
NONLINEAR SCIENCE
from Paradigms to Practicalities

I

by David K. Campbell No tribute to the legacy of Stan Ulam would be complete without a discussion of
“nonlinear science,” a growing collection of interdisciplinary studies that in the past
two decades has excited and challenged researchers from nearly every discipline of
the natural sciences, engineering, and mathematics. Through his own research Stan
played a major role in founding what we now call nonlinear science, and through his
encouragement of the work of others, he guided its development. In this survey article
I will try to weave the thread of Stan’s contributions into the pattern of recent successes
and current challenges of nonlinear science. At the same time I hope to capture some
of the excitement of research in this area.

Introduction

Let me start from a very simple, albeit circular, definition: nonlinear science is the
study of those mathematical systems and natural phenomena that are not linear. Ever
attuned to the possibility of bons mots, Stan once remarked that this was “like defining
the bulk of zoology by calling it the study of ‘non-elephant animals’.” His point,
clearly, was that the vast majority of mathematical equations and natural phenomena
are nonlinear, with linearity being the exceptional, but important, case.

Linear versus Nonlinear. Mathematically, the essential difference between linear
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and nonlinear equations is clear.
together to form a new solution;

Any two solutions of a linear equation can be added
this is the superposition principle. In fact, a moment

of serious thought allows one to recognize that superposition is responsible for the
systematic methods used to solve, independent of other complexities, essentially any
linear problem. Fourier and Laplace transform methods, for example, depend on being
able to superpose solutions. Putting it naively, one breaks the problem into many small
pieces, then adds the separate solutions to get the solution to the whole problem.

In contrast, two solutions of a nonlinear equation cannot be added together to form
another solution. Superposition fails. Thus, one must consider a nonlinear problem in
toto; one cannot—at least not obviously—break the problem into small subproblems
and add their solutions. It is therefore perhaps not surprising that no general analytic
approach exists for solving typical nonlinear equations. In fact, as we shall discuss,
certain nonlinear equations describing chaotic physical motions have no useful analytic
solutions.

Physically, the distinction between linear and nonlinear behavior is best abstracted
from examples. For instance, when water flows through a pipe at low velocity, its
motion is laminar and is characteristic of linear behavior: regular, predictable, and
describable in simple analytic mathematical terms. However, when the velocity exceeds
a critical value, the motion becomes turbulent, with localized eddies moving in a
complicated, irregular, and erratic way that typifies nonlinear behavior. By reflecting
on this and other examples, we can isolate at least three characteristics that distinguish
linear and nonlinear physical phenomena.

First, the motion itself is qualitatively different. Linear systems typically show
smooth, regular motion in space and time that can be described in terms of well-
behaved functions. Nonlinear systems, however, often show transitions from smooth
motion to chaotic, erratic, or, as we will see later, even apparently random behavior.
The quantitative description of chaos is one of the triumphs of nonlinear science.

Second, the response of a linear system to small changes in its parameters or
to external stimulation is usually smooth and in direct proportion to the stimulation.
But for nonlinear systems, a small change in the parameters can produce an enormous
qualitative difference in the motion. Further, the response to an external stimulation
can be different from the stimulation itself: for example, a periodically driven nonlinear
system may exhibit oscillations at, say, one-half, one-quarter, or twice the period of the
stimulation.

Third, a localized “lump,” or pulse, in a linear system will normally decay by
spreading out as time progresses. This phenomenon, known as dispersion, causes waves
in linear systems to lose their identity and die out, such as when low-amplitude water
waves disappear as they move away from the original disturbance. In contrast, nonlinear
systems can have highly coherent, stable localized structures—such as the eddies in
turbulent flow-that persist either for long times or, in some idealized mathematical
models, for all time. The remarkable order reflected by these persistent coherent
structures stands in sharp contrast to the irregular, erratic motion that they themselves
can undergo.

Togo beyond these qualitative distinctions, let me start with a very simple physical
system—the plane pendulum—that is a classic example in at least two senses. First, it
is a problem that all beginning students solve; second, it is a classic illustration of how
we mislead our students about the prevalence and importance of nonlinearity.

Applying Newton’s law of motion to the plane pendulum shown in Fig.
an ordinary second-order differential equation describing the time evolution:

1 yields

(1)

of the arm, and g is the acceleration due to gravity. Equation 1 is obviously nonlinear

Los Alamos Science Special Issue 1987

THE SIMPLE PENDULUM

Fig. 1. It can be seen that a nonlinear equa-

tion describes the motion of the simple, plane

pendulum when, in accordance with Newton’s

force law, the component of the gravitational

set equal to the rate of change of the momen-

mg
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What happens, however, if we go to the regime of small displacements? The

approximately linear:

The general solution to the linear equation is the superposition of two terms,

(2)

(3)

Equation 3 is the mathematical embodiment of Galileo’s famous observation that
the frequency of a pendulum is independent of its amplitude. But in fact the result
is a consequence of the linear approximation, valid only for small oscillations. If
the pendulum undergoes very large displacements from the vertical, its motion enters
the nonlinear regime, and one finds that the frequency depends on amplitude, larger
excursions having longer periods (see “The Simple But Nonlinear Pendulum”). Of
course, grandfather clocks would keep terrible time if the linear equation were not a
good approximation; nonetheless, it remains an approximation, valid only for small-
amplitude motion.

The distinction between the full nonlinear model of the pendulum and its linear
approximation becomes substantially more striking when one studies the pendulum’s
response to an external stimulus. With both effects of friction and a periodic driving
force added, the pendulum equation (Eq. 1) becomes

(4)

frequency, respectively, of the driving force. In the regime of small displacements, this
reduces to the linear equation

(5)

A closed-form solution to the linear equation can still be obtained, and the motion can

to even the nonlinear equation is periodic and quite similar to that of the linear model.
For other values, however, the solution behaves in a complex, seemingly random,
unpredictable manner. In this chaotic regime, as we shall later see, the motion of this
very simple nonlinear system defies analytic description and can indeed be as random
as a coin toss.

Dynamical Systems: From Simple to Complex. Both the free pendulum and its
damped, driven counterpart are particular examples of dynamical systems. The free
pendulum is a conservative dynamical system-energy is constant in time—whereas
the damped, driven pendulum is a dissipative system-energy is not conserved. Loosely
speaking, a dynamical system can be thought of as anything that evolves in time
according to a well-defined rule. More specifically, the variables in a dynamical system,
such as q and p, the canonical position and momentum, respectively, have a rate of
change at a given time that is a function of the values of the variables themselves at that

with respect to time). The abstract “space” defined by these variables is called the phase
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The Simple
but NONLINEAR
PENDULUM

Elementary physics texts typically treat
the simple plane pendulum by solving the
equation of motion only in the linear ap-
proximation and then presenting the gen-
eral solution as a superposition of sines
and cosines (as in Eq. 3 of the main text).
However, the full nonlinear equation can
also be solved analytically in closed form,
and a brief discussion of this solution al-
lows us to illustrate explicitly several as-
pects of nonlinear systems.

It is most instructive to start our anal-
ysis using the Hamiltonian for the sim-
ple pendulum, which, in terms of the

the corresponding (generalized) momen-

Using the Hamiltonian equations

and its derivative:

can be converted to a perfect differential

Hence, we can integrate Eq. 3 immedi-
ately to obtain

By comparing Eqs. 1 and 3 and recalling

That the constant C is proportional to the
value of the Hamiltonian, of course, is
just an expression of the familiar conser-
vation of energy and shows that the value
of the conserved energy determines the
nature of the pendulum’s motion.

Restricting our considerations to libra-
tions—that is, motions in which the pen-
dulum oscillates back and forth without
swinging over the top of its pivot point—

which yields

This, in turn, means that

The full period of the motion T is then
the definite integral

. (6)
o

This last integral can be converted, via
trigonometric identities and redefinitions
of variables, to an elliptic integral of the
first kind. Although not as familiar as
the sines and cosines that arise in the
linear approximation, the elliptic integral
is tabulated and can be readily evalu-
ated. Thus, the full equation of motion
for the nonlinear pendulum can be solved
in closed form for arbitrary initial condi-
tions.

An elegant method for depicting the
solutions for the one-degree-of-freedom
system is the “phase plane.” If we ex-
amine such a plot (see Fig. 2 in the main

represent stable fixed points with the pen-
dulum at rest and the bob pointing down.

ble fixed points with the pendulum at rest
but the bob inverted; the slightest pertur-
bation causes the pendulum to move away
from these points. The closed curves near

libations, or periodic oscillations. The
open, “wavy” lines away from the hori-

unbounded motions in the sense that 6’ in-
creases or decreases forever as the pendu-
lum rotates around its pivot point in either

What about other systems? A dy-
namical system that can be described by
2N generalized position and momentum
coordinates is said to have N degrees
of freedom. Hamiltonian systems that,
like the pendulum, have only one de-
gree of freedom can always be integrated
completely with the techniques used for
Eqs. 2-6. More generally, however, sys-
tems with N degrees of freedom are not
completely integrable; Hamiltonian sys-
tems with N degrees of freedom that
are completely integrable form a very re-
stricted but extremely important subset of
all N-degree-of-freedom systems.

As suggested by the one-degree-of-
freedom case, complete integrability of
a system with N degrees of freedom re-
quires that the system have N constants
of motion—that is, N integrals analo-
gous to Eq. 4-and that these constants
be consistent with each other. Techni-
cally, this last condition is equivalent to
saying that when the constants, or inte-
grals of motion, are expressed in terms
of the dynamical variables (as C is in
Eq. 4), the expressions must be “in invo-
lution,” meaning that the Poisson brack-
ets must vanish identically for all possible
pairs of integrals of motion. Remarkably,
one can find nontrivial examples of com-
pletely integrable systems, not only for
N-degree-of-freedom systems but also for
the “infinite’ ’-degree-of-freedom systems
described by partial differential equations.
The sine-Gordon equation, discussed ex-
tensively in the main text, is a famous
example.

