
THE ERGODIC-HYPOTHESIS
A Complicated T

here are a few problems in physics that stir deep emotions every time they
are discussed. Since physicists are not generally speaking an emotional group

Problem in of people, the existence of these sensitive issues must be considered a strong
indication that something is amiss. One such issue is the interpretation of

Mathematics
quantum mechanics. I will take a moment to discuss that problem because it bears
directly on the main topic of this article.

In quantum mechanics, if the question asked is a technical one, say how to compute

and Physics the energy spectrum of a given atom or molecule, there is universal agreement among
physicists even though the problem may be analytically intractable. If on the other hand
the question asked pertains to the theory of measurement in quantum mechanics, that

by Adrian Patrascioiu is, the interpretation of certain experimental observations performed on a microscopic
system, it is virtually impossible to find two physicists who agree. What is even more
interesting is that usually these controversies are void of any physical predictions and are
entirely of an epistemological character. They reflect our difficulty in bridging the gap
between the quantum mechanical treatment of the microscopic system being observed
and the classical treatment of the macroscopic apparatus with which the measurement is
performed. It is usually argued that we, physicists, have difficulty comprehending the
formalism of quantum mechanics because our intuition is macroscopic, hence classical,
in nature. Now if that were the case, we should have as much difficulty with special
relativity, since we are hardly used to speeds comparable to that of light. Yet, strange
as it seems at first, I have never heard physicists argue about the “twin paradox,” the
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classic example of an unexpected prediction of Einstein’s relativity. So there must be
something about quantum mechanics that “rubs us” the wrong way. The question is
what?

Perhaps the best way in which the strange predictions of quantum mechanics can
be quantified is a certain inequality first formulated by Bell (Bell 1965). For illustration,
consider a positronium atom, with total angular momentum zero, that decays into an
electron and a positron. Suppose we let the electron and the positron drift apart and
then measure their spin components along two axes by passing them through two
magnetic fields. Now in quantum mechanics the state of the positronium atom is a

We could therefore ask ourselves whether in each passage through the apparatus the
electron and the positron have a well-defined spin (up or down), albeit unknown to us.
Some elementary probabilistic reasoning shows immediately that if that were the case,
the probabilities for observing up or down spins along given axes would have to obey
Bell’s inequality. The experimentally measured probabilities violate this inequality, in
agreement with the predictions of quantum mechanics. So the uncertainties in quantum
mechanics are not due to incomplete knowledge of some local hidden variables. What is
even stranger is that in a refinement of the experiment in which the axes of the magnetic
fields are changed in an apparently random fashion (Aspect, Grangier, and Roger 1982),
the violation of Bell’s inequality persists, indicating correlations between space-like
events (that is, events that could be causally connected only by signals traveling faster
than the speed of light). While in this experiment no information is being transmitted
by such superluminal signals, and hence no conflict with special relativity exists, the
implication of space-like correlations hardly alleviates the physicist’s uneasiness about
the correct interpretation of quantum mechanics. Of course this uneasiness is not felt by
all physicists. Particle physicists, for instance, take the validity of quantum mechanics
for granted. To wit, anybody who reads Time knows that they, having “successfully”
unified weak, electromagnetic, and strong interactions within the framework of quantum
field theory, are presently subduing the last obstacle, quantizing gravity by unifying all
interactions into a quantum field theory of strings. And they are doing so in spite of the
fact that the existence of classical gravitational radiation, let alone that of the quantized
version (gravitons), has not been established experimentally.

An even older controversy, which in the opinion of some physicists has long
ceased to be an interesting problem, concerns the ergodic hypothesis, the subject of
this discussion. I will try to elaborate on this topic as fully as my knowledge will
allow, but, by way of introduction, let me just say that the ergodic hypothesis is an
attempt to provide a dynamical basis for statistical mechanics. It states that the time-
average value of an observable—which of course is determined by the dynamics—is
equivalent to an ensemble average, that is, an average at one time over a large number
of systems all of which have identical thermodynamic properties but are not identical
on the molecular level. This hypothesis was advanced over one hundred years ago
by Boltzmann and Maxwell while they laid the foundations of statistical mechanics
(Boltzmann 1868, 1872 and Maxwell 1860, 1867). The general consensus is that the
hypothesis, still mathematically unproven, is probably true yet irrelevant for physics.
The purpose of this article is to review briefly the status of the ergodic hypothesis from
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mathematical and physical points of view and to argue that the hypothesis is of interest
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not only for statistical mechanics but for physics as a whole. Indeed the mystery
of quantum mechanics itself may possibly be unraveled by a deeper understanding
of the ergodic hypothesis. This last remark should come as no surprise. After all,
the birth of quantum mechanics was brought about by the well-known difficulties of
classical statistical mechanics in explaining the specific heats of diatomic gases and
the blackbody radiation law. I shall elaborate on the possible connection between the
ergodic hypothesis and the resolution of these major puzzles in the last part of this
article.

