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Discrete Fluids

ver the last few years the tantaliz-
O ing prospect of being able to per-

form hydrodynamic calculations
orders-of-magnitude faster than present
methods allow has prompted considerable
interest in lattice gas techniques. A few
dozen published papers have presented
both advantages and disadvantages, and
several groups have studied the possibil-
ities of building computers specialy de-
signed for lattice gas calculations. Yet the
hydrodynamics community remains gen-
erally skeptical toward this new approach.
The question is often asked, “What cal-
culations can be done with lattice gas
techniques?’ Enthusiasts respond that in
principle the techniques are applicable to
any calculation, adding cautiously that in-
creased accuracy requires increased com-
putational effort. Indeed, by adding more
particle directions, more particles per site,
more particle speeds, and more variety
in the interparticle scattering rules, lattice
gas methods can be tailored to achieve
better and better accuracy. So the real
problem is one of tradeoff: How much
accuracy is gained by making lattice gas
methods more complex, and what is the
computational price of those complica
tions? That problem has not yet been well
studied. This paper and most of the re-
search to date focus on the simplest attice
gas models in the hope that knowledge of
them will give some insight into the es-
sential issues.

We begin by examining a few of the
features of the smple models. We then
display results of some calculations. Fi-
nally, we conclude with a discussion of
limitations of the simple models.

Features of Simple
Lattice Gas Methods

We will discuss in some depth the
memory efficiency and the parallelism of
|attice gas methods, but first “we will touch
on their simplicity, stability, and ability to

model complicated boundaries.

Computer codes' for lattice gas meth-
ods are enormously simpler than those
for other methods, Usually the essential
parts of the code are contained in only a
few dozen lines of FORTRAN. And those
few lines of code are much less com-
plicated than the several hundred lines
of code normally required for two- and
three-dimensional hydrodynamic calcula-
tions.

There are many hydrodynamic prob-
lems that cause most standard codes (such
as finite-difference codes, spectral codes,
and particle-in-cell codes) to crash. That
is, the code simply stops running because
the algorithm becomes unstable. Stability
is not a problem with the codes for lattice
gas methods. In addition, such methods
conserve energy and momentum exactly,
with no roundoff errors.

Boundary conditions are quite easy to
implement for lattice gas methods, and
they do not require much computer time.
One simply chooses the cellsto which
boundary- conditions apply and updates
those cells in a dlightly different way.
One of three boundary conditions is com-
monly chosen: bounce-back, in which
the directions of the reflected particles
are simply reversed; specular, in which
mirror-like reflection is simulated; or dif-
fusive, in which the directions of the re-
flected particles are chosen randomly.

We consider next the memory effi-
ciency of the lattice gas method, When
the two-dimensional hydrodynamic |at-
tice gas algorithm is programmed on a
computer with a word length of, say,
64 bits (such as the Cray X-MP), two
impressive efficiencies occur. The first
arises because every single bit of mem-
ory is used equally effectively. Coined
“bit democracy” by von Neumann, such
efficient use of memory should be con-
trasted with that attainable in standard
calculations, where each number requires
a whole 64-bit word. The lattice gas
is “bit democratic” because all that one

needs to know is whether or not a particle
with a given velocity direction exists in a
given cell. Since the number of possible
velocity directions is six and no two par-
ticles in the same cell can have the same
direction, only six bits of information are
needed to completely specify the state of
a cell. Each of those six bits corresponds
to one of the six directions and is set to
1 if the cell contains a particle with that
direction and to O otherwise. Suppose we
designate the six directions by A,B,C,D,
E,F as shown on the next page. We as-
sociate each bit in the 64-bit word A with
a different cell, say the first 64 cells in the
first row. If the first cell contains (does
not contain) a particle with direction A,
we set the first bit in A to 1 (0). Similarly,
we pack information about particles in the
remaining 63 cells with direction A into
the remaining 63 bits of A. The same
scheme is used for the other five direc-
tions. Consequently, all the information
for the first 64 cells in the first row is
contained in the six words A, B, C, D,
E, and F. Note that all bits are equally
important and all are fully utilized.