In spite of any nonlinearities, systems
that are completely integrable possess re-
markable regularity, exhibiting smooth
motion in all regions of phase space. This
fact is in stark contrast to nonintegrable
systems. With as few as one-and-a-half
degrees of freedom (such as the damped,
driven system with three generalized co-
ordinates represented by Eq. 4 in the main
text), a nonintegrable system can exhibit
deterministic chaos and motion as random
as a coin toss. ■
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HARMONIC-OSCILLATOR
PHASE SPACE

Fig. 2. The behavior of the simple pendu-

lum is here represented by constant-energy

phase space. The closed curves around the

origin (E < 2mgl) represent Iibrations, or pe-

riodic oscillations, whereas the open, “wavy”

correspond to motions in which the pendulum

moves completely around its pivot in either a

Los Alamos National Laboratory.)

space, and its dimension is clearly related to the number of variables in the dynamical
system.

In the case of the free pendulum, the angular position and velocity at any instant
determine the subsequent motion. Hence, as discussed in “The Simple But Nonlinear
Pendulum,” the pendulum’s behavior can be described by the motion of a point in

parlance of mechanics, the free pendulum is a Hamiltonian system having “one degree

of freedom, ”

which in effect means that its motion for all time can be solved for analytically in terms
of the initial values of the variables.

More typically, dynamical systems involve many degrees of freedom and thus have
high-dimensional phase spaces. Further, they are in general not completely integrable.
An example of a many-degree-of-freedom system particularly pertinent to our current
discussion is the one first studied by Enrico Fermi, John Pasta, and Stan Ulam in the
mid-fifties: a group of particles coupled together by nonlinear springs and constrained
to move only in one dimension. Now celebrated as the “FPU problem,” the model
for the system consists of a large set of coupled, ordinary differential equations for the
time evolution of the particles (see “The Fermi, Pasta, and Ulam Problem: Excerpts
from ‘Studies of Nonlinear Problems ‘ “). Specifically, one particular version of the
FPU problem has 64 particles obeying the equations

particles. Thus there are 64 degrees of freedom and, consequently, a 128-dimensional
phase space.

Still more complicated, at least a priori, are continuous nonlinear dynamical
systems, such as fluids. Here one must define dynamical variables—such as the
density p(x, t)-- at every point in space. Hence the number of degrees of freedom,
and accordingly the phase-space dimension, becomes infinite; further, the resulting
equations of motion become nonlinear partial differential equations. Note that one can
view these continuous dynamical systems as the limits of large discrete systems and
understand their partial differential equations as the limits of many coupled ordinary
differential equations.

We can illustrate this approach using a continuous nonlinear dynamical system
that will be important in our later discussion. Hopefully, this example will pique the
reader’s interest, for it also indicates how elegantly perverse nonlinearity can be. The
system is represented by the so-called sine-Gordon equation

(7)
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position x and time t.
Computationally, one natural way to deal with this system is to introduce a discrete

spatial grid with spacing Ax such that the position at the nth point in the grid is given

approximation for the second derivative,

(8)

leads to a set of N coupled ordinary differential equations

This is a finite degree-of-freedom dynamical system, like the FPU problem. In partic-
ular, it is just a set of simple plane pendula, coupled together by the discretized spatial
derivative. Of course, the continuous sine-Gordon equation is recovered in the limit

the Hamiltonian dynamical system described by a finite number N of coupled ordinary
differential equations is not completely integrable, the infinite-dimensional Hamilto-
nian system described by the continuum sine-Gordon equation is! Further, as we shall
later demonstrate, the latter system possesses localized “lump” solutions—the famed
solitons— that persist for all time.

Hopefully, this digression on dynamical systems has made the subtlety of nonlin-
ear phenomena quite apparent: very simple nonlinear systems—such as the damped,
driven pendulum-can exhibit chaos involving extremely complex, apparently random
motions, while very complicated systems—such as the one described by the sine-Gordon
equation-can exhibit remarkable manifestations of order. The challenge to researchers
in this field is to determine which to expect and when.

Paradigms of Nonlinearity. Before examining in some detail how this challenge is
being confronted, we need to respond to some obvious but important questions. First,
why study nonlinear science, rather than nonlinear chemistry, or nonlinear physics, or
nonlinear biology? Nonlinear science sounds impossibly broad, too interdisciplinary,
or “the study of every thing.” However, the absence of a systematic mathematical
framework and the complexity of natural nonlinear phenomena suggest that nonlinear
behavior is best comprehended by classifying its various manifestations in many differ-
ent systems and by identifying and studying their common features. Indeed, both the
interest and the power of nonlinear science arise precisely because common concepts
are being discovered about systems in very different areas of mathematics and natural
sciences. These common concepts, or paradigms, give insight into nonlinear problems
in a large number of disciplines at once. By understanding these paradigms, one can
hope to understand the essence of nonlinearity as well as its consequences in many
fields.

Second, since it has long been known that most systems are inherently nonlinear,
why has there been a sudden blossoming of interest in this field in the past twenty years
or so? Why weren’t many of these fundamental problems solved a century ago? On
reflection, one can identify three recent developments whose synergistic blending has
made possible revolutionary progress.

The first, and perhaps most crucial, development has been that of high-speed
electronic computers, which permit quantitative numerical simulations of nonlinear
systems. Indeed, the term experimental mathematics has been coined to describe
computer-based investigations into problems inaccessible to analytic methods. Rather
than simply confirming quantitatively results already anticipated by qualitative analysis,
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experimental mathematics uses the computer to generate qualitative insight where none
has existed before. As the visionary of this development, John von Neumann, wrote

(in a 1946 article called “On the principles of large scale computing machines”):

“Our present analytic methods seem unsuitable for the solution of the impor-
tant problems rising in connection with nonlinear partial differential equations and,
in fact, with virtually all types of problems in pure mathematics. . . . really efficient
high-speed computing devices may, in the field of nonlinear partial differential equa-
tions as well as in many other fields which are now difficult or entirely denied of
access, provide us with those heuristic hints which are needed in all parts of mathe-
matics for genuine progress.”

Stan Ulam, together with many of his Los Alamos colleagues, was one of the very
first to make this vision a reality. Among Stan’s pioneering experimental mathematical
investigations was the seminal study of the FPU problem mentioned above. Another ex-
ample was his early numerical work on nonlinear mappings, carried out in collaboration
with Paul Stein (see “Iteration of Maps, Strange Attractors, and Number Theory-An
Ulamian Potpourri”). Both of these studies will figure in our later discussion.

The second crucial development has been the experimental observation of “uni-
versal” nonlinear characteristics in natural systems that range from chicken hearts and
chemical reactors to fluids and plasmas. In the past decade these experiments have
reached previously inaccessible levels of precision, so that one can measure quanti-
tative similarities in, for example, the route to chaotic behavior among an enormous
variety of nonlinear systems.

The third and final development has been in the area of novel analytical mathe-
matical methods. For instance, the invention of the inverse spectral transform has led
to a systematic method for the explicit solution of a large number of nonlinear partial
differential equations. Similarly, new methods based on the theory of Hamiltonian
systems allow the analysis of nonlinear stability of a wide range of physically relevant
mathematical models.

As we shall shortly see, the methodology based on these three developments has
been remarkably successful in solving many nonlinear problems long considered in-
tractable. Moreover, the common characteristics of nonlinear phenomena in very dis-
tinct fields has allowed progress in one discipline to transfer rapidly to others and con-
firms the inherently interdisciplinary nature of nonlinear science. Despite this progress,
however, we do not have an entirely systematic approach to nonlinear problems. For
the general nonlinear equation there is simply no analog of a Fourier transform. We
do, however, have an increasing number of well-defined paradigms that both reflect
typical qualitative features and permit quantitative analysis of a wide range of nonlinear
systems. In the ensuing three sections I will focus on three such paradigms: coherent
structures and solitons, deterministic chaos and fractals, and complex configurations
and patterns. Of these the first two are well developed and amply exemplified, whereas
the third is still emerging. Appropriately, these paradigms reflect different aspects of
nonlinearity: coherent structures reveal a surprising orderliness, deterministic chaos il-
lustrates an exquisite disorder, and complex configurations represent the titanic struggle
between opposing aspects of order and chaos.

If we were to follow the biblical sequence we would start with chaos, but because
it is frankly a rather counterintuitive concept, we shall start with solitons or, more
generally and accurately, coherent structures.

Coherent Structures and Solitons

224

From the Red Spot of Jupiter through clumps of electromagnetic radiation in tur-
bulent plasmas to microscopic charge-density waves on the atomic scale, spatially local-
ized, long-lived, wave-like excitations abound in nonlinear systems. These nonlinear
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waves and structures reflect a surprising orderliness in the midst of complex behav-
ior. Their ubiquitous role in both natural nonlinear phenomena and the corresponding
mathematical models has caused coherent structures and solitons to emerge as one of
the central paradigms of nonlinear science. Coherent structures typically represent the
natural “modes” for understanding the time-evolution of the nonlinear system and often
dominate the long-time behavior of the motion.

To illustrate this, let me begin with one of the most familiar (and beautiful!)
examples in nature, namely, the giant Red Spot (Fig. 3a). This feature, first observed

COHERENT STRUCTURES
IN NATURE

Fig. 3. (a) A closeup of the Red Spot of Jupiter,

taken from the Voyager spacecraft. False color

is used to enhance features of the image. In

addition to the celebrated Red Spot, there are

many other “coherent structures” on smaller

scales on Jupiter. (Photo courtesy of NASA).

(b) Nonlinear surface waves in the Andaman

Sea off the coast of Thailand as photographed

from an APOIIO-SOyUZ spacecraft. (Photo cour-

tesy of NASA.)

from earth in the late seventeenth century, has remained remarkably stable in the
turbulent cauldron of Jupiter’s atmosphere. It represents a coherent structure on a
scale of about 4 x 108 meters, or roughly the distance from the earth to the moon.