The Mathematics of the Ergodic Hypothesis

I shall begin my presentation with the easier part of the problem, the mathematical
formulation of the ergodic hypothesis. Consider some physical system with N degrees

time t = O uniquely specifies the state of the system at any other time t via the equations
of motion:

and (1)

The time evolution of the system can be represented as a path, or trajectory, through
phase space, the region of allowed states in the space defined by the 2N independent
coordinates {q} and {p}. An observable of this system O is an arbitrary function of

(2)

Obviously the integral in Eq. 2 makes sense only for suitable functions of {q} and {p},
which are the only ones we shall consider. In fact we shall further restrict the class of

The notation in Eq. 2 makes clear that, a priori, time-average values depend upon the

As time passes, the trajectory of the system winds through the phase space. If

average values of most observable settle down to some sort of equilibrium values
(time-independent behavior). What would the phase-space trajectory look like if the
system approached dynamical equilibrium? One could characterize it by saying that the
frequency with which different neighborhoods of the phase space are visited converges

frequencies exist under quite general circumstances was shown in 1927 by Birkhoff
(see Birkhoff 1966) and constitutes the first step towards bridging the gap between
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dynamics and statistics. Indeed, Birkhoff’s theorem allows one to replace time averages
by ensemble averages, defined as follows. Let the state of the system be specified by
the sets {q} and {p}, and postulate that the probability for the system to be in the
neighborhood of the state ({q}, {p}) is

(3)

times the volume element of the phase space. A particular probability measure specifies
completely a particular ensemble of representative systems; that is, it gives the fraction
of systems in the ensemble that are in the state ({q}, {p }). In keeping with usual
probabilistic notions, I shall assume that the probability measure has been normalized
so that the integral of the probability measure for all possible states ({q}, {p}) is unity,

(4)

(5)

Birkhoff’s theorem states that, if the motion is restricted to a bounded domain,
then for many initial conditions there exists an ensemble (probability measure) such
that the time-average value of the observable equals an ensemble average:

(6)

Please note that Eq. 6 indicates that the time-average value of O ({q }, {p}) becomes

above, this is true for many, but generally not all, initial conditions. If Eq. 6 is true
for almost all initial conditions (for all points in the allowed phase space except for a
set of measure zero), the flow through phase space described by Eqs. 1 must be fully

flow passes arbitrarily close to any point {q}, {p} in phase space at some later time.
The assumption in statistical mechanics that time averages of macroscopic variables
can be replaced by ensemble averages (that is, that Eq. 6 holds) is therefore called the
ergodic hypothesis.

In general, however, the flow through the phase space defined by the equations of
motion may not cover the whole of the allowed phase space for almost all initial con-
ditions. Instead the allowed phase space is divided into several “ergodic” components,

then there exists a time t at which the flow will touch any given neighborhood in the

sequently, time-average values do depend on knowing in which “ergodic component”
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the system was started.

The Ergodic Hypothesis and the Equipartition of Energy. In statistical mechanics
the ergodic hypothesis, which proposes a connection between dynamics and statistics,
is sometimes regarded as unnecessary, and attention is placed instead on the assumption
that all allowed states are equally probable. In this paper I emphasize that when time
averaging is relevant to a problem, the assumption of equal a priori probabilities is
essentially equivalent to the ergodic hypothesis (Eq. 6). To see this I will restate the
general problem and gradually narrow it down to the context of classical statistical
mechanics.

defined an ensemble. Furthermore one can consider a map of the phase space onto
itself. (An example is provided by Eqs. 1, which are really a set of maps indexed
by the continuous parameter t). A natural question to ask is whether the probability
measure

is invariant under this map. As we have said, Birkhoff’s theorem states that under
many circumstances such invariant measures exist and allow the replacement of time
averages by ensemble averages. Thus the existence and construction of all the invariant
measures for a certain flow is the first of two mathematical problems related to the
ergodic hypothesis.

As stated so far this problem is much more general than the one of interest to
Boltzmann and Maxwell in connection with the foundations of statistical mechanics.
Indeed, the existence of a probability measure left invariant by a given set of maps can
be investigated whether or not the sets {q} and {p} defining the maps are canonically
conjugate variables derivable from a Hamiltonian, whether the set of maps is discrete or
continuous, etc. At present the construction of such invariant measures is being actively
pursued by researchers studying dynamical systems, especially dissipative ones such
as those relevant to the investigation of turbulence (for example, systems described
by the Navier-Stokes equations). (See the section Geometry, Invariant Measures, and
Dynamical Systems in “Probability and Nonlinear Systems.”)

Of particular interest in statistical mechanics, especially in connection with the er-
godic hypothesis, is the invariant measure appropriate for describing physically isolated
systems. The ensemble specified by this measure is traditionally called the microcanoni-
cal ensemble. The systems of interest are characterized by nonlinear interactions among
the constituents and by a very large number of degrees of freedom. Generically, certain
observable of a physically isolated system, such as the total energy and electric charge,

i = 1, . . . ,M be the complete set of independent, conserved observable of a system

all these conservation laws, it is clear that any invariant measure of the flow must be
compatible with all the conservation laws. Consequently the probability measure must
contain a delta function for each conserved quantity so that the probability is nonzero
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how small, and the value O everywhere else. The integral of a delta function is thus
equal to unity.)

The fundamental hypothesis in statistical mechanics is that for isolated systems of
physical interest (complicated nonlinear systems with many degrees of freedom), the
measure

is left invariant
words, the hypothesis states that the microcanonical ensemble is defined by the measure
in Eq. 7. Note that the probability density in Eq. 7 is flat; that is, all regions of phase
space consistent with the conservation laws are equally probable.

