Discrete Fluids

els are in general equivalent to single-
species models operating on separate lat-
tices. Colored collision rules couple the
lattices so that information can be trans-
ferred between them at different time
scales. Certain statistical-mechanical phe-
nomena such as phase transitions can be
done this way.

By altering the rule domain and adding
gas species with distinct speeds, it is pos-
sible to add independent energy conserva-
tion. This alows one to tune gas models
to different equations of state. Again, we
gain no fundamental insight into the de-
velopment of large collective models by
doing so. but it is useful for applications.

In using these lattice gas variations to
construct models of complex phenomena,
we can proceed in two directions. The
first direction is to study whether or not
complex systems with several types of
coupled dynamics are described by skele-
tal gases. Can complex chemica reac-
tions in fluids and gases, for example,
be simulated by adding collision rules
operating on colored multi-speed lattice
gases? Complex chemisty is set up in the
gasin outline form, as a gross scheme of
closed sets of interaction rules. The same
idea might be used for plasmas. From a
theoretical viewpoint one wants to study
how much of the known dynamics of such
systems is reproduced by a skeletal gas;
consequently both qualitative and quanti-
tative results are important.

Exploring Fundamental Questions.
Models of complex gas or fluid systems,
like other lattice gas descriptions, may ei-
ther be a minimalist description of mi-
crophysics or ssmply have no relation to
microphysics other than a mechanism for
carrying known conservation laws and re-
actions. We can always consider such gas
models to be pure computers, where we
fit the wiring, or architecture, to the prob-
lem, in the same fashion that ordinary dis-
cretization schemes have no relation to
the microphysics of the problem. How-

ever for lattice gas models, or cellular-
continued on page 214
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congtant in the Navier-Stokes equa-

tion is the viscosity. Its main role
in lattice gas computations is its influence
on the Reynolds number, an important
scaling concept for flows. Given a system
with a fixed intrinsic global length scale,
such as the size of a pipe or box, and
given a flow, then the Reynolds number
can be thought of as the ratio of atypical
macrodynamic time scale to a time scale
set by elementary molecular processes in
the kinetic model.

Reynolds numbers characterize the be-
havior of flows in general, irrespective
of whether the system is a fluid or a
gas. At high enough Reynolds num-
bers turbulence begins, and turbulence
quickly loses all memory of molecular
structure, becoming universal across lig-

T he only model-dependent coupling

uids and gases. For this reason and
because many interesting physical and
mathematical phenomena happen in tur-
bulent regimes, it is important to be able
to reach these Reynolds numbers in real-
istic simulations without incurring alarge
amount of computational work or storage.

Some simple arguments based on di-
mensional analysis and phenomenolog-
ical theories of turbulence indicate, at
first glance, that any cellular automaton
model has a high cost in computer re-
sources when simulating high-Reynolds-
number flows. These arguments appeared
in the first paper on the subject (Frisch,
Hasslacher, and Pomeau 1987) and were
later elaborated on by other authors. We
will go through the derivation of some
of the more severe constraints on simu-
lating high-Reynolds-number flows with
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cellular automata, then discuss some pos-
sible ways out, and finally estimate the
seriousness of the situation for a realistic
large-scale simulation.

The turbulent regime has many length
scales, bounded above by the length of
the simulation box and below by the scale
at which turbulent dynamics degenerates
into pure dissipation, the so-called dissi-
pation scale. We focus on these extreme
scales and, with a few definitions, de-
rive a bound on the computational stor-
age and work needed for simulating high-
Reynolds-number flows with cellular au-
tomata.