To give an example at the terrestrial level, certain classes of nonlinear ocean
waves form coherent structures that propagate essentially unchanged for thousands of
miles. Figure 3b is a photograph taken from an Apollo-Soyuz spacecraft of a region
of open ocean in the Andaman Sea near northern Sumatra. One sees clearly a packet
of five nearly straight surface waves; each is approximately 150 kilometers wide, so
the scale of this phenomenon is roughly 105 meters. Individual waves within the
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(a)

COHERENT STRUCTURE
IN CRYSTALS

Fig. 4. (a) An image, made by using tunneling-

electron microscopy, of a cleaved surface of

tantalum diselenide that shows the expected

graininess around atomic sites in the crys-

tal lattice. (b) A similar image of tantalum

disulfide, showing coherent structures called

charge-density waves that are not simply a

reflection of the crystal lattice but arise from

nonlinear interaction effects. (Photos courtesy

of C. G. Slough, W. W. McNairy, R. V. Coleman,

B. Drake, and P. K. Hansma, University of Vir-

ginia.)

packet are separated from each other by about 10 kilometers. The waves, which are
generated by tidal forces, move in the direction perpendicular to their crests at a speed
of about 2 meters per second. Although the surface deflection of these waves is small—
about 1.8 meters—they can here be seen from orbit because the sun is directly behind
the spacecraft, causing the specular reflection to be very sensitive to variations of
the surface. These visible surface waves are actually a manifestation of much larger
amplitude—perhaps ten times larger—internal waves. The internal waves exist because
thermal or salinity gradients lead to a stratification of the subsurface into layers. A prim-i

such large internal waves could pose a threat to submarines and to off-shore structures.
Indeed, the research on these waves was initiated by Exxon Corporation to assess the
actual risks to the oil rigs they planned to construct in the area. Fortunately, in this
context the phenomenon turned out to be more beautiful than threatening.

Our final physical illustration is drawn from solid-state physics, where the phe-
nomenon of charge-density waves exemplifies coherent structures on the atomic scale. If
one studies a crystal of tantalum diselenide using an imaging process called tunneling-
electron microscopy (Fig. 4a), one finds an image that is slightly denser around the
atomic sites but otherwise is uniform. Given that the experimental technique focuses
on specfic electronic levels, this graininess is precisely what one would expect at the
atomic level; there are no nonlinear coherent structures, no charge-density waves. In
contrast, tantalum disulfide, which has nearly identical lattice parameters, exhibits much

larger structures in the corresponding image (Fig. 4b); in fact, the image shows a hexag-
onal array of coherent structures. These charge-density waves are separated by about
3.5 normal lattice spacings, so their occurence is not simply a reflection of the natural
atomic graininess. Rather, these coherent structures arise because of a nonlinear cou-
pling between the electrons and the atomic nuclei in the lattice. Notice that now the

Solitons. We have thus identified nonlinear coherent structures in nature on scales
ranging from 108 meters to 10–9 meter—seventeen orders of magnitude! Clearly this
paradigm is an essential part of nonlinear science. It is therefore very gratifying that
during the past twenty years we have seen a veritable revolution in the understanding of
coherent structures. The crucial event that brought on this revolution was the discovery,
by Norman Zabusky and Martin Kruskal in 1965, of the remarkable soliton. In a sense,
solitons represent the purest form of the coherent-structure paradigm and thus are a
natural place to begin our detailed analysis. Further, the history of this discovery shows
the intricate interweaving of the various threads of Stan Ulam’s legacy to nonlinear
science.

To define a soliton precisely, we consider the motion of a wave described by
an equation that, in general, will be nonlinear. A traveling wave solution to such
an equation is one that depends on the space x and time t variables only through the

moves through space without changing its shape and in particular without spreading
out or dispersing. If the traveling wave is a localized single pulse, it is called a solitary
wave. A soliton is a solitary wave with the crucial additional property that it preserves
its form exactly when it interacts with other solitary waves.

The study that led Kruskal and Zabusky to the soliton had its origin in the famous
FPU problem, indeed in precisely the form shown in Eq. 6. Experimental mathematical
studies of those equations showed, instead of the equipartition of energy expected on
general grounds from statistical mechanics, a puzzling series of recurrences of the
initial state (see “The Ergodic Hypothesis: A Complicated Problem of Mathematics
and Physics”). Through a series of asymptotic approximations, Kruskal and Zabusky
related the recurrence question for the system of oscillators in the FPU problem to the
nonlinear partial differential equation

(lo)

Los  Alamos Science Special Issue 1987226



Nonlinear Science

Equation 10, called the Korteweg-deVries or KdV equation, had first been derived
in 1895 as an approximate description of water waves moving in a shallow, narrow
channel. Indeed, the surface waves in the Andaman Sea, which move essentially in
one direction and therefore can be modeled by an equation having only one spatial
variable, are described quite accurately by Eq. 10. That this same equation should also
appear as a limiting case in the study of a discrete lattice of nonlinear oscillators is an
illustration of the generic nature of nonlinear phenomena.

To look analytically for a coherent structure in Eq. 10, one seeks a localized

and, for solutions that vanish at infinity, yields

2
(11)

the amplitude of the wave is proportional to v, and its width is inversely proportional

and velocity of the wave reflects the nonlinearity of the KdV equation.
Intuitively, we can understand the existence of this solitary wave as a result of

which
tends to cause an initially localized pulse to spread out and change shape as it moves,

(b)

where it is already large and hence to bunch up the disturbance. (For a more precise
technical analysis of these competing effects in another important nonlinear equation,
see “Solitons in the Sine-Gordon Equation.”)

Although the solution represented by Eq. 11 is, by inspection, a coherent structure,
is it a soliton? In other words, does it preserve its form when it collides with another
solitary wave? Since the analytic methods of the 1960s could not answer this question,
Zabusky and Kruskal followed another of Ulam’s leads and adopted an experimental
mathematics approach by performing computer simulations of the collision of two
solitary waves with different velocities. Their expectation was that the nonlinear
nature of the interaction would break up the waves, causing them to change their
properties dramatically and perhaps to disappear entirely. When the computer gave

the startling result that the coherent structures emerged from the interaction unaffected
in shape, amplitude, and velocity, Zabusky and Kruskal coined the term “soliton,” a
name reflecting the particle-like attributes of this nonlinear wave and patterned after
the names physicists traditionally give to atomic and subatomic particles.

In the years since 1965 research has revealed the existence of solitons in a host
of other nonlinear equations, primarily but not exclusively in one spatial dimension.
Significantly, the insights gained from the early experimental mathematical studies
have had profound impact on many areas of more conventional mathematics, including
infinite-dimensional analysis, algebraic geometry, partial differential equations, and
dynamical systems theory. To be more specific, the results of Kruskal and Zabusky
led directly to the invention of a novel analytic method, now known as the “inverse
spectral transform,” that permits the explicit and systematic solution of soliton-bearing
equations by a series of effectively linear operations. Further, viewed as nonlinear
dynamical systems, the soliton equations have been shown to correspond to infinite-
degree-of-freedom Hamiltonian systems that possess an infinite number of independent
conservation laws and are thus completely integrable. Indeed, the invariance of solitons
under interactions can be understood as a consequence of these conservation laws.

Applied Solitons. From all perspectives nonlinear partial differential equations con-
taining solitons are quite special. Nonetheless, as our examples suggest, there is a
surprising mathematical diversity to these equations. This diversity is reflected in the

Los Alamos Science Special Issue 1987 227



Nonlinear Science

SOLITONS
the SINE-
GORDON
Equation

in

To understand quantitatively how soli-
tons can result from a delicate balance
of dispersion and nonlinearity, let us be-
gin with the linear, dispersionless, bi-
directional wave equation

By direct substitution into Eq. 1, it is

is a solution for any functions f and g.

“solitary waves,” one moving to the left
and one to the right.
the lumps are isolated, at t = O they

Hence, by our definition these solutions to
the linear, dispersionless wave equation
are solitons, although trivial examples of

The robustness of solltons is indicated in this
x projected space-time plot of the Interaction of

. a kink and an antikink in the sine-Gordon equa-

proach each other, interact nonlinearly, and
then emerge unchanged in shape, amplitude,
and velocity. The collision process is de-
scribed analytically by Eq. 9. (The figure was
made at the Los Alamos National Laboratory
by Michel Peyrard, University of Bourgogne,
France.)

Now consider an equation, still linear,
of the form

Such equations arise naturally in descrip-
tions of optically-active phonons in solid
state physics and in relativistic field the-
ories. An elementary (plane wave) solu-
tion of this equation has the form

where A is a constant, w is the frequency,
and k is the wave number. Substituting
into Eq. 2 shows that this plane wave can
be a solution of Eq. 2 only if

(4a)
so that

This relation between w and k is known
technically as a dispersion relation and
contains essential information about how
individual plane waves with different k’s
(and hence different w’s) propagate. In
particular, the group velocity,

measures how fast a small group of waves
with values of k peaked around a partic-

dispersion relation Eq. 4b,

228

corresponding variety of real-world applications to problems in the natural sciences and
engineering. In fiber optics, conducting polymers and other quasi-one-dimensional sys-
tems, Josephson transmission lines, and plasma cavitons—as well as the surface waves
in the Andaman Sea!—the prevailing mathematical models are slight modifications of
soliton equations. There now exist several numerical and analytic perturbation tech-
niques for studying these “nearly” soliton equations, and one can use these to describe
quite accurately the behavior of real physical systems.

One specific, decidedly practical illustration of the application of solitons concerns
effective long-distance communication by means of optical fibers. Low-intensity light
pulses in optical fibers propagate linearly but dispersively (as described in “Solitons
in the Sine-Gordon Equation”). This dispersion tends to degrade the signal, and, as a
consequence, expensive “repeaters” must be added to the fiber at regular intervals to
reconstruct the pulse.

However, if the intensity of the light transmitted through the fiber is substantially
increased, the propagation becomes nonlinear and solitary wave pulses are formed.
In fact, these solitary waves are very well described by the solitons of the “nonlinear
Schrodinger equation,” another of the celebrated completely integrable nonlinear partial
differential equations. In terms of the (complex) electric field amplitude E(x, t), this
equation can be written
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so that (groups of) waves with different

locities. Now consider a general solu-
tion to Eq. 2, which, by the principle of
superposition, can be formed by adding
together many plane waves (each with a
different constant). Since the elementary
components with different wave numbers
will propagate at different group veloci-
ties, the general solution will change its
form, or disperse, as it moves. Hence,
the general solution to Eq. 2 cannot be a
soliton.