To understand why this assumption of equal a priori probabilities is, in effect, a
restatement of the ergodic hypothesis, one must realize that the only systems under
consideration in classical statistical mechanics are Hamiltonian systems (systems for
which the equations of motion can be derived from a Hamiltonian principle). The
existence of a Hamiltonian function H ({q}, {p}) means that the equations describing
the flow through phase space, Eqs. 1, can be written in the form

and

Here [f, g ] denotes the Poisson bracket:

(8)

(9)

The existence of a simplectic structure (the Poisson bracket) is a very restrictive
condition on the flow, much more so than the mere conservation of the energy. Indeed,
through Liouville’s theorem, it guarantees the conservation of the phase-space volume
element

/ N \

(lo)

and thus it proves that the measure in Eq. 7 is invariant under Hamiltonian flows.
Thus the first mathematical problem of constructing an invariant measure is solved for
Hamiltonian systems. Consequently the ergodic hypothesis (Eq. 6) is automatically
satisfied provided that the flow is fully ergodic. Proving that the flow is fully ergodic
is the second mathematical problem related to the ergodic hypothesis and is the one
that remains to be solved for Hamiltonian systems. If in fact the flow is not ergodic,
then the assumption of equal a priori probabilities would not describe the time-average
behavior of the system, at least not for all possible observable.

Note that if the flow is fully ergodic and all allowed states are equally probable,
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then we have an equipartition of energy; that is, the energy of the system is divided
equally among the N degrees of freedom. Indeed, let us consider for simplicity
the case of a Hamiltonian system in which only the total energy is conserved. The
microcanonical measure then is simply

Quite often the Hamiltonian has the form

(11)

Because of the symmetry of the measure

Such considerations can be extended to the normal modes of a lattice, which will be
discussed later, and are generically referred to as the equipartition of energy.

Mathematical Results. Having formulated the mathematical problem, it may be
of interest to state briefly what rigorous results have been obtained so far about the
circumstances under which a flow is fully ergodic.

i) Oxtoby and Ulam proved in 1941 that in a bounded phase space the continuous
ergodic transformations are everywhere dense in the space of all continuous measure-
preserving transformations. In other words, a topology can be chosen such that ergodic
transformations form the “bulk” of the whole space of continuous measure-preserving
maps. This theorem says nothing about the measure of the ergodic transformations,
which may even be vanishing. (See page 110 in “Learning from Ulam.”) A corre-
sponding theorem stating an analogous property of a real dynamical system with a finite
number of degrees of freedom does not exist, and in fact the KAM theorem proves the
contrary (see below). It is also known that Hamiltonian flows are quite rare among
measure-preserving maps, and therefore the Oxtoby and Ulam result guarantees nothing
about the density of ergodic Hamiltonian flows in the space of all Hamiltonian flows.

ii) For finite N the Kolmogorov-Arnold-Moser (KAM) theorem (see Arnold and
Avez 1968) guarantees that the ergodic hypothesis is violated for a certain class of
systems. The theorem considers a completely integrable system (M = N in Eq. 7) and
its response to an arbitrary, weak nonlinear perturbation. By a canonical transformation
one can show that a completely integrable system with N degrees of freedom is
equivalent to N decoupled harmonic oscillators; hence it is a linear system, and its
motion in phase space occurs on hypertori rather than on the whole phase space.
The KAM theorem states that in the phase space of a weakly nonintegrable (weakly
nonlinear) Hamiltonian, some motions still are restricted to tori, and these tori occupy
a nonzero measure of the phase space. (Figure 1 shows a typical structure of the
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PHASE SPACE OF A WEAKLY
NONINTEGRABLE HAMILTONIAN

SYSTEM

Fig. 1. The system has four degrees of free-

dom, but conservation of energy allows us

to display the phase space in three dimen-

sions, which represent the variables x, y,

invariant tori on which motion is quasiperi-

odic so that a single orbit covers a torus

densely. The gaps between the tori are

chaotic regions in which the orbits appear

as random as the toss of a coin. Since

the nested tori have a finite measure in the

phase space, this Hamiltonian system vio-

lates the ergodic hypothesis.
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phase space for a weakly nonintegrable Hamiltonian.) Thus these systems have several
ergodic components.

iii) In 1963 Sinai proved the ergodic hypothesis for certain billiard systems (Hamil-
tonian systems in which hard spheres bounce elastically off each other and the container
walls). The geometry of the boundary turns out to be a crucial factor in proving that
the flow is ergodic.

iv) It has not been possible to prove the ergodic hypothesis even for a gas of hard
spheres, although it is generally believed to be true in this case.

v) For a long time the general belief was that the KAM theorem poses no problem

fixed density) is taken. Counterexamples to this claim have recently been constructed
(Bellissard and Vittot 1985), but it is premature to judge their generality.

vi) There exists no satisfactory formulation of the ergodic hypothesis for continuous
media (field theory), since it is not known how to generalize the microcanonical measure
to systems with an infinite number of degrees of freedom, especially when the total
energy of the system is finite. It is interesting that while appropriate ensemble averages
have not been defined, the existence of global solutions (in time), and therefore the
existence of time averages, for several interesting field theories (such as classical
electrodynamics and Yang-Mills theories) has been established (Eardley and Moncrief
1982).

In conclusion, from a mathematical point of view, the ergodic hypothesis has
proved to be one of the most difficult problems in the last hundred years or so. Only
two flows, both billiards, have been proven to be ergodic. Perhaps today’s computers
will speed up the rate of analytical progress by helping our intuition about the nature
of the flow.

