with a word length of, say,
64 bits (such as the Cray X-MP), two
impressive efficiencies occur. The first
arises because every single bit of mem-
ory is used equally effectively. Coined
“bit democracy” by von Neumann, such
efficient use of memory should be con-
trasted with that attainable in standard
calculations, where each number requires
a whole 64-bit word. The lattice gas
is “bit democratic” because all that one

202 Los Alamos Science Special Issue 1987



Discrete Fluids

fact that lattice gas operations are bit ori-
ented rather than floating-point-number
oriented and therefore execute more natu-
rally on a computer. Most computers can
carry out logic operations bit by bit. For
example, the result of the logic operation
AND on the 64-bit words A and B is a
new 64-bit word in which the ith bit has
a value of 1 only if the ith bits of both
A and B have values of 1. Hence in one
clock cycle a logic operation can be per-
formed on information for 64 cells. Since
a Cray X-MP/416 includes eight logical
function units, information for 8 times
64, or 512, cells can be processed dur-
ing each clock cycle, which lasts about
10 nanoseconds. Thus information for
51,200,000,000 cells can be processed
each second. The two-dimensional lattice
gas models used so far require from about
thirty to one hundred logic operations to
implement the scattering rules and about
another dozen to move the particles to the
next cells. So the number of cells that
can be updated each second by logic op-
erations is near 500,000,000. Cells can
also be updated by table-lookup meth-
ods. The authors have a table-lookup
code for three-dimensional hydrodynam-
ics that processes about 30,000,000 cells
per second.

A final feature of the lattice gas method
is that the algorithm is inherently parallel.
The rules for scattering particles within
a cell depend only on the combination
of particle directions in that cell. The
scattering can be done by table lookup,
in which one creates and uses a table of
scattering results-one for each possible
cell configuration. Or it can be done by
logic operations.

Using Lattice Gas Methods
To Approximate Hydrodynamics

In August 1985 Frisch, Hasslacher, and
Pomeau demonstrated that one can ap-
proximate solutions to the Navier-Stokes
equations by using lattice gas methods,
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but their demonstration applied only to
low-velocity incompressible flows near
equilibrium. No one knew whether more
interesting flows could be approximated.
Consequently, computer codes were writ-
ten to determine the region of validity of
the lattice gas method. Results of some of
the first simulations done at Los Alamos
and of some later simulations are shown
in Figs. 1 through 6. (Most of the early
calculations were done on a Celerity com-
puter, and the displays were done on a
Sun workstation.) All the results indicate
qualitatively correct fluid behavior.

Figure la demonstrates that a stable
trailing vortex pattern develops in a two-
dimensional lattice gas flowing past a
plate. Figure lb shows that without a
three-particle scattering rule, which re-
moves the spurious conservation of mo-
mentum along each line of particles, no
vortex develops. (Scattering rules are de-
scribed in Part II of the main text.)

Figure 2 shows that stable vortices de-
velop in a lattice gas at the interface be-
tween fluids moving in opposite direc-
tions. The Kelvin-Helmholtz instability
is known to initiate such vortices. The
fact that lattice gas methods could simu-
late vortex evolution was reassuring and
caused several scientists to begin to study
the new method.

Figure 3 shows the complicated wake
that develops behind a V-shaped wedge in
a uniform-velocity flow.

Figure 4 shows the periodic oscillation
of a low-velocity wake behind a cylin-

der. With a Reynolds number of 76, the
flow has a stable period of oscillation that
slowly grows to its asymptotic limit.

Figure 5 shows a flow with a higher
Reynolds number past an ellipse. The
wake here becomes chaotic and quite sen-
sitive to details of the flow.

Figure 6 shows views of a three-
dimensional flow around a square plate,
which was one of the first results from
Los Alamos in three-dimensional lattice
gas hydrodynamic simulations.

Rivet and Frisch and other French sci-
entists have developed a similar code
that measures the kinematic shear viscos-
ity numerically; the results compare well
with theoretical predictions (see Fig. 8 in
the main text).

The lattice gas calculations of a group
at the University of Chicago (Kadanoff,
McNamara, and Zanetti) for two-dimen-
sional flow through a channel (Fig. 7
of the main text) agree with the known
parabolic velocity profile for low-velocity
channel flows.

The above calculations, and many oth-
ers, have established some confidence
that qualitative features of hydrodynamic
flows are simulated by lattice-gas meth-
ods. Problems encountered in detailed
comparisons with other types of calcula-
tions are discussed in the next section.

Limitations of Simple
Lattice Gas Models

As we discussed earlier, lattice gas
methods can be made more accurate by
making them more complicated—by, for
example, adding more velocity directions
and magnitudes. But the added complica-
tions degrade the efficiency. We mention
in this section some of the difficulties (as-
sociated with limited range of speed, ve-
locity dependence of the equation of state,
and noisy results) encountered in the sim-
plest lattice-gas models.

The limited range of flow velocities
is inherent in a model that assumes a

continued on page 210
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continued from page 203

But in the incompressible, low-velocity
limit the single-speed hexagonal lattice
gas follows the equation

Conclusion

In the last few years lattice gas methods
have been shown to simulate the quali-
tative features of hydrodynamic flows in
two and three dimensions. Precise com-
parisons with other methods of calcula-
tion remain to be done, but it is believed
that the accuracy of the lattice gas method

Note added in proof: Recently Kadanoff
McNamara, and Zanetti reported precise
comparisons between theoretical predic-
tions and lattice gas simulations (Univer-
sity of Chicago preprint, October 1987)
They used a seven-bit hexagonal model
on a small automaton universe to simu
late forced two-dimensional channel flow
for long times. Three tests were used to
probe the hydrodynamic and statistical
mechanical behavior of the model. The
tests determined (1) the profile of mo-
mentum density in the channel, (2) the
equation of state given by the statistical
mechanics of the system, and (3) the log-
arithmic divergence in the viscosity (a fa-
mous effect in two- dimensional hydrody-
namics and a deep test of the accuracy 01
the model in the strong nonlinear regime)

The results were impressive, First,
to within the accuracy of the simula-
tion, there is no discrepancy between
the parabolic velocity profile predicted by
macroscopic theory and the lattice gas
simulation data. Second, the equation of
state derived from theory fits the simula-
tion data to better than 1 percent. Finally,
the measured logarithmic divergence in
the viscosity as a function of channel
width agrees with prediction. These re-
sults are at least one order of magni-
tude more accurate than any previously
reported calculations.
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