Next consider adding a nonlinear term
to Eq. 2. With considerable malice afore-
thought, we change notation for the de-
pendent variable and choose the nonlin-
earity so that the full equation becomes

the “sine-Gordon” equation. We can com-
pare Eq. 5 to our previous Eq. 2 by noting

to

higher.
Based on remarks made in the intro-

ductory section of the main text, we see
that Eq. 5 looks like a bunch of sim-
ple, plane pendulums coupled together by

fact, the sine-Gordon equation has many
physical applications, including descrip-

tions of chain-like magnetic compounds
and transmission lines made out of arrays
of Josephson junctions of superconduc-
tors. Also, the equation is one of the
celebrated completely integrable, infinite-
degree-of-freedom Hamiltonian systems,
and the initial-value problem for the equa-
tion can be solved exactly by the analytic
technique of the “inverse spectral trans-
form.” Since the details of this method
are well beyond the scope of a general
overview, we shall only quote the solu-
tions relevant to our discussion. First, just
as for the KdV equation (Eq. 10 in the
main text), one can find directly a single
solitary-wave solution:

(7)

T = mt.
Since this solution approaches O as

covt. As a consequence, it is known as
a “kink.” Importantly, it does represent a
physically truly localized excitation, be-
cause all the energy and momentum as-
sociated with this wave are exponentially
centered around the kink’s location. Sim-
ilarly, the so-called anti-kink solution

(8)

Are the kinks and anti-kinks solitons?

Here we can avail ourselves of the mira-
cle of integrability and simply write down
an analytic solution that describes the
scattering of a kink and an antikink. The

(9)
The dedicated reader can verify that as

rated kink and anti-kink approaching each
other at velocity v. For t near O they

the kink and anti-kink emerge with their
forms intact. Readers with less dedication
can simply refer to the figure, in which
the entire collision process is presented
in a space-time plot. Note that since the

is physically equivalent to one that inter-

In the interest of historical accuracy,
we should add one final point. The an-
alytic solution, Eq. 9, showing that the
kink and anti-kink are in fact solitons,
was actually known, albeit not widely,
before the discovery of the KdV soliton.
It had remained an isolated and arcane cu-
riosity, independently rediscovered sev-
eral times but without widespread impact.
That such solutions could be constructed
analytically in a wide range of theories
was not appreciated. It took the ex-
perimental mathematics of Zabusky and
Kruskal to lead to the soliton revolution. ■

The soliton corresponding to the nonlinear pulse moving with velocity v through the
optical fiber has the form

(13)

In the idealized limit of no dissipative energy loss, these solitons propagate without
degradation of shape; they are indeed the natural stable, localized modes for propagation
in the fiber. An intrinsically nonlinear characteristic of this soliton, shown explicitly in
Eq. 13, is the relation between its amplitude (hence its energy) and its width. In real
fibers, where dissipative mechanisms cause solitons to lose energy, the individual soliton
pulses therefore broaden (but do not disperse). Thus, to maintain the separation between
solitons necessary for the integrity of the signal, one must add optical amplifiers. based
on stimulated Raman amplification, to compensate for the loss.

Theoretical numerical studies suggest that the amplification can be done very
effectively. An all-optical system with amplifier spacings of 30 to 50 kilometers and
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Raman pump power levels less than 100 milliwatts can use solitons of 20 picosecond
duration to send information at a bit rate of over 10 gigahertz. This is more than an
order of magnitude greater than the rate anticipated for conventional (linear) systems.
Although laboratory experiments have confirmed some of these results, full engineering
studies have yet to be carried out. In addition, a critical and still unresolved issue is the
relative cost of the repeaters supporting the linear system versus that of the amplifiers
in the soliton-based approach. Nonetheless, the prospects for using optical solitons in
long-distance communication are exciting and real.

Coherent Structures. Thus far our discussion of the coherent-structure paradigm
has focused almost exclusively on solitons. Although this emphasis correctly indicates
both the tremendous interest and the substantial progress to which this aspect of the
paradigm has led, it obscures the much broader role that nonsoliton coherent structures
play in nonlinear phenomena. Vortices in fluids, chemical-reaction waves and nonlinear
diffusion fronts, shock waves, dislocations in metals, and bubbles and droplets can all
usefully be viewed as instances of coherent structures. As in the. case of the solitons, the
existence of these structures results from a delicate balance of nonlinear and dispersive
forces.

In contrast to solitons, however, these more general coherent structures typically
interact strongly and do not necessarily maintain their form or even their separate
identities for all times. Fluid vortices may merge to form a single coherent structure
equivalent to a single larger vortex. Interactions among shock waves lead to diffraction
patterns of incident, reflected, and transmitted shocks. Droplets and bubbles can
interact through merging or splitting. Despite these nontrivial interactions, the coherent
structures can be the nonlinear modes in which the dynamics is naturally described, and
they may dominate the long-time behavior of the system. To exemplify more concretely
the essential role of these general coherent structures in nonlinear systems, let me focus
on two broad classes of such structures: vortices and fronts.

The importance of vortices in complicated fluid flows and turbulence has been
appreciated since ancient times. The giant Red Spot (Fig. 3a) is a well-known example
of a fluid vortex, as are tornados in the earth’s atmosphere, large ocean circulation
patterns called “modons” in the Gulf Stream current, and “rotons” in liquid helium.
In terms of practical applications, the vortex pattern formed by a moving airfoil is
immensely important. Not only does this pattern of vortices affect the fuel efficiency
and performance of the aircraft, but it also governs the allowed spacing between planes
at takeoff and landing. More generally, vortices are the coherent structures that make
up the turbulent boundary layer on the surfaces of wings or other objects moving
through fluids. Further, methods based on idealized point vortices provide an important
approach to the numerical simulation of certain fluid flows.

The existence of fronts as coherent structures provides yet another illustration of
the essential role of nonlinearity in the physical world. Linear diffusion equations
cannot support wave-like solutions. In the presence of nonlinearity, however, diffu-
sion equations can have traveling wave solutions, with the propagating wave front
representing a transition from one state of the system to another. Thus, for example,
chemical reaction-diffusion systems can have traveling wave fronts separating reacted
and unreacted species. Often, as in flame fronts or in internal combustion engines,
these traveling chemical waves are coupled with fluid modes as well. Concentration
fronts arise in the leaching of minerals from ore beds. Moving fronts between infected
and non-infected individuals can be identified in the epidemiology of diseases such as
rabies. In advanced oil recovery processes, (unstable) fronts between the injected water
and the oil trapped in the reservoir control the effectiveness of the recovery process.

Given their ubiquity and obvious importance in nonlinear phenomena, it is gratify-
ing that recent years have witnessed remarkable progress in understanding and modeling
these general coherent structures. Significantly, this progress has been achieved by pre-
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cisely the synergy among computation, theory, and experiment that we have argued
characterizes nonlinear science. Further, as a consequence of this progress, coherent
structures and solitons have emerged as an essential paradigm of nonlinear science,
providing a unifying concept and an associated methodology at the theoretical, com-
putational, and experimental levels. The importance of this paradigm for technological
applications, as well as its inherent interest for fundamental science, will guarantee its
central role in all future research in this subject.

Deterministic Chaos and Fractals

Deterministic chaos is the term applied to the aperiodic, irregular, unpredictable,
random behavior that in the past two decades has been observed in an incredible variety
of nonlinear systems, both mathematical and natural. Although the processes are strictly
deterministic and all forces are known, the long-time behavior defies prediction and is
as random as a coin toss,

That a system governed by deterministic laws can exhibit effectively random
behavior runs directly counter to our normal intuition. Perhaps it is because intuition is
inherently “linear;” indeed, deterministic chaos cannot occur in linear systems. More
likely, it is because of our deeply ingrained view of a clockwork universe, a view
that in the West was forcefully stated by the great French mathematician and natural
philosopher Laplace. If one could know the positions and velocities of all the particles
in the universe and the nature of all the forces among them, then one could chart the
course of the universe for all time. In short, from exact knowledge of the initial state
(and the forces) comes an exact knowledge of the final state. In Newtonian mechanics
this belief is true, and to avoid any possible confusion, I stress that we are considering
only dynamical systems obeying classical, Newtonian mechanics. Subsequent remarks
have nothing to do with “uncertainties” caused by quantum mechanics.

However, in the real world exact knowledge of the initial state is not achievable.
No matter how accurately the velocity of a particular particle is measured, one can
demand that it be measured more accurately. Although we may, in general, recognize
our inability to have such exact knowledge, we typically assume that if the initial
conditions of two separate experiments are almost the same, the final conditions will
be almost the same. For most smoothly behaved, “normal” systems this assumption
is correct. But for certain nonlinear systems it is false, and deterministic chaos is the
result.

At the turn of this century, Henri Poincare, another great French mathematician and
natural philosopher, understood this possibility very precisely and wrote (as translated
in Science and Method):

“A very small cause which escapes our notice determines a considerable effect
that we cannot fail to see, and then we say that that effect is due to chance. If we
knew exactly the laws of nature and the situation of the universe at the initial mo-
ment, we could predict exactly the situation of that same universe at a succeeding
moment. But even if it were the case that the natural laws had no longer any secret
for us, we could still only know the initial situation approximately. If that enabled
us to predict the succeeding situation with the same approximation, that is all we re-
quire, and we should say that the phenomenon had been predicted, that it is governed
by laws. But it is not always so; it may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A small error in the for-
mer will produce an enormous error in the later. Prediction becomes impossible, and
we have the fortuitous phenomenon.”

Despite Poincare’s remarkable insight, deterministic chaos remained virtually unex-
plored and unknown until the early 1960s. As the ensuing discussion will reveal,
the reason for this long hiatus is that chaos defies direct analytic treatment. The seeds
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planted by Poincare could only germinate when the advances in interactive computation
made experimental mathematics a reality.

The Logistic Map. One remarkable instance of a successful experimental mathemat-
ical study occurred in a nonlinear equation simple enough to explain to an elementary
school child or to analyze on a pocket calculator yet subtle enough to capture the
essence of a whole class of real world phenomena. It is arguably the simplest model
of a system displaying deterministic chaos, and as such has been studied by a host of
distinguished researchers, including Ulam, von Neumann, Kac, Metropolis, Stein, May,
and Feigenbaum (see “Iteration of Maps, Strange Attractors, and Number theory—An
Ulamian Potpourri”). As we shall see, this focus of talent has been fully justified, for
the simple model provides remarkable insight into a wealth of nonlinear phenomena.
Thus it is a natural place to begin our quantitative study of deterministic chaos.

The model, known as the logistic map, is a discrete-time, dissipative, nonlinear

at time n + 1 according to the nonlinear function

times as desired, and one is particularly interested in the behavior as time—that is, n,
the number of iterations—approaches infinity. Specifically, if an initial condition is
picked at random in the interval (O, 1) and iterated many times, what is its motion after
all transients have died out?