The Physics of the Ergodic Hypothesis

Next I wish to analyze the ergodic hypothesis from a physical point of view.
Undoubtedly, a dynamical approach to a physical system with many degrees of freedom,
such as a gas, is impossible, and a statistical one must be developed. In doing
so one must endeavor to capture the right physics. If the attempt has been really

successful, the theory will withstand experimental scrutiny. But what should be done
if the predictions go astray, as did the predictions of classical statistical mechanics for
blackbody radiation? A sensible approach is to go back and examine what fundamental
assumptions were made, which is what I shall do now.

The first question that must be settled is what should be considered “the system.”
Indeed the instruction in statistical mechanics is to integrate over all canonical positions
and momenta with a certain measure. However, one must decide which degrees of
freedom to include. For instance, take the case of the diatomic gas. Each molecule
has two atoms, each atom has its own electrons and nucleus, and the latter in turn is
made of quarks and gluons, say. Moreover, since the constituents are charged, they are
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coupled to the electromagnetic field inside the container (and also to the gravitational
field). Probably most readers will think that this is not a serious question: at a certain
temperature only certain degrees of freedom are excited, and these are the only ones
to be integrated over. Hidden within this superficially sensible-sounding answer is one
of two extremely important assumptions:

i) The ergodic hypothesis is strictly false, so that certain degrees of freedom,
although dynamically coupled, never get excited and act as spectators to the thermal
equilibrium that sets in for the remaining degrees of freedom.

ii) Or, the system dynamically develops largely different time scales, and the
number of degrees of freedom that are more or less in equilibrium keeps increasing
with time.

In either case the use of statistical mechanics becomes more subtle, since only
by gaining a good grasp of the underlying dynamics can one decide what degrees
of freedom are relevant in certain circumstances. In particular, there is no a priori
reason to believe that the contributions to the specific heat of the vibrations and the
rotations of a diatomic gas ought to be equal at all temperatures and during a typical
time of observation, as was assumed in the classical predictions of statistical mechanics.
Neither is there any reason to predict the Rayleigh-Jeans distribution (Fig. 2) for black-
body radiation (which assumes the equipartition of energy between all modes of the
electromagnetic field), since some modes of the cavity may be effectively decoupled
(case i above) or so weakly coupled that they haven’t had time to thermalize (case
ii). Thus the standard examples for the breakdown of classical statistical mechanics
may reflect an inappropriate application of the ergodic hypothesis rather than a need
for quantization, as is usually argued in physics textbooks.

The second important question that must be addressed in deciding the relevance
of the ergodic hypothesis for physics is why we are using a statistical description in a
given physical situation. Consider, for instance, the measurement of the specific heat
of a diatomic gas. Typically one lets the gas “reach equilibrium” with a reservoir at a
given temperature and then makes a certain macroscopic measurement during a certain
time interval. To obtain reasonable statistics, the measurement is repeated several times.
Clearly the process just described involves three types of averaging at the molecular
dynamics level:

i) over initial conditions (each repetition of the measurement involves a different
set of initial conditions);

ii) over time (each measurement extends over a certain time, during which the gas
evolves as a dynamical system); and

iii) over microscopic degrees of freedom (this type of averaging is inherent in the
measurement of macroscopic variables).

Before analyzing in detail the likely statistical relevance of each of these averaging
operations, let me hasten to say that clearly only the averaging over time has anything
to do with the ergodic hypothesis. Those physicists who believe that the ergodic
hypothesis is not important for the foundations of statistical mechanics dismiss the
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BLACKBODY RADIATION AT 1600 K

Fig. 2. Theoretical predictions and exper-

imental data for the power radiated by a

blackbody at 1600 K. The classical Rayleigh-

on equipartition of energy among all the

modes of an electromagnetic field. The total

(kinetic plus potential) energy in each mode

is proportional to A–2. The quantum Planck

law, in agreement with experiment, yields a

peaked distribution that decreases rapidly

with wavelength. The Planck law is based

on the assumption that the energy in each

mode is quantized; that is E = nhv, where

n is an integer and h is Planck’s constant.
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The FPU
Problem
Excerpts from “Studies of
Nonlinear Problems” by
Fermi, Pasta, and Ulam

This report is intended to be the first
one of a series dealing with the be-
havior of certain nonlinear physi-

cal systems where the nonlinearity is intro-
duced as a perturbation to a primarily lin-
ear problem. The behavior of the systems
is to be studied for times which are long
compared to the characteristic periods of the
corresponding linear problems.

The problems in question do not seem to
admit of analytic solutions in closed form,
and heuristic work was performed numer-
ically on a fast electronic computing ma-
chine (MANIAC I at Los Alamos). * The
ergodic behavior of such systems was stud-
ied with the primary aim of establishing,
experimentally, the rate of approach to the
equipartition of energy among the various
degrees of freedom of the system. Several
problems will be considered in order of in-
creasing complexity. This paper is devoted
to the first one only.

We imagine a one-dimensional contin-
uum with the ends kept fixed and with
forces acting on the elements of this
string. In addition to the usual linear term
expressing the dependence of the force on
the displacement of the element, this force
contains higher order terms. For the pur-
poses of numerical work this continuum is
replaced by a finite number of points (at
most 64 in our actual computation) so that
the partial differential equation defining the
motion of this string is replaced by a finite
number of total differential equations. . . .

