
Nonlinear Science

The Simple
but NONLINEAR
PENDULUM

Elementary physics texts typically treat
the simple plane pendulum by solving the
equation of motion only in the linear ap-
proximation and then presenting the gen-
eral solution as a superposition of sines
and cosines (as in Eq. 3 of the main text).
However, the full nonlinear equation can
also be solved analytically in closed form,
and a brief discussion of this solution al-
lows us to illustrate explicitly several as-
pects of nonlinear systems.

It is most instructive to start our anal-
ysis using the Hamiltonian for the sim-
ple pendulum, which, in terms of the

the corresponding (generalized) momen-

Using the Hamiltonian equations

and its derivative:

can be converted to a perfect differential

Hence, we can integrate Eq. 3 immedi-
ately to obtain

By comparing Eqs. 1 and 3 and recalling

That the constant C is proportional to the
value of the Hamiltonian, of course, is
just an expression of the familiar conser-
vation of energy and shows that the value
of the conserved energy determines the
nature of the pendulum’s motion.

Restricting our considerations to libra-
tions—that is, motions in which the pen-
dulum oscillates back and forth without
swinging over the top of its pivot point—

which yields

This, in turn, means that

The full period of the motion T is then
the definite integral

. (6)
o

This last integral can be converted, via
trigonometric identities and redefinitions
of variables, to an elliptic integral of the
first kind. Although not as familiar as
the sines and cosines that arise in the
linear approximation, the elliptic integral
is tabulated and can be readily evalu-
ated. Thus, the full equation of motion
for the nonlinear pendulum can be solved
in closed form for arbitrary initial condi-
tions.

An elegant method for depicting the
solutions for the one-degree-of-freedom
system is the “phase plane.” If we ex-
amine such a plot (see Fig. 2 in the main

represent stable fixed points with the pen-
dulum at rest and the bob pointing down.

ble fixed points with the pendulum at rest
but the bob inverted; the slightest pertur-
bation causes the pendulum to move away
from these points. The closed curves near

libations, or periodic oscillations. The
open, “wavy” lines away from the hori-

unbounded motions in the sense that 6’ in-
creases or decreases forever as the pendu-
lum rotates around its pivot point in either

What about other systems? A dy-
namical system that can be described by
2N generalized position and momentum
coordinates is said to have N degrees
of freedom. Hamiltonian systems that,
like the pendulum, have only one de-
gree of freedom can always be integrated
completely with the techniques used for
Eqs. 2-6. More generally, however, sys-
tems with N degrees of freedom are not
completely integrable; Hamiltonian sys-
tems with N degrees of freedom that
are completely integrable form a very re-
stricted but extremely important subset of
all N-degree-of-freedom systems.

As suggested by the one-degree-of-
freedom case, complete integrability of
a system with N degrees of freedom re-
quires that the system have N constants
of motion—that is, N integrals analo-
gous to Eq. 4-and that these constants
be consistent with each other. Techni-
cally, this last condition is equivalent to
saying that when the constants, or inte-
grals of motion, are expressed in terms
of the dynamical variables (as C is in
Eq. 4), the expressions must be “in invo-
lution,” meaning that the Poisson brack-
ets must vanish identically for all possible
pairs of integrals of motion. Remarkably,
one can find nontrivial examples of com-
pletely integrable systems, not only for
N-degree-of-freedom systems but also for
the “infinite’ ’-degree-of-freedom systems
described by partial differential equations.
The sine-Gordon equation, discussed ex-
tensively in the main text, is a famous
example.

In spite of any nonlinearities, systems
that are completely integrable possess re-
markable regularity, exhibiting smooth
motion in all regions of phase space. This
fact is in stark contrast to nonintegrable
systems. With as few as one-and-a-half
degrees of freedom (such as the damped,
driven system with three generalized co-
ordinates represented by Eq. 4 in the main
text), a nonintegrable system can exhibit
deterministic chaos and motion as random
as a coin toss. ■
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