The behavior of this nonlinear map depends critically on the control parameter and
exhibits in certain regions sudden and dramatic changes in response to small variations
in r. These changes, technically called bifurcations, provide a concrete example of
our earlier observation that small changes in the parameters of a nonlinear system can
produce enormous qualitative differences in the motion.

its inital value. In other words, after the transients disappear, all points in the interval
(0, 1) are attracted to the fixed point x* at x = O. This fixed point is analogous to

the fixed point in the logistic map is an attractor: the dissipative nature of the map
causes the “volume” in phase space to collapse to a single point. Such attractors are
impossible in Hamiltonian systems, since their motion preserves phase-space volumes
(see “Hamiltonian Chaos and Statistical Mechanics”). The mathematical statement of
this behavior then is

(15)

We can easily calculate the (linearized) stability of this fixed point by considering

This last comment suggests that something interesting happens as r passes 1, and
indeed for 1 < r < 3 we find an attracting fixed point with a value that depends on r.

relation into Eq. 14, we find

232 LOs Alamos ScienceSpecial Issue 1987



Nonlinear Science

Hence as the value of r moves from I toward 3, the value of the fixed point x* moves
from O toward 2/3. Notice that the linear stability analysis given above shows that
this r-dependent fixed point is stable for 1 < r < 3. Notice also that while x* = O is
still a fixed point in this region, the linear stability analysis shows that it is unstable.

stable fixed point at x*(r).
A more interesting bifurcation occurs at r = 3. Suddenly, instead of approaching a

single fixed point, the long-time solution oscillates between two values: thus the model
has an attracting limit cycle of period 2! This limit cycle is the discrete analogue of the
closed periodic oscillations shown in the phase plane of the pendulum (Fig. 2), again,
of course, subject to the distinction that the logistic-map limit cycle is an attractor.

Although one can still continue analytically at this stage, it is easier to refer to the
results of an experimental mathematical simulation (Fig. 5) that depicts the attracting set
in the logistic map as a function of r. Here we see clearly the bifurcation to the period-2
limit cycle at r = 3. But more striking, as r moves toward 3.5 and beyond, period-4
and then period-8 limit cycles occur, followed by a region in which the attracting set
becomes incredibly complicated. A careful anlysis of the logistic map shows that the
period-8 cycle is followed by cycles with periods 16, 32, 64, and so forth. The process
continues through all values 2n so that the period approaches infinity. Remarkably, all

itself. For these values of r, the simple logistic map exhibits deterministic chaos, and
the attracting set—far more complex than the fixed points and limit cycles seen below

a transition to chaos.
Although this complicated, aperiodic behavior clearly motivates the name “chaos,”

does it also have the crucial feature of sensitive dependence on initial conditions that
we argued was necessary for the long-time behavior to be as random as a coin toss?
To study this question, one must observe how two initially nearby points separate as
they are iterated by the map. Technically, this can be done by computing the Lyapunov

function of the control parameter (Fig. 6), we see that the chaotic regions do have

motion can be produced by a simple quadratically nonlinear map is indeed remarkable.

that this model, like the typical problem in chaotic dynamics, defied direct analytic
approaches. There is, however, one elegant analytic result—made all the more relevant
here by its having been discovered by Ulam and von Neumann—that further exemplifies
the sensitive dependence that characterizes deterministic chaos.

rewritten

(18)

Hence the map is simply the square of the doubling formula for the sine function, and

(19)

This solution makes clear, first, that there is a very sensitive dependence to initial
conditions and, second, that there is a very rapid exponential separation from adjacent
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of digits—as one would in any digital computer—we see that the map amounts to a
simple shift operation. When this process is carried out on a real computer, round-off
errors replace the right-most bit with garbage after each operation, and each time the
map is iterated one bit of information is lost. If the initial condition is known to 48 bits
of precision, then after only 48 iterations of the map no information about the initial
condition remains. Said another way, despite the completely deterministic nature of
the logistic map, the exponential separation of nearby initial conditions means that all
long-time information about the motion is encoded in the initial state, whereas none
(except for very short times) is encoded in the dynamics.

There is still much more that we can learn from this simple example. One question
of obvious interest in nonlinear systems is the mechanism by which such systems move
from regular to chaotic motion. In the logistic map, we have seen that this occurs
via a period-doubling cascade of bifurcations: that is, by a succession of limit cycles
with periods increasing as 2n. In a classic contribution to nonlinear science, Mitchell
Feigenbaum analyzed the manner in which this cascade occurred. Among his first
results was the observation that the values of the parameter r at which the bifurcations

(20)

he found

More important,

(21)

of the logistic map-the function need only have a “generic” maximum, that is, one

maps. Even more, he was able to argue convincingly that whenever a period-doubling
cascade of bifurcations is seen in a dissipative dynamical system, the universal number

system’s phase-space dimension.
This prediction received dramatic confirmation in an experiment carried out by

Albert Libchaber and J. Maurer involving convection in liquid helium at low tempera-
tures. Their observation of the period-doubling cascade and the subsequent extraction

nonlinear systems. More recently, similar confirmation has been found in experiments
on nonlinear electrical circuits and semiconductor devices and in numerical simulations
of the damped, driven pendulum. Further, it is now known rigorously for dissipative
systems that the universal behavior of the period-doubling transition to chaos in the
logistic map can occur even when the phase-space dimension becomes infinite.

It is important to emphasize that the period-doubling cascade is by no means
the only way in which dissipative nonlinear systems move from regular motion to
chaos (see, for example, the discussion of the indented trapezoid map on pp. 103–
104). Many other routes—such as quasiperiodic and intermittent—have been identified
and universality theories have been developed for some of them. But the conceptual
progenitor of all these developments remains the simple logistic map.

Finally, Fig. 5b illustrates one additional obvious feature of the attracting set of
Eq. 14: namely, that it contains nontrivial—and, in fact, self-similar—structure under
magnification. Indeed, in the mathematical model this self-similar structure occurs on
all smaller scales; consequently, Fig. 5b is one example of a class of complex, infinitely
ramified geometrical objects called fractals. We shall return to this point later.

The Damped, Driven Pendulum. Armed with the quantitative insight gained from
the logistic map, we can confront deterministic chaos in more conventional dynamical
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systems. We start with a very familiar example indeed: namely, the plane pendulum
subjected to driving and damping. We can now make precise our earlier assertion that
this simple system can behave in a seemingly random, unpredictable, chaotic manner
(see “The Simple but Nonlinear Pendulum”).

The motion of the damped, driven pendulum is described by Eq. 4 above. Apart
from its application to the pendulum, Eq. 4 describes an electronic device called a
Josephson tunneling junction in which two superconducting materials are separated

1.0

0.0
3.4 3.7 4.0

r

THE LYAPUNOV EXPONENT

Fig. 6. A positive value for the Lyapunov expo-

separate exponentially, whereas negative val-

motion. Here the Lyapunov exponent is plot-
ted as a function of the control parameter r

for the logistic map (Fig. 5), and it can be seen
that the periodic windows of Fig. 5 correspond

of Gottfried Mayer-Kress and Hermann Haken,
Universitat Stuttgart, FRG.)

by a thin nonconducting oxide layer. Among the present practical applications of
such junctions are high-precision magnetometers and voltage standards. The ability
of these Josephson junctions to switch rapidly (tens of picosecond) and with very
low dissipation (less than microwatt) from one current-carrying state to another may
provide microcircuit technologies for, say, supercomputers that are more efficient than
those based on conventional semiconductors. Hence the nature of the dynamic response

matter of technological, as well as fundamental, interest.
Since analytic techniques are of limited use in the chaotic regime, we demonstrate

the existence of chaos in Eq. 4 by relying on graphical results from numerical simu-
lations. Figure 7 illustrates how the phase plane (Fig. 2) of the pendulum is modified
when driving and damping forces are included and, in particular, shows how the simple
structure involving fixed points and limit cycles is dramatically altered.
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THE LOGISTIC MAP

Fig. 5. (a) The attracting set for the logistic
map (Eq. 14 in the main text) generated by plot-
ting 300 values of the iterated function (after
the transients have died out) for each of 1150
values of the control parameter r. The map has
a cycle of period 2 when the control parame-
ter r is at 3.4 (left edge). This cycle quickly
“bifurcates” to cycles of periods 4, 8, 16, and
so forth as r increases, generating a period-

exhibits deterministic chaos interspersed with
gaps where periodic motion has returned. For
example, cycles of periods 6, 5, and 3 can be
seen in the three larger gaps to the right. (b) A
magnified region (shown as a small rectangle
in (a)) illustrates the self-similar structure that
occurs at smaller scales. (Figure courtesy of
Roger Eckhardt, Los Alamos National Labora-
tory.)
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We note first that since there is an external time dependence in Eq. 4, the system
really involves three first-order differential equations. In a normal dynamical system
each degree of freedom results in two first-order equations, so this system is said to
correspond to one-and-a-half degrees of freedom. To see this explicitly, we introduce

resulting in

THE DAMPED, DRIVEN PENDULUM: 8

A STRANGE ATTRACTOR

Fig. 7. The motion of a damped, periodically

driven pendulum (Eq. 4 in the main text) for

certain parameter values is chaotic with the

attracting set being a “strange attractor. ” An

impression of such motion can be obtained

the pendulum once every cycle of the driving

image is repeated at higher and lower values

of 8 is a result of the pendulum swinging over

the top of its pivot point. (Figure courtesy

of James Crutchfield, University of California,

Berkeley.)

(22)

Note further that the presence of damping implies that the system is no longer
Hamiltonian but rather is dissipative and hence can have attractors.

Analysis of the damped, driven pendulum neatly illustrates two separate but related
aspects of chaos: first, the existence of a strange attractor, and second, the presence of
several different attracting sets and the resulting extreme sensitivity of the asymptotic
motion to the precise initial conditions.

the attracting set is displayed; the transients are not indicated. To obtain Fig. 7, which
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snapshot” of the motion once during every cycle of the driving force. The complicated
attracting set shown in the figure is in fact a strange attractor and describes a never-
repeating, nonperiodic motion in which the pendulum oscillates and flips over its pivot

manner. The sensitive dependence on initial conditions implies that nearby points
on the attractor will separate exponentially in time, following totally different paths
asymptotically. Enlargements of small regions of Fig. 7 show a continuation of the
intricate structure on all scales; like the attracting set of the logistic map, this strange
attractor is a fractal.