The Reynolds number R is usually de-
fined not in terms of time but simply
as R = vL/v where L is a characteris-
tic length, v is characteristic speed, and
v is the kinematic shear viscosity. One
sees immediately why calculating viscos-
ity functions for particular models is im-
portant. It is the only variable one can
adjust in a flow problem, given a fixed
flow in a fixed geometry. First, we cal-
culate a rough upper bound on Reynolds
numbers attainable with lattice models. If
the speed of sound in the lattice gas is ¢
and the spacing between lattice nodes is
£, then by definition the kinematic vis-
cosity v > c;£. Now viscosity estimated
this way must agree with that fixed by
the scale of hydrodynamic modes. Given
a global length L and a global velocity V
associated with these modes, R = VL/v
at best. In terms of the Mach number
(M = V /c5), the Reynolds number is
equal to ML/{. But M also character-
izes fluid flow, and L and ¢ are model-
dependent. In a lattice gas we can re-
late the ratio L/¢ to the number of nodes
in the gas simulator, namely n = (L/£)?,
where d is the space dimension of the
model. Therefore, the number of nodes
in a lattice model must grow at least as
n ~ (R/M)?. Computational work is the
number of lattice nodes per time step
multiplied by the number of time steps
required to resolve hydrodynamical fea-

tures. This is L/¢M steps (to cross the hy-
drodynamical feature at the given Mach
number), and so we find the computa-
tional work is of order R4*! /M ?*2. For
a so-called normal simulation based on
the usual ways of discretizing the Navier-
Stokes equation, the growth in storage is
roughly proportional to one power lower
in the Reynolds number than the growth
in storage for the lattice gas. So at first
it seems that simulating high-Reynolds-
number flows by lattice gas techniques is
costly compared to ordinary methods.

This argument is not only approximate;
it is also tricky and must be applied with
great care. The normal way of sim-
ulating flows escapes power-law penal-
ties by cutting off degrees of freedom
at the turbulence-dissipation scale, which
the lattice gas does not do. The gas com-
putes within these scales and so wastes
computational resources for some prob-
lems. Actually computation of these very
small scales is the source of the noisy
character of the gas and is responsible for
its power to avoid spurious mathemati-
cal singularities. One way around this
is to find an effective gas with new colli-
sion rules for which the dissipation length
scales are averaged out. A possible tech-
nique uses the renormalization group, but
it is useful only if the effective gas is not
too complex and has the attributes that
made the original gas attractive, includ-
ing locality. Work is going on at present
to explore this possibility, and it seems
likely that some such method will be de-
veloped.

The more serious consideration is what
happens in a realistic large-scale simula-
tion, and here we will find the lattice gas
does very well indeed.

First, we note that a dissipation length
l; with the behavior [; — oo as R — o0
is actually required to guarantee the scale
separation between the lattice spacing and
the hydrodynamic modes that is necessary
to develop hydrodynamic behavior.

The actual Reynolds number in lat-

tice gas models is much more complex
than in normal fluid models. An accu-
rate form is R = Lvg(po)/v(po), where
v is an averaged velocity and the funda-
mental unit of distance (the lattice spac-
ing £) and the fundamental unit of time
(the speed required to traverse the lattice
spacing £) have been set to 1. To re-
main nearly incompressible, the velocities
in the model should remain small com-
pared to the speed of sound c;, but ¢, in
lattice gases is model-dependent. So we
factor the Reynolds number into model-
dependent and invariant factors this way:
we define R(po) = ¢; (g(po)/v(po)) so
that R = MLR(po). The value of R de-
pends critically on the model used. In two
dimensions it ranges from 0.39 to about
6 times that, depending on the amount of
the state table we want to include. For the
three-dimensional projection of the four-
dimensional model, it is known that R is
about 9.

By repeating essentially the same di-
mensional arguments, only more care-
fully, we find that the dissipation length
Iz = MR)"'R™'/2 for two dimensions
and I; = (MR)~'R~!/* for three dimen-
sions.

For a typical simulation in three dimen-
sions, we take M = 0.3 for incompress-
ibility, R ~ 9, and L = 10%, which is
a large simulation, possible only on the
largest Cray-class machines. Then /; is
about three lattice spacings, and the sim-
ulation wastes very little computational
power. The subtle point is that the highly
model-dependent factor R is not of order
1, as is usually estimated. It depends crit-
ically on the complexity of the collision
set, going up a factor of 20 from the ele-
mentary hexagonal model in two dimen-
sions to the projected four-dimensional
case with an optimal collision table.

There is a great deal of work to be
done on the high-Reynolds-number prob-
lem, but it is clear that the situation is
complicated and rich in possibilities for
evading simple dimensional arguments. =
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