The solution to the corresponding lin-
ear problem is a periodic vibration of the

*We thank Miss Mary Tsingou for efficient coding
of the problems and for ruining the computations
on the Los Alamos MANIAC machine.

string. If the initial position of the string
is, say, a single sine wave, the string will
oscillate in this mode indefinitely. Start-
ing with the string in a simple configura-
tion, for example in the first mode (or in
other problems, starting with a combination
of a few low modes), the purpose of our
computations was to see how, due to non-
linear forces perturbing the periodic linear
solution, the string would assume more and
more complicated shapes, and, for t tending
to infinity, would get into states where all
the Fourier modes acquire increasing impor-
tance. In order to see this, the shape of the
string, that is to say . . . [its displacement,]
and the kinetic energy . . . were analyzed
periodically in Fourier series. . . .

Let us say here that the results of our
computations show features which were,
from the beginning, surprising to us. In-
stead of a gradual, continuous flow of en-
ergy from the first mode to the higher
modes, all of the problems show an en-
tirely different behavior. Starting in one
problem with a quadratic force and a pure
sine wave as the initial position of the
sting, we indeed observe initially [see fig-
ures on next page] a gradual increase of en-
ergy in the higher modes as predicted (e.g.,
by Rayleigh in an infinitesimal analysis).
Mode 2 starts increasing first, followed by
mode 3, and so on. Later on, however,
this gradual sharing of energy among suc-
cessive modes ceases. Instead, it is one or
the other mode that predominates. For ex-
ample, mode 2 decides, as it were, to in-
crease rather rapidly at the cost of all other
modes and becomes predominant. At one
time, it has more energy than all the others
put together! Then mode 3 undertakes this
role. It is only the first few modes which ex-
change energy among themselves and they
do this in a rather regular fashion. Finally,
at a later time mode 1 comes back to within
one per cent of its initial value so that the
system seems to be almost periodic. All our
problems have at least this one feature in
common. Instead of gradual increase of all
the higher modes, the energy is exchanged,

essentially, among only a certain few. It
is, therefore, very hard to observe the rate
of “thermalization” or mixing in our prob-
lem, and this was the initial purpose of the
calculation.

If one should look at the problem from
the point of view of statistical mechanics,
the situation could be described as follows:
the phase space of a point representing our
entire system has a great number of dimen-
sions. Only a very small part of its volume
is represented by the regions where only one
or a few out of all possible Fourier modes
have divided among themselves almost all
the available energy. If our system with
nonlinear forces acting between the neigh-
boring points should serve as a good exam-
ple of a transformation of the phase space
which is ergodic or metrically transitive,
then the trajectory of almost every point
should be everywhere dense in the whole
phase space. With overwhelming proba-
bility this should also be true of the point
which at time t = O represents our initial
configuration, and this point should spend
most of its time in regions corresponding to
the equipartition of energy among various
degrees of freedom. As will be seen from
the results this seems hardly the case. . . .

In a linear problem the tendency of the
system to approach a fixed “state” amounts,
mathematically, to convergence of iterates
of a transformation in accordance with an
algebraic theorem due to Frobenius and Per-
ron. . . . Such behavior is in a sense diamet-
rically opposite to an ergodic motion and
is due to a very special character, linearity
of the transformations of the phase space.
The results of our calculation on the nonlin-
ear vibrating string suggest that in the case
of transformations which are approximately
linear, differing from linear ones by terms
which are very simple in the algebraic sense
(quadratic or cubic in our case), something
analogous to the convergence to eigenstates
may obtain. . . . ■
Editor’s note: The interpretation of the unex-
pected recurrences is now different. See David
Campbell’s discussion on page 244.
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statistical relevance of time averaging for macroscopic observable.
The averaging over initial conditions should not be of much consequence statisti-

cally. Indeed, even if one assumes that the gas is simply a collection of hard spheres
(with no internal structure), the gas still constitutes a dynamical system with somewhere

time of observation very short, repeating an experiment ten or a hundred times should
not have important consequences. In fact, a typical measurement lasts at least a few
minutes; during such a time interval each molecule undergoes, at room temperature
and normal pressure, about 107 collisions. Hence the number of states through which
the gas passes dynamically (in time) is much larger than that due to the repetition of
the experiment. Of course, as one lowers the temperature or the pressure, the colli-
sions become more rare, so the time of observation must be increased to avoid large
fluctuations in individual measurements.

Perhaps the most important averaging is the “coarse graining” involved in obtaining
macroscopic variables. Two large numbers are involved in a typical measurement: the
total number of degrees of freedom of the system and the number of degrees of freedom
that are averaged together to obtain a macroscopic variable. The second number appears
naturally in a system containing a large number of indistinguishable constituents. For
instance, in determining the local density in a gas, one does not care about the trajectory
of any single particle but rather about the average number of trajectories crossing a
macroscopic volume at any time. Use of the laws of large numbers (see “A Tutorial
on Probability, Measure, and the Laws of Large Numbers”) in this context guarantees
that, in spite of the fact that the underlying dynamics may be time-reversal invariant,
macroscopic variables (almost) always tend to relax to their equilibrium values. In other
words, because of the large numbers involved in specifying macroscopic variables,
the microscopically specified state of the system has overwhelming probability to
evolve towards the equilibrium state, even if the microscopic dynamics is time-reversal
invariant. Hence, an arrow of time exists at the macroscopic level even if it does not
at the microscopic level. This frequently stated paradox of statistical mechanics is a
straightforward consequence of the laws of large numbers.