To visualize the motion on this attractor, it may be helpful to recall the behavior
of an amusing magnetic parlor toy that has recently been quite popular. This device,
for which the mathematical model is closely related to the damped, driven pendulum
equation, spins first one way and then the other. At first it may seem that one can guess
its behavior. But just when one expects it to spin three times to the right and then go
to the left, it instead goes four, five, or perhaps six times to the right. The sequence of
right and left rotations is unpredictable because the system is undergoing the aperiodic
motion characteristic of a strange attractor.

Figure 8 illustrates the important point that the strange attractor of Fig. 7 is not the

counterclockwise motion. Figure 8 demonstrates this with another variant of our familiar
phase-plane plot in which a color code is used to indicate the long-time behavior of all

a “final state” corresponding to one of the attractors. A blue dot is plotted at a point in
the plane if the solution that starts from that point at t = O is attracted asymptotically
to the limit cycle corresponding to clockwise rotation of the pendulum. Similarly, a
red dot is plotted for initial points for which the solution asymptotically approaches
counterclockwise rotation.

In Fig. 8 we observe large regions in which all the points are colored red and, hence,
whose initial conditions lead to counterclockwise rotations. Similarly, there are large
blue regions leading to clockwise rotations, In between, however, are regions in which
the tiniest change in initial conditions leads to alternations in the limit cycle eventually
reached. In fact, if you were to magnify these regions even more, you would see further
alternations of blue and red-even at the finest possible level. In other words, in these
regions the final state of the pendulum-clockwise or counterclockwise motion—is an
incredibly sensitive function of the exact initial point.

There is an important subtlety here that requires comment. For the red and blue
regions the asymptotic state of the pendulum does not correspond to chaotic motion,
and the two attracting sets are not strange attractors but are rather just the clockwise and
counterclockwise rotations that exist as allowed motions even for the free pendulum
(Fig. 2). The aspect of chaos that is reflected by the interwoven red and blue regions is
the exquisite sensitivity of the final state to minute changes in the initial state. Thus, in
regions speckled with intermingled red and blue dots, it is simply impossible to predict
the final state because of an incomplete knowledge of initial conditions.

In addition to the dominant red and blue points and regions, Fig. 8 shows much
smaller regions colored greenish white and black. These regions correspond to still
other attracting limit sets, the greenish-white regions indicating oscillatory limit cycles
(no rotation) and the black regions indicating points that eventually go to a strange
attractor.

From the example of Fig. 8 we learn the important lesson that a nonlinear dis-
sipative system may contain many different attractors, each with its own basin of at-
traction, or range of initial conditions asymptotically attracted to it. A subtle further
consequence of deterministic chaos is that the boundaries between these basins can
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themselves be extraordinarily complex and, in fact, fractal. A fractal basin boundary
means that qualitatively different long-time behaviors can result from nearly identical
initial configurations.

The Lorenz Attractor. In both cases of the logistic map and the damped, driven
pendulum, we have indicated that strange attractors are intimately connected with the
presence of dissipative deterministic chaos. These exotic attracting sets reflect motions

THE DAMPED, DRIVEN PENDULUM:
PERIODIC LIMIT-CYCLE
A t t r a c t o r s

Fig. 8. In this variation of the phase plot for

the damped, driven pendulum, a blue dot is

plotted at a point in the plane if the solution

that starts from that point at t = O is attracted

to clockwise rotation, whereas a red dot rep-

resents an attraction to counterclockwise ro-

tation, and a greenish-white dot represents an

attraction to any oscillatory limit cycle without

rotation. Only a portion of the phase plane is

shown. The conditions used to show these

nonchaotic motion of the limit cycles, sensi-

tive dependence on initial conditions is still

quite evident from the presence of extensive

regions of intermingled red and blue. Further,

the black regions indicate initial conditions for

which the limiting orbit is a strange attractor.

(Figure courtesy of Celso Grebogi, Edward Ott,

James Yorke, and Frank Varosi, University of

Maryland,)
of the system that, even though they may occur in a bounded region of phase space, are
not periodic (thus never repeating), and motions originating from nearby initial points
on the attractor separate exponentially in time. Further, viewed as geometric objects
these attractors have an infinitely foliated form and exhibit intricate structure on all
scales.

To develop a clearer understanding of these admittedly bizarre objects and the
dynamical motions they depict, we turn to another simple nonlinear dynamical model.
Known as the Lorenz equations, this model was developed in the early 1960s by
Edward Lorenz. a meteorologist who was convinced that the unpredictability of weather
forecasting was not due to any external noise or randomness but was in fact compatible
with a completely deterministic description. In this sense, Lorenz was attempting to
make precise the qualitative insight of Poincare, who, in another prescient comment—
all the more remarkable for its occurring in the paragraph immediately following our
earlier quotation from Science and Method-- observed:

“Why have meteorologists such difficulty in predicting the weather with any
certainty? . . . We see that great disturbances are generally produced in regions where
the atmosphere is in unstable equilibrium. The meteorologists see very well that the
equilibrium is unstable, that a cyclone will be formed somewhere, but exactly where
they are not in a position to say; a tenth of a degree more or less at any given point,
and the cyclone will burst here and not there, and extend its ravages over districts it
would otherwise have spared. . . Here, again, we find the same contrast between a
very trifling cause that is inappreciable to the observer, and considerable effects, that
are sometimes terrible disasters. ”
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To demonstrate this sensitive dependence, Lorenz began with a simplified model
approximating fluid convection in the atmosphere. By expanding this model in (spatial)
Fourier modes and by truncating the expansion to the three lowest modes and explicitly
ignoring couplings to higher modes, Lorenz obtained a closed system of three nonlinear
ordinary first-order differential equations:

(23)

In the application to atmospheric convection, x measures the rate of convective over-
turning, y and z measure the horizontal and vertical temperature variations, respectively,

horizontal and vertical temperature structures do not generally damp at the same rate.
As in the case of the damped, driven pendulum, the model describes a system with

one-and-a-half degrees of freedom because it consists of three first-order equations. One

for which perspective views (Fig. 9) of the attracting set in the (x, y, Z) space reveal

two “lobes” (Fig. 9a) and a thickness in the third direction (Fig. 9b) that shows the set
is not planar.

Just as any initial point on a periodic orbit will eventually trace out the full
orbit, so here any initial point on this strange attractor will follow a path in time
that eventually traces out the full structure. Here, however, nearby initial points will
diverge exponentially, reflecting the sensitive dependence on initial conditions. The
two-lobed structure of the Lorenz attractor suggests a particularly useful analogy to
emphasize this sensitivity. Choose two very nearby initial points and follow their
evolution in time. Call each loop around the right lobe “heads” and around the left
lobe “tails.” Then the asymptotic sequences of heads and tails corresponding to the two
points will be completely different and totally uncorrelated to each other. Of course,
the nearer the initial points, the longer their motions will remain similar. But for any
initial separation, there will be a finite time beyond which the motions appear totally
different.

In his original study Lorenz observed this sensitive dependence in an unexpected
manner, but one quite consistent with research in experimental mathematics. His own
words (from p. 55 of his article in Global Analysis) provide a dramatic statement of
the observation:

“During our computations we decided to examine one of the solutions in greater
detail, and we chose some intermediate conditions which had been typed out by the
computer and typed them in as new initial conditions. Upon returning to the com-
puter an hour later, after it had simulated about two months of “weather,” we found

that it completely disagreed with the earlier solution. At first we expected machine
trouble, which was not unusual, but we soon realized that the two solutions did not
originate from identical conditions. The computations had been carried internally to
about six decimal places, but the typed output contained only three, so that the new
initial conditions consisted of old conditions plus small perturbations. These pertur-
bations were amplifying quasi-exponentially, doubling in about four simulated days,
so that after two months the solutions were going their separate ways. ”

Notice that the doubling period of the small initial perturbation corresponds directly to
the binary bit shift of the logistic map at r = 4. Again we see the exponential loss of
information about the initial state leading to totally different long-time behavior.

Let me now focus on the geometric figure that represents the strange attractor
of the Lorenz equations. Figure 9 is, in fact, generated by plotting the coordinates
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x(t), y(t), and z(t) at 10,000 time steps (after transients have died out) and joining
the successive points with a smooth curve. The first 5000 points are colored blue, the
second 5000 green. The apparent white parts of the figure are actually blue and green
lines so closely adjacent that the photographic device cannot distinguish them.

Notice how the blue and green lines interleave throughout the attractor and, in
Fig. 9d, how this interleaving continues to occur on a finer scale. In fact, if the full
attractor, generated by the infinite time series of points (x(t), y(?), z (t)), were plotted,

LORENZ ATTRACTOR

Fig. 9. The attracting set of the Lorenz attrac-

b ❑ 8/3) formed by joining 10,000 time steps

of a single orbit into a smooth curve with the

first 5000 points plotted in blue and the sec-

ond 5000 plotted in green. (a)–(c) These per-

spective views reveal the two-lobed, nonplanar

shape and the thickness of the attractor. The

red lines indicate the direction of the coordi-

nate axes. (d) A closeup of the interleaving

of the Lorenz orbit, which, even for an infinite

time series of points, would never intersect

and repeat itself. The attractor has a fractal

dimension of 2.04, that is, between that of an

area and a volume. (Figure courtesy of Gott-

fried Mayer-Kress, Los Alamos National Labo-

ratory.)
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we would see the trajectory looping around forever, never intersecting itself and hence
never repeating. The exquisite filamentary structure would exist on all scales, and, even
in the infinite time limit, the attractor would not form a solid volume in the (x, y, z )
space. In a sense that we shall make precise shortly, the attractor is a fractal object with
dimension between that of an area (dimension = 2) and that of a volume (dimension =
3). Indeed, the Lorenz attractor has fractal dimension of about 2.04.

Fractals. The term fractal was coined by Benoit Mandelbrot in 1975 to describe
irregular, fragmented shapes with intricate structure on all scales. Fractals moved
into the mainstream of scientific research when it became clear that these seemingly
exotic geometric objects, which had previously been viewed as “a gallery of monsters,”
were emerging commonly in many natural contexts and, in particular, as the attracting
sets of chaotic dynamical systems. In fact, Mandelbrot traced many of the core
concepts related to fractals back to a number of distinguished late 19th and early 20th
century mathematicians, including Cantor, Hausdorff, and Julia. But, as in the case
of deterministic chaos, the flowering of these concepts came only after experimental
mathematics made precise visualization of the monsters possible.
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The essential feature of fractals is the existence of similar, nontrivial structure on
all scales, so that small details are reminiscent of the entire object. Technically, this
property is known as scaling and leads to a theoretical approach that allows construction
of fine details of the object from crude general features. The structure need not be
exactly self-similar on all scales. Indeed, much current research focuses on self-affine
fractals, in which the structures on different scales are related by linear transformations.

