
Discrete Fluids

els are in general equivalent to single-
species models operating on separate lat-
tices. Colored collision rules couple the
lattices so that information can be trans-
ferred between them at different time
scales. Certain statistical-mechanical phe-
nomena such as phase transitions can be
done this way.

By altering the rule domain and adding
gas species with distinct speeds, it is pos-
sible to add independent energy conserva-
tion. This allows one to tune gas models
to different equations of state. Again, we
gain no fundamental insight into the de-
velopment of large collective models by
doing so. but it is useful for applications.

In using these lattice gas variations to
construct models of complex phenomena,
we can proceed in two directions. The
first direction is to study whether or not
complex systems with several types of
coupled dynamics are described by skele-
tal gases. Can complex chemical reac-
tions in fluids and gases, for example,
be simulated by adding collision rules
operating on colored multi-speed lattice
gases? Complex chemisty is set up in the
gas in outline form, as a gross scheme of
closed sets of interaction rules. The same
idea might be used for plasmas. From a
theoretical viewpoint one wants to study
how much of the known dynamics of such
systems is reproduced by a skeletal gas;
consequently both qualitative and quanti-
tative results are important.

Exploring Fundamental Questions.
Models of complex gas or fluid systems,
like other lattice gas descriptions, may ei-
ther be a minimalist description of mi-
crophysics or simply have no relation to
microphysics other than a mechanism for
carrying known conservation laws and re-
actions. We can always consider such gas
models to be pure computers, where we
fit the wiring, or architecture, to the prob-
lem, in the same fashion that ordinary dis-
cretization schemes have no relation to
the microphysics of the problem. How-
ever for lattice gas models, or cellular-
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REYNOLDS
NUMBER

and
Lattice Gas

Calculations

The only model-dependent coupling
constant in the Navier-Stokes equa-
tion is the viscosity. Its main role

in lattice gas computations is its influence
on the Reynolds number, an important
scaling concept for flows. Given a system
with a fixed intrinsic global length scale,
such as the size of a pipe or box, and
given a flow, then the Reynolds number
can be thought of as the ratio of a typical
macrodynamic time scale to a time scale
set by elementary molecular processes in
the kinetic model.

Reynolds numbers characterize the be-
havior of flows in general, irrespective
of whether the system is a fluid or a
gas. At high enough Reynolds num-
bers turbulence begins, and turbulence
quickly loses all memory of molecular
structure, becoming universal across liq-

uids and gases. For this reason and
because many interesting physical and
mathematical phenomena happen in tur-
bulent regimes, it is important to be able
to reach these Reynolds numbers in real-
istic simulations without incurring a large
amount of computational work or storage.

Some simple arguments based on di-
mensional analysis and phenomenolog-
ical theories of turbulence indicate, at
first glance, that any cellular automaton
model has a high cost in computer re-
sources when simulating high-Reynolds-
number flows. These arguments appeared
in the first paper on the subject (Frisch,
Hasslacher, and Pomeau 1987) and were
later elaborated on by other authors. We
will go through the derivation of some
of the more severe constraints on simu-
lating high-Reynolds-number flows with
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