Confronting the Ergodic Hypothesis with Experiment

Having discussed the types of averaging involved in a real experiment, let us
reconsider the experimental circumstances under which classical statistical mechanics
could be expected to work. Historically, statistical mechanics appeared in connection
with the endeavors to study, for example, very nearly ideal gases. (In an ideal gas
the molecules are free except for occasional elastic collisions with each other or with
the walls of the container.) Its foundations were statistical (predictions were based
on considering an ensemble of systems, primarily the microcanonical or the canonical
ensemble), in spite of the efforts of Boltzmann and Maxwell to give it a dynamical
basis by invoking the ergodic hypothesis.

The fundamental assumption of statistical mechanics for an isolated system is
the equal a priori probability on the hypersurface (in phase space) determined by all
the conservation laws (Eq. 7). This probability measure defines the microcanonical
ensemble. If the underlying dynamics is derivable from a Hamiltonian, by Liouville’s

FIGURES FROM THE FERMl-
PASTA-ULAM PAPER

Fig. 1. The quantity plotted is the energy
(kinetic and potential in each of the first
five modes). The units for energy are ar-
bitrary. N [the number of parts into which

of the quadratic term in the force equation]

was a single sine wave. The higher modes
never exceeded in energy 20 of our units.
About 30,000 computation cycles were cal-
culated.

0 10 20 30
t in thousands of cycles

0 2 4 6 8 10 12 14 16
Position-of the Mass Point

Fig. 8. This drawing shows not the energy
but the actual shapes, i.e., the displacement
of the string at various times (in cycles) in-
dicated on each curve. The problem is that
of Fig. 1.
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theorem such a probability measure is invariant in time. Thus the only reason time
averages could be different from ensemble averages would be a lack of ergodicity in
the flow. In the case of a system consisting of only one species of indistinguishable
particles, this potential difficulty is suppressed first by averaging over many initial
conditions (so that even if the flow is not ergodic, the starting points may fall in different
“ergodic” subregions) and second by measuring time-average values of macroscopic, not
microscopic, variables. The chances that under these circumstances one would observe
a difference between the predictions of statistical mechanics and experiment are very
slim (recall the laws of large numbers), and indeed under these experimental conditions
the predictions of classical statistical mechanics enjoyed great success. This explains
the utter confidence of most physicists in the predictive power of statistical mechanics
and their dismissal of the ergodic hypothesis as a technical, probably irrelevant detail.

On the other hand, suppose one uses the theory to make predictions about a di-
atomic gas, which even under the most simplifying assumptions has at least two species
of indistinguishable degrees of freedom, say vibrations and translations. Without in-
voking the ergodic hypothesis, I can think of no a priori reason for the contributions to
the specific heat of these two types of motions being found equal in typical measure-
ments. In fact, even if the ergodic hypothesis is true, it is possible that the coupling
of these two types of motions is so weak that during typical times of observation they
do not reach equilibrium with each other. Yet it was the assumption that the two types
of motion are in equilibrium that led to the discrepancy between classical statistical
mechanics and experiment. Therefore I feel that it is unjustified to rely upon the many
successes of statistical mechanics to dismiss questions regarding its foundations. On
the contrary, an understanding of the ergodic hypothesis and especially of the times
involved for exciting certain degrees of freedom should be equally challenging for the
mathematician and the physicist.

Quantum Mechanics: A Case of Mistaken Identity? I would like to close this brief
review of these complicated and long-standing problems with some speculations about a
possible connection between the ergodic hypothesis and the necessity of using quantum
mechanics at the microscopic level. First a few words about the blackbody radiation
law. I have tried to emphasize the importance of measuring macroscopic averages,
as well as that of particle indistinguishability, in obtaining agreement between the
predictions of statistical mechanics and experiment. I think the case of the blackbody
falls outside this realm. Consider a cubic lattice in D dimensions. At each site let
there be a particle sitting in some enharmonic potential, attached through harmonic
springs to its 2D nearest neighbors. If the boundary conditions are periodic, the system
consists of identical yet distinguishable (by site coordinates) particles. We could form
macroscopic quantities by averaging over the positions or velocities of all the particles
in a cube of macroscopic size and expect reasonable agreement with the predictions
of statistical mechanics. Alternatively we could describe the system in terms of its
normal modes and attempt to verify the classical prediction, namely, the Rayleigh-
Jeans energy distribution shown in Fig. 2 (that is, the equipartition of the energy among
all the normal modes). Many such studies have been performed numerically, the first
being the celebrated 1955 work of Fermi, Pasta, and Ulam (see “The Femi-Pasta-Ulam
Problem”). It is always found that at sufficiently low energy density, the distribution of
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energy among the modes of the lattice differs drastically from the statistical prediction
and in fact depends upon the initial conditions. Obviously either these systems are not
ergodic, or at least the times of thermalizing the different modes are much longer than
a typical time of numerical integration. And no macroscopic averaging is available
to save the day! It is also known that leaving the energy density fixed and refining
the lattice (taking the continuum limit) increases the discrepancy (Patrascioiu, Seiler,
and Stamatescu 1985). Although such results have been accumulating for over thirty
years now, they are not yet understood. Some say the systems are so close to being
integrable that KAM tori or very slow diffusion rates occur in the phase space. Others
claim that statistical mechanics should hold only in the thermodynamic limit (which
is clearly not attainable numerically). Most physicists dismiss the whole story, since
they “know” that statistical mechanics works in real life. I think this is a very narrow
point of view: the problem being discussed is very much like that of the blackbody
radiation law, and that was one of the failures of classical statistical mechanics. Is there
a good theoretical (dynamical) basis for predicting the Rayleigh-Jeans distribution in
classical physics, as the standard textbooks claim? Or are we pushing the statistical
predictions in a domain for which there is no reason to expect them to hold? In “Does
Equipartition of Energy Occur in Nonlinear Continuous Systems?” I describe some
numerical experiments I have performed to test the validity of the statistical-mechanics
predictions for a one-dimensional version of the blackbody problem and for the specific
heats of systems with more than one species of degrees of freedom. Notably I found
that, over the times of observation available in computer experiments, the systems failed
to fulfill the ordinary expectations of an equipartition of energy. The same discrepancy
has been found in many other numerical experiments.