One consequence of this scale invariance is that fractal objects in general have

fractional rather than integral dimension: that is, rather than being lines, areas, or
volumes, fractals lie “somewhere in between.” To understand this quantitatively, we
recall the example of the recursively defined Cantor set (Fig. 10). At the zeroth level,
the set consists of a continuous line segment from O to 1. At the first level, the middle
third of the segment is eliminated. At the second level, the middle third of each of
the two remaining continuous segments are eliminated. At the third level, the middle
third of each of these four segments is eliminated, and so forth ad infinitum. At each
level the Cantor set becomes progressively less dense and more tenuous, so that the end
product is indeed something between a point and a line. It is easy to see in Fig. 10 that
at the nth level, the Cantor set consists of 2“ segments, each of length (1/3)”. Thus,
the “length” 1 of the set as n goes to infinity would be

(24)

In the 1920s the mathematician Hausdorff developed a theory that can be used to
study the fractional dimension of fractals such as the Cantor set. In the present simple
case, this theory can be paraphrased by asking how many small intervals, N(E), are

defined by

Inverting Eq. 25, we see that

(25)

(26)

CANTOR SET

Fig. 10. The Cantor set is formed by starting

with a line segment of unit length, removing its

middle third, and, at each successive level, re-

moving the middle third of the remaining seg-

ments. Although, the length of the remaining

segments goes to zero as the number of iter-

ations, or levels, goes to infinity, the set has

a fractal dimension greater than zero, namely

In 2/ In 3

Eckhardt, Los Alamos National Laboratory.)

continued on page 246
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HAMILTONIAN
CHAOS and
STATISTICAL
MECHANICS
The specific examples of chaotic sys-

tems discussed in the main text—the lo-
gistic map, the damped, driven pendu-
lum, and the Lorenz equations—are all
dissipative. It is important to recognize
that nondissipative Hamiltonian systems
can also exhibit chaos; indeed, Poincare
made his prescient statement concerning
sensitive dependence on initial conditions
in the context of the few-body Hamil-
tonian problems he was studying. Here
we examine briefly the many subtleties
of Hamiltonian chaos and, as an illustra-
tion of its importance, discuss how it is
closely tied to long-standing problems in
the foundations of statistical mechanics.

We choose to introduce Hamiltonian
chaos in one of its simplest incarnations,
a two-dimensional discrete model called
the standard map. Since this map pre-
serves phase-space volume (actually area
because there are only two dimensions)
it indeed corresponds to a discrete ver-
sion of a Hamiltonian system. Like the
discrete logistic map for dissipative sys-
tems, this map represents an archetype for
Hamiltonian chaos.

The equations defining the standard
map are

is the analogue of the coordinate, and
the discrete index n plays the role of

torus, periodic in both p and q. For any
value of k, the map preserves the area
in the (p, q) plane, since the Jacobian

The preservation of phase-space vol-
ume for Hamiltonian systems has the very
important consequence that there can be
no attractors, that is, no subregions of
lower phase-space dimension to which
the motion is confined asymptotically.
Any initial point (pO, qo) will lie on some
particular orbit, and the image of all
possible initial points—that is, the unit
square itself—is again the unit square. In
contrast, dissipative systems have phase-
space volumes that shrink. For example,
the logistic map (Fig. 5 in the main text)

terval (O, 1) attracted to just two points.
Clearly, for k = O the standard map

time (n) as it should for free motion. The
orbits are thus just straight lines wrap-
ping around the torus in the q direction.
For k = 1.1 the map produces the orbits

shown in Figs. la-d. The most immedi-
ately striking feature of this set of figures
is the existence of nontrivial structure on
all scales. Thus, like dissipative systems,
Hamiltonian chaos generates strange frac-
tal sets (albeit “fat” fractals, as discussed
below). On all scales one observes “is-
lands,” analogues in this discrete case of
the periodic orbits in the phase plane of
the simple pendulum (Fig. 2 in the main
text). In addition, however, and again on
all scales, there are swarms of dots com-
ing from individual chaotic orbits that un-
dergo nonperiodic motion and eventually
fill a finite region in phase space. In these
chaotic regions the motion is “sensitively
dependent on initial conditions.”

Figure 2 shows, in the full phase space,
a plot of a single chaotic orbit followed
through 100 million iterations (again, for
k = 1.1). This object differs from the
strange sets seen in dissipative systems in
that it occupies a finite fraction of the full
phase space: specifically, the orbit shown
takes up 56 per cent of the unit area that
represents the full phase space of the map.
Hence the “dimension” of the orbit is the
same as that of the full phase space, and
calculating the fractal dimension by the
standard method gives d f = 2. How-
ever, the orbit differs from a conventional
area in that it contains holes on all scales.
As a consequence, the measured value of
the area occupied by the orbit depends
on the resolution with which this area is
measured—for example, the size of the
boxes in the box-counting method—and
the approach to the finite value at in-
finitely fine resolution has definite scaling
properties. This set is thus appropriately
called a “fat fractal,” For our later dis-
cussion it is important to note that the
holes—representing periodic, nonchaotic
motion—also occupy a finite fraction of
the phase space.

To develop a more intuitive feel for fat
fractals, note that a very simple exam-
ple can be constructed by using a slight
modification of the Cantor-set technique
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P

1.0

0.5

THE STANDARD MAP

Fig. 1. Shown here are the discrete orbits of
the standard map (for k = 1.1 in Eq. 1) with
different colors used to distinguish one orbit
from another. increasingly magnified regions
of the phase space are shown, starting with the
full phase space (a). The white box in (a) is the
region magnified in (b), and so forth. Nontrivial
structure, including “’islands” and swarms of
dots that represent regions of chaotic, nonpe-
riodic motion, are obvious on all scales. (Fig-
ure courtesy of James Kadtke and David Um-
berger, Los Alamos National Laboratory.)
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described in the main text. Instead of
deleting the middle one-third of each in-
terval at every scale, one deletes the mid-

sulting set is topologically the same as
the original Cantor set, a calculation of
its dimension yields df = 1; it has the
same dimension as the full unit interval.
Further, this fat Cantor set occupies a fi-
nite fraction-amusingly but accidentally
also about 56 per cent-of the unit inter-
val, with the remainder occupied by the
“holes” in the set.

To what extent does chaos exist in the
more conventional Hamiltonian systems
described by differential equations? A
full answer to this question would require
a highly technical summary of more than
eight decades of investigations by math-
ematical physicists. Thus we will have
to be content with a superficial overview
that captures, at best, the flavor of these
investigations.

To begin, we note that completely in-
tegrable systems can never exhibit chaos,
independent of the number of degrees of
freedom N. In these systems all bounded
motions are quasiperiodic and occur on
hypertori, with the N frequencies (pos-
sibly all distinct) determined by the val-
ues of the conservation laws. Thus there
cannot be any aperiodic motion. Fur-
ther, since all Hamiltonian systems with
N = 1 are completely integrable, chaos
cannot occur for one-degree-of-freedom
problems.

For N =2, non-integrable systems can
exhibit chaos; however, it is not trivial
to determine in which systems chaos can
occur; that: is, it is in general not obvi-
ous whether a given system is integrable
or not. Consider, for example, two very
similar N = 2 nonlinear Hamiltonian sys-
tems with equation of motion given by:

and
d2x

Equation 2 describes the famous Henon-
Heiles system, which is non-integrable
and has become a classic example of a
simple (astro-) physically relevant Hamil-
tonian system exhibiting chaos. On the
other hand, Eq. 3 can be separated into
two independent N = 1 systems (by a

tegrable.
Although there exist explicit calcula-

tional methods for testing for integrabil-
ity, these are highly technical and gener-
ally difficult to apply for large N. For-
tunately, two theorems provide general
guidance. First, Siegel’s Theorem con-
siders the space of Hamiltonians analytic
in their variables: non-integrable Hamil-
tonians are dense in this space, whereas
integrable Hamiltonians are not. Sec-
ond, Nekhoroshev’s Theorem leads to the
fact that all non-integrable systems have a
phase space that contains chaotic regions.

Out observations concerning the stan-
dard map immediately suggest an essen-
tial question: What is the extent of the
chaotic regions and can they, under some
circumstances, cover the whole phase
space? The best way to answer this ques-
tion is to search for nonchaotic regions.
Consider, for example, a completely inte-
grable N-degree-of-freedom Hamiltonian
system disturbed by a generic non-inte-
grable perturbation. The famous KAM
(for Kolmogorov, Arnold, and Moser)
theorem shows that, for this case, there
are regions of finite measure in phase
space that retain the smoothness associ-
ated with motion on the hypertori of the
integrable system. These regions are the
analogues of the “holes” in the standard
map. Hence, for a typical Hamiltonian
system with N degrees of freedom, the

chaotic regions do not fill all of phase
space: a finite fraction is occupied by “in-
variant KAM tori.”

At a conceptual level, then, the KAM
theorem explains the nonchaotic behav-
ior and recurrences that so puzzled Fermi,
Pasta, and Ulam (see “The Fermi, Pasta,
and Ulam Problem: Excerpts from ‘Stud-
ies of Nonlinear Problems’ “). Although
the FPU chain had many (64) nonlinearly
coupled degrees of freedom, it was close
enough (for the parameter ranges studied)
to an integrable system that the invariant
KAM tori and resulting pseudo-integrable
properties dominated the behavior over
the times of measurement.

There is yet another level of subtlety
to chaos in Hamiltonian systems: namely,
the structure of the phase space. For non-
integrable systems, within every regular
KAM region there are chaotic regions.
Within these chaotic regions there are, in
turn, regular regions, and so forth. For
all non-integrable systems with N > 3,
an orbit can move (albeit on very long
time scales) among the various chaotic
regions via a process known as “Arnold
diffusion.” Thus, in general, phase space
is permeated by an Arnold web that links
together the chaotic regions on all scales.