To appreciate the significance of such
efficient use of memory, consider how
many cells can be specified in the solid-
state storage device presently used with
the Cray X-MP/416 at Los Alamos. That
device stores 512,000,000 64-bit words.
Since the necessary information for 10%
cells can be stored in each word, the
device can store information for about
5,000,000,000 cells, which corresponds
to a two-dimensional lattice with 100,000
cells along one axis and 50,000 cells
along the other. That number of cells is
a few orders of magnitude greater than
the number normally treated when other
methods are used. (Although such high
resolution may appear to be a significant
advantage of the lattice gas method, some
averaging over cells is required to ob-
tain smooth results for physical quantities
such as velocity and density.)

The second efficiency is related to the
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Discrete Fluids

fact that lattice gas operations are bit ori-
ented rather than floating-point-number
oriented and therefore execute more natu-
rally on a computer. Most computers can
carry out logic operations bit by bit. For
example, the result of the logic operation
AND on the 64-bit words A and B is a
new 64-bit word in which the ith bit has
a vaue of 1 only if the ith bits of both
A and B have values of 1. Hence in one
clock cycle a logic operation can be per-
formed on information for 64 cells. Since
a Cray X-MP/416 includes eight logical
function units, information for 8 times
64, or 512, cells can be processed dur-
ing each clock cycle, which lasts about
10 nanoseconds. Thus information for
51,200,000,000 cells can be processed
each second. The two-dimensional lattice
gas models used so far require from about
thirty to one hundred logic operations to
implement the scattering rules and about
another dozen to move the particles to the
next cells. So the number of cells that
can be updated each second by logic op-
erations is near 500,000,000. Cells can
also be updated by table-lookup meth-
ods. The authors have a table-lookup
code for three-dimensional hydrodynam-
ics that processes about 30,000,000 cells
per second.

A final feature of the lattice gas method
is that the algorithm is inherently parallel.
The rules for scattering particles within
a cell depend only on the combination
of particle directions in that cell. The
scattering can be done by table lookup,
in which one creates and uses a table of
scattering results-one for each possible
cell configuration. Or it can be done by
logic operations.

Using Lattice Gas Methods
To Approximate Hydrodynamics

In August 1985 Frisch, Hasslacher, and
Pomeau demonstrated that one can ap-
proximate solutions to the Navier-Stokes
equations by using lattice gas methods,

D €«—

E F

but their demonstration applied only to
low-velocity incompressible flows near
equilibrium. No one knew whether more
interesting flows could be approximated.
Conseguently, computer codes were writ-
ten to determine the region of validity of
the lattice gas method. Results of some of
the first simulations done at Los Alamos
and of some later simulations are shown
in Figs. 1 through 6. (Most of the early
calculations were done on a Celerity com-
puter, and the displays were done on a
Sun workstation.) All the results indicate
qualitatively correct fluid behavior.

Figure la demonstrates that a stable
trailing vortex pattern develops in a two-
dimensional lattice gas flowing past a
plate. Figure Ib shows that without a
three-particle scattering rule, which re-
moves the spurious conservation of mo-
mentum along each line of particles, no
vortex develops. (Scattering rules are de-
scribed in Part |1 of the main text.)

Figure 2 shows that stable vortices de-
velop in a lattice gas at the interface be-
tween fluids moving in opposite direc-
tions. The Kelvin-Helmholtz instability
is known to initiate such vortices. The
fact that lattice gas methods could simu-
late vortex evolution was reassuring and
caused several scientists to begin to study
the new method.

Figure 3 shows the complicated wake
that develops behind a V-shaped wedge in
a uniform-velocity flow.

Figure 4 shows the periodic oscillation
of a low-velocity wake behind a cylin-

der. With a Reynolds number of 76, the
flow has a stable period of oscillation that
slowly grows to its asymptotic limit.

Figure 5 shows a flow with a higher
Reynolds number past an dlipse. The
wake here becomes chaotic and quite sen-
sitive to details of the flow.