It is well known that the resolution of the above-mentioned experimental diffi-
culties of statistical mechanics (specific heats and blackbody radiation) was found in
abandoning the classical approach to physics in favor of the quantum one. As men-
tioned in the introduction, this revolution has had an unqualified experimental success,
although it has raised serious epistemological questions, which continue to haunt us
more than sixty years after the advent of the quantum theory. I would like to give
a brief outline of a heresy that I have advocated for a few years now (Patrascioiu
1983), one directly connected to the ergodic hypothesis. As I mentioned earlier, if
one contemplates a dynamical basis for statistical mechanics, one is faced with a real
dilemma. The accepted formulation of the electromagnetic and the gravitational inter-
actions demands that, in essence, everything in the universe interact with everything
else. (This is so because of the long-range nature of these interactions. ) In fact, the
notion of an isolated object (or even system) is clearly an abstraction without any a
priori physical basis, since ultimately everything is coupled to everything else through
the electromagnetic and gravitational fields. All we can hope is either that the ergodic
hypothesis is strictly false or that the times needed to excite certain degrees of freedom
are so large that we can ignore them under some circumstances. In either case certain
prejudices that have been passed from generation to generation should be abandoned
and their bases be opened for investigation. For instance, in the absence of a dynamical
calculation, there is no basis to claim that Planck’s distribution for blackbody radia-
tion is irreconcilable with classical electromagnetism. (In fact, the distribution found
numerically and shown in Fig. 2 of the sidebar very much resembles Planck’s law.)

continued on page 278
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Does
Equipartition
of Energy
Occur in
Nonlinear
Continuous
Systems?

The celebrated work of Fermi, Pasta, and Ulam was the first of numerous attempts
to study the distribution of energy in nonlinear continuous media. These attempts
have all been indirect in that the systems are simulated by lattices of particles

interacting through nonlinear potentials. The results have consistently failed to support
the classical point of view regarding equipartition of energy—and yet they have stirred
little excitement in the physics community. Perhaps this is so for two reasons: (i) the
systems analyzed may be subject to an infinite number of conservation laws (and thus
may be effectively linear), so that the individual degrees of freedom are not coupled
and equipartition of energy cannot occur; (ii) the results may simply be artifacts of the
lattice simulations.

Here I present some results from two of my own studies, the first of a one-
dimensional model of the blackbody problem (Adrian Patrascioiu, Physical Review
Letters 50(1983): 1879) and the second of a three-dimensional system that may give
insight into the specific heats of systems with two species of degrees of freedom, such
as the rotations and vibrations of diatomic molecules (K. R. S. Devi and A. Patrascioiu,
Physica D 11(1984): 359).

In the case of blackbody radiation, the continuous medium (the electromagnetic
field) is linear. Nonlinearity is introduced into the problem through the interaction of
the field with the atoms in the walls of the cavity. Let us investigate a one-dimensional
version of this problem, two nonlinear oscillators (particles and nonlinear springs)
interacting through a linear string (Fig. 1). The string represents the electromagnetic
field, and the oscillators represent the atoms. This model has the
string can be treated exactly so that no spatial lattice is needed.

The string and the particles move in the z direction only. The
for the string is

advantage that the

equation of motion

(1)

and the equations of motion for the particles on the left and right, respectively, are

MODEL
PROBLEM

Fig. 1. The blackbody problem was mod-
eled as the interaction of a linear string
(which represents the electromagnetic field) and m 

&2
(3)

and two nonlinear oscillators (which repre-
sent atoms in the walls of the cavity). Motion
of both the string and the oscillators is re-
stricted to the z direction and is described force F’(z) is defined by
by the function Z(X, t).

x = –1 Z(x, t) X = 1

where

These equations are written in units such that the length of the string is 2 and
the speed of sound is 1. The most general form for the solution of Eq. 1 is z(x, t) =
f(t + x)+ g(t – x). Substituting this general solution into Eqs. 2 and 3 yields a system
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of two coupled ordinary differential equations for the functions f and g.
The excitation of the string at t

and g(x) = O. The differential equations were integrated numerically, and conservation
of energy was used to verify the accuracy of the calculations.