Figure 6 shows views of a three-
dimensional flow around a square plate,
which was one of the first results from
Los Alamos in three-dimensional lattice
gas hydrodynamic simulations.

Rivet and Frisch and other French sci-
entists have developed a similar code
that measures the kinematic shear viscos-
ity numerically; the results compare well
with theoretical predictions (see Fig. 8 in
the main text).

The lattice gas calculations of a group
at the University of Chicago (Kadanoff,
McNamara, and Zanetti) for two-dimen-
sional flow through a channel (Fig. 7
of the main text) agree with the known
parabolic velocity profile for low-velocity
channel flows.

The above calculations, and many oth-
ers, have established some confidence
that qualitative features of hydrodynamic
flows are simulated by lattice-gas meth-
ods. Problems encountered in detailed
comparisons with other types of calcula-
tions are discussed in the next section.

Limitations of Simple
L attice Gas Models

As we discussed earlier, lattice gas
methods can be made more accurate by
making them more complicated—nby, for
example, adding more velocity directions
and magnitudes. But the added complica-
tions degrade the efficiency. We mention
in this section some of the difficulties (as-
sociated with limited range of speed, ve-
locity dependence of the equation of state,
and noisy results) encountered in the sim-
plest lattice-gas models.

The limited range of flow velocities
is inherent in a model that assumes a

continued on page 210
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Flow Past a Plate

Fig. 18, Flow past a plate with pericdic baundary
conditkana. This simulelion, whech was done in
Brplember 1985, shaws worticas tarming hakind ba
e, The pwarage llow velocity has a magnbuda of
0.2 loHice afan peer lone wlap wred s peependicular ta
Ihe plate, poimling ta 1ha lawar fghl. The diactian
ol the Now velocity is color ceded.

Fig. 1b. The same simulalion as that described in
Fig. 1a aun witly ing thiee-ody scallermg rale. s a
result, spuricus laws af carservation of moemenbom
akpng Che firss af tne grd gresrsn? the develapment
al Fydrody namics.






Fig. 3. A wake grows behind a wedge. The flow is
trom left to right with periodic boundary conditions.,
The flow is initialized as uniform flow 1o the right. The

wedge is inserted at [ = 0. Then vortices grow and are
carried downstream. For this simulation 20 million par-

ticles and 16 million cells were used.

Flow Past
a Cylinder

Fig. 4. Low-velocity flow (from top to bot-
tom) past a cylinder creates a periodically
oscillating wake. Four snapshots from one
period of the oscillation are shown. In this
simulation, which has periodic right and
left boundaries, 1.4 million particles flowed
through 1 million cells. The flow was ini-

tially uniform.

Turbulent
Wake

Fig. 5. A turbulent wake grows behind an
ellipse being dragged through a fluid con-
sisting of 11 million particles and 8 million
cells. The ellipse is composed of about
2400 cells in which the velocity directions
of the entering particles are reversed. The
flow has periodic right and left boundaries
{&n infinile sequence of equivalent ellipses
exists to the lefl and right of the frame
shown.) The Reynolds number in the flow
is 1021,
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Discrete Fluids

continued from page 203

single speed tor all particles. 'I'he sound
speed in such models can be shown to
be about two-thirds of the particle speed.
Hence flows in which the Mach number
(flow speed divided by sound speed) is
greater than 1.5 cannot be simulated. This
difficulty is avoided by adding particles
with a variety of speeds.

The limited range of velocities also
restricts the allowed range of Reynolds
numbers. For small Reynolds numbers
(0 to 1000) the flow is smooth, for mod-
erate Reynolds numbers (2000 to 6000)
some turbulence is observed, and for high
Reynolds numbers (10,000 to 10,000,000)
extreme turbulence occurs. Since the ef-
fective viscosity, v, is typically about 0.2
in two-dimensional problems, the Rey-
nolds number scales with the characteris-
tic length, /, allowed by computer mem-
ory. Currently the upper bound on !/ is of
the order of 100,000.

The velocity dependence of the equa-
tion of state is unusual and is a conse-
quence of the inherent Fermi-Dirac dis-
tribution of the lattice gas (see the sec-
tion on Theoretical Analysis of the Dis-
crete Lattice Gas in the main text). The
low-velocity equation of state for a lattice
gas can be written as p = 1p (1 — 1v?),
where p is the pressure, p is the den-
sity, and v is the flow speed. Thus, for
constant-pressure flows, regions of higher
velocity flows have higher densities.

The velocity dependence of the equa-
tion of state is related to the fact that lat-
tice gas models lack Galilean invariance.
The standard Navier-Stokes equation for
incompressible fluids is

;—:+V-VV=-—VP+VV2V.

But in the incompressible, low-velocity
limit the single-speed hexagonal lattice
gas follows the equation

v

5 +g(p)v-Vv=—-Vp+vVy,

where

3-»p
ﬂ@—6_p

and p is the average number of parti-
cles per cell. The extra factor g(p) re-
quires special treatment. The conven-
tional way to adjust for the fact that g(p)
does not equal unity (as it does in the
Navier-Stokes equation) is to simply scale
the time, ¢, and the viscosity, v, by the
factor g(p) as follows: ¢’ = g(p)t and
v = v/g(p). (The pressure must also
be scaled.) Hence a density-dependent
scaling of the time, the viscosity, and the
pressure is required to bring the lattice
gas model into a form that closely ap-
proximates the hydrodynamics of incom-
pressible fluids in the low-velocity limit.
Finally, the discreteness of the lattice
gas approximation introduces noise into
the results. One method of smoothing the
results for comparison with other methods
is to average in space and time. In prac-
tice, spatial averages are taken over 64,
256, 512, or 1024 neighboring cells for
time-dependent flows in two dimensions.
For steady-state flows, time averaging is
done. The details of noise reduction are
complicated, but they must be addressed
in each comparison calculation. The pres-
ence of noise is both a virtue and a defect.
Noise ensures that only robust (that is,
physical) singularities survive, whereas in
standard codes, which are subject to less
noise, mathematical artifacts can produce
singularities. On the other hand, the noise

in the model can trigger instabilities.

Conclusion

In the last few years lattice gas methods
have been shown to simulate the quali-
tative features of hydrodynamic flows in
two and three dimensions. Precise com-
parisons with other methods of calcula-
tion remain to be done, but it is believed
that the accuracy of the lattice gas method

can be increased by making the models
more complicated. But how complicated
they have to be to obtain the desired ac-
curacy is an unanswered question.

Calculations based on the simple mod-
els are extremely fast and can be made
several orders-of-magnitude faster by us-
ing special-purpose computers, but the
models must be extended to get quantita-
tive results with an accuracy greater than
1 percent. Significant research remains
to be done to determine the accuracy of a
given lattice gas method for a given flow
problem. m

Note added in proof: Recently Kadanoff
McNamara, and Zanetti reported precise
comparisons between theoretical predic-
tions and lattice gas simulations (Univer-
sity of Chicago preprint, October 1987)
They used a seven-bit hexagona model
on a small automaton universe to smu
late forced two-dimensional channel flow
for long times. Three tests were used to
probe the hydrodynamic and statistical
mechanical behavior of the model. The
tests determined (1) the profile of mo-
mentum density in the channel, (2) the
equation of state given by the statistical
mechanics of the system, and (3) the log-
arithmic divergence in the viscosity (afa-
mous effect in two- dimensional hydrody-
namics and a deep test of the accuracy 01
the model in the strong nonlinear regime)

The results were impressive,  Firs,
to within the accuracy of the smula-
tion, there is no discrepancy between
the parabolic velocity profile predicted by
macroscopic theory and the lattice gas
simulation data. Second, the equation of
state derived from theory fits the simula-
tion data to better than 1 percent. Finaly,
the measured logarithmic divergence in
the viscosity as a function of channel
width agrees with prediction. These re-
sults are at least one order of magni-
tude more accurate than any previously
reported calculations.
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