I would like to emphasize what outcome one would predict by following the
same line of thought used to derive the Rayleigh-Jeans formula. The system, being
nonlinear and (probably?) sufficiently complicated, will wander with equal probability
throughout its phase space of given total energy. Let us choose initial conditions such
that the total energy is finite. If ensemble averages and time averages are equal for this
microcanonical ensemble, that is, if

then the time-average kinetic energy of either particle should tend to zero for any
initial conditions since the number of degrees of freedom is infinite. Over my times of
observation, this did not seem to be the case! Under the assumption that the times of
observation were sufficiently long, this result indicates that the microcanonial measure
(Eq. 7 in the main text) is not applicable. We are left with two possibilities: (i) the
motion of the system is quasiperiodic, or (ii) the phase space is broken into an infinite
number of ergodic cells of finite size.

I also investigated the distribution of energy among the normal modes of the string.
Figure 2 shows typical results for the time-average values of the fraction of the string
energy in the nth normal mode. In all the runs performed the distribution of energy of
the string among its normal modes is highly peaked (like the Planck distribution) and
shows no tendency to become flat. Its shape does depend on the values of the various
parameters in the problem and on the initial conditions. If all the parameters are kept
fixed and the total energy is increased, the peak broadens. The shape of the distribution
also varies with the frequency chosen for the initial excitation of the string, remaining

The results of this study raised naturally several questions: (i) Was the observed
unequal partition of energy among the normal modes of the string (the continuous
medium) related to the one-dimensional nature of the medium? (ii) The unequal
partition of energy reflected in the specific heats of diatomic gases results from motions
of particles (rather than motions of a field, as in the case of blackbody radiation). Can
this phenomenon be reproduced in a classical dynamical system?

To help answer these questions, Devi and I performed a study of a three-
dimensional version of the system shown in Fig. 1. This system included four particles
and six strings (Fig. 3). Our results exhibited several notable features over the times
of observation: (i) time averages of, for example, total energies of particles and strings
seemed to reach their asymptotic values; (ii) unequal partition of energy among the
normal modes of the strings persisted, and the distributions obtained were reminiscent
of that given by Planck’s law; and (iii) for a variety of initial conditions, the four parti-
cles did not achieve the same average kinetic energy, a situation similar to the unequal
partition of energy between the vibrational and the rotational degrees of freedom of
diatomic gases. The fact that we obtained these types of results using several nonlinear
(spring) potentials suggests their generality. ■

UNEQUAL PARTITION OF ENERGY

Fig. 2. Typical results for the distribution
of energy among the normal modes of the
string in the one-dimensional model of the
blackbody problem (see Fig. 1). The exact
shape of the energy distribution depends on
the values assigned to various parameters,
but in all cases the distribution was similar
to a Planck distribution (see Fig. 2 of the
main text) and was never flat, as it would be
if the energy were partitioned equally among
all the normal modes.

0 4 8 12 16 20

n

A THREE-DIMENSIONAL LATTICE

Fig. 3. The lattice below was used to in-
vestigate the dynamical behavior of a three-
dimensional nonlinear system of particles
and fields. Each of the four particles at the
vertices of the regular tetrahedron is cou-
pled to a nonlinear spring, and the parti-
cles are coupled to each other through lin-
ear strings.
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continued from page 275

Nor is there any basis to the claim that the classical atom is inevitably unstable be-
cause of the “ultraviolet catastrophe” (escape of all of the energy into the ultraviolet
modes of the electromagnetic field, as required by the equipartition-of-energy principle
of classical statistical mechanics). After all, maybe classical electromagnetism leads
to a nonergodic flow (if the notion of ergodicity makes sense at all for a continuous
medium) or maybe the diffusion of energy to the high modes is so slow that it has not
occurred appreciably in the twelve to eighteen billion years since the big bang. That
such slow diffusion is not a far-fetched supposition follows from some results obtained
in the last few years. Since point charges have infinite self-energies, let us spread
them by introducing a charged scalar (zero-spin) field. It has been shown rigorously
that, in a certain gauge (axial), the system of coupled nonlinear equations describing
the interaction of the classical electromagnetic field with this classical charged field
has finite-energy-density solutions for all times. Moreover, these solutions retain their
initial smoothness (number of derivatives). Using this latter property one can show that
after an arbitrarily long time of evolution, an infinite number of normal modes of these
fields are arbitrarily close to their initial energies (Patrascioiu 1984). Whereas there is
no guarantee that this model captures the true physics in the universe, it seems hard to
imagine a field whose modes thermalize in a finite amount of time.

So perhaps quantum mechanics is nothing more than classical statistical mechanics
done the right way in a universe filled with particles interacting primarily via electro-
magnetic and gravitational forces. If so, its mysteries should be understandable once
the complicated Brownian process produced by particles constantly absorbing and emit-
ting radiation is mastered. While this scenario may seem far-fetched to many, I think
it arises inescapably from contemplating the foundations of statistical mechanics. It
does not contradict the experimentally observed violation of Bell’s inequality unless
the latter persists for truly space-like settings of the magnets. It has epistemological
value and would, for example, allow the computation of the fine-structure constant and
its variation with temperature (Patrascioiu 198 I ).

In conclusion, I think neither physicists nor mathematicians should close the book
on the venerable problem of the ergodic hypothesis, and I guess some big surprises
may be in store once the problem is better understood. ■
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