Intuitively, these observations concern-
ing Hamiltonian chaos hint strongly at a
connection to statistical mechanics. As
Fig. 1 illustrates, the chaotic orbits in
Hamiltonian systems form very compli-
cated “Cantor dusts,” which are nonperi-
odic, never-repeating motions that wan-
der through volumes of the phase space,
apparently constrained only by conser-
vation of total energy. In addition, in
these regions the sensitive dependence
implies a rapid loss of information about
the initial conditions and hence an effec-
tive irreversibility of the motion. Clearly,
such wandering motion and effective ir-
reversibility suggest a possible approach
to the following fundamental question of
statistical mechanics: How can one de-
rive the irreversible, ergodic, thermal-
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equilibrium motion assumed in statistical
mechanics from a reversible, Hamiltonian
microscopic dynamics?

Historically, the fundamental assump-
tion that has linked dynamics and statis-
tical mechanics is the ergodic hypothesis,
which asserts that time averages over ac-
tual dynamical motions are equal to en-
semble averages over many different but
equivalent systems. Loosely speaking,
this hypothesis assumes that all regions
of phase space allowed by energy con-
servation are equally accessed by almost
all dynamical motions.

What evidence do we have that the er-
godic hypothesis actually holds for re-
alistic Hamiltonian systems? For sys-
tems with finite degrees of freedom, the
KAM theorem shows that, in addition
to chaotic regions of phase space, there
are nonchaotic regions of finite measure.
These invariant tori imply that ergodicity
does not hold for most finite-dimensional
Hamiltonian sytems. Importantly, the
few Hamiltonian systems for which the
KAM theorem does not apply, and for
which one can prove ergodicity and the
approach to thermal equilibrium, involve
“hard spheres” and consequently contain
non-analytic interactions that are not re-
alistic from a physicist’s perspective.

For many years, most researchers be-
lieved that these subtleties become irrele-
vant in the thermodynamic limit, that is,
the limit in which the number of degrees
of freedom (N) and the energy (E) go to
infinity in such a way that E/N remains
a nonzero constant. For instance, the
KAM regions of invariant tori may ap-
proach zero measure in this limit. How-
ever, recent evidence suggests that non-
trivial counterexamples to this belief may
exist. Given the increasing sophistication
of our analytic understanding of Hamilto-
nian chaos and the growing ability to sim-
ulate systems with large N numerically,
the time seems ripe for quantitative inves-
tigations that can establish (or disprove!)
this belief. (For additional discussion of

1.0

P

0.0
0.0 1.0

A “FAT” FRACTAL

Fig. 2. A singles chaotic orbit of the standard
map for k = 1.1. The picture was made by di-
viding the energy surface Into a 512 by 512 grid
and iterating the initial condition 108 times.
The squares visited by this orbit are shown
in black. Gaps in the phase space represent
portions of the energy surface unavailable to
the chaotic orbit because of various quasiperi-
odic orbits confined to tori, as seen In Fig. 1.
(Figure courtesy of J. Doyne Farmer and David
Umberger, Los Alamos National Laboratory.)

this topic, see “The Ergodic Hypothesis:
A Complicated Problem of Mathematics
and Physics.”)

Among the specific issues that should
be addressed in a variety of physically
realistic models are the following.

● How does the measure of phase space
occupied by KAM tori depend on N ?
Is there a class of models with realistic
interactions for which this measure goes
to O? Are there non-integrable models
for which a finite measure is retained by
the KAM regions? If so, what are the
characteristics that cause this behavior?
● How does the rate of Arnold diffusion
depend on N in a broad class of mod-
els? What is the structure of important
features—such as the Arnold web-in the
phase space as N approaches infinity?
● If there is an approach to equilibrium,
how does the time-scale for this approach
depend on N? Is it less than the age of
the universe?
● Is ergodicity necessary (or merely suf-
ficient) for most of the features we as-
sociate with statistical mechanics? Can a
less stringent requirement, consistent with
the behaviour observed in analytic Hamil-
tonian systems, be formulated?

Clearly, these are some of the most chal-
lenging, and profound, questions current-
ly confronting nonlinear scientists. ■
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continued from page 241

For the Cantor set, if we look at the nth level and use the small interval of length

(27)

The simple Cantor set has, in effect, only a single scale because the factor of 1/3
is always used in constructing successive levels of the set. In contrast, fractals that arise
in chaotic dynamical systems have a range of scales and, typically, different scalings
apply to different parts of the set; as a consequence, these more complex sets are
sometimes termed multifractals. In his original work on the logistic map, Feigenbaum
defined and discussed a scaling function that characterized these differences. Recently,

detailed understanding of the many different scalings occurring in a variety of chaotic
dynamical systems.

Although these constructions and techniques may seem to be just mathematical
manipulations, nature abounds with structures that repeat themselves on many differ-
ent scales and hence have approximate fractal structure. Familiar examples include
clouds, lightning bolts, ferns, and, as shown in Fig. 11, snowflakes. Less familiar but
technologically significant examples include the growth of dendritic crystals, dielectric
breakdown in gas-filled cells, and “viscous fingering” in certain two-fluid flows.

A laboratory experiment illustrating this last phenomenon (Fig. 12) consists of
a flat, effectively two-dimensional, cylindrical cell containing a high-viscosity fluid.
An inlet in the center of the cell permits the injection under pressure of a second,
less viscous fluid (in this case, water). Instead of smoothly and uniformly replacing the
viscous fluid in the cell, the water splits into the highly branched, coral-like fractal object
shown in Fig. 12. Using a box-counting technique similar to that used to measure the
dimension of the Cantor set, one finds that the fractal dimension of the viscous finger

segments, the viscous finger possesses a fractional dimension closer to that of an urea

(d = 2) than that of a line (d = l).
To understand the processes that create such structures, one can use experimental

mathematics to study specific physical models. One such study (Fig. 13) depicts the
development of a fractal pattern on a triangular lattice. The model underlying the
pattern depends primarily on the local pressure gradients driving the “fluid,” but it also
incorporates the effects of fluctuations (via a noise parameter) and of anisotropy. The
study shows clearly that all the patterns grow primarily at the tips; almost no growth
occurs in the “fjord” regions.

Figures 13a and 13b are examples of the fractal structures found when the noise
parameter is held constant but the anisotropy k is considerably decreased. Notice the
striking qualitative similarity between Figs. 11 and 13a. Interestingly, the fractal
dimension of both Figs. 13a and 13b is about 1.5; it is independent of k. In Figs. 13c and
13d the anisotropy is held fixed but the noise is decreased. Here the fractal dimension
of both is about 1.7.

Mandelbrot has defined a number of higher order geometric properties-for example,
lacunarity, a measure of the typical size of the holes in the fractal—that can be used
to characterize fractals more precisely. Lacunarity and other higher-order features are,
in effect, geometric restatements of our earlier remarks that multifractals generated by

techniques can be used to study these scalings. A generally unsolved challenge in this

one reconstruct the actual fractal set, including perhaps the order in which the points
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of the set are generated dynamically?

Practicalities. The impacts of deterministic chaos and fractals are only now beginning
to be felt throughout science. The concepts that even simple systems can exhibit
incredibly complicated behavior, that simple rules can lead to enormously intricate
geometric objects, and that this behavior and these objects can be quantified are now
all widely appreciated and are being applied in many fields.

The fractal viscous-fingering phenomenon (Fig. 12) is of enormous technological
interest, for it represents a major barrier to the development of efficient advanced oil- SNOWFLAKES

recovery techniques. Nearly half the oil deposited in limestone or other porous media Fig. 11. The snowflake is an example of a
is typically unrecovered because it remains stuck in the pores. To force out this oil, fractal structure in nature. (Photos reprinted

water is injected into a second well nearby. Viscous fingering limits the effectiveness of from Snow Crystals by W. A. Bentley and W.

this technique, because when one of the thin fingers of water breaks through from the J. Humpreys with permission of Dover Publi-

injector to the recovery well, only injected water rather than oil is thereafter recovered. cations.)

Clearly a full understanding of this fractal phenomenon and ways to control it are of
considerable economic importance.

Similarly, a direct application of fractals occurs in the design of the toughened
ceramics used as engine parts. These special ceramics are designed to tolerate flaws,
such as voids and cracks, without breaking into pieces. The flaws arise primarily from
voids that develop during the sintering process and fractures that arise chiefly from the
use of hard materials when machining the ceramics. By adding secondary constituents
to the ceramics, propagating cracks can be forced to move through the ceramic along
tortuous, convoluted routes, causing more energy to be expended than if the route were
smooth and regular. Hence, for a given impulse, an irregular crack does not propagate
as far through the ceramic and does less overall damage. Convoluted routes should
lead to cracks in the form of complex fractal patterns. Indeed, microscopic studies of
high performance ceramics have revealed such patterns and established that the higher
the fractal dimension of the cracks, the tougher the ceramics.

The results of deterministic chaos are also being applied across a broad range of
disciplines. Experimentally, high-precision measurements of chaotic dynamics in many
types of fluid flows, current and voltage responses of semiconductors and other solid-
state electronic devices, and cardiac arhythymias have established the importance of
dissipative chaos in fluid dynamics, condensed-matter physics, and medicine. Indeed,
recent medical experiments have suggested that many physiological parameters vary
chaotically in the healthy individual and that greater regularity can indicate a patho-
logical condition; for example, normally chaotic oscillations of the densities of red and
white blood cells become periodic in some anemias and leukemias. Hamiltonian chaos
finds a direct application in accelerator design, where the potential loss of an appar-
ently stable beam due to subtle long-time phenomena such as “Arnold diffusion” (see
“Hamiltonian Chaos and Statistical Mechanics”) is a vital issue of technology.

The central theoretical challenge in “applied chaos“ is to develop deterministic
chaotic models to explain these diverse phenomena. Rather than focusing on the details
of specific applications, let me describe two broader problem areas of current research.

First, although we have stressed the randomness and unpredictability of the long-
time behavior of chaotic systems, it nonetheless remains true that these systems are
deterministic, following laws that involve no external randomness or uncertainty. Thus,
it is possible to predict the behavior for short times, if the equations of motion are
known. The analytic solution of the logistic map for r = 4 is a clear illustration;
given two initial conditions known to, say, 10-bit accuracy, one can predict the relative
positions—albeit with exponentially decreasing accuracy—for 10 iterations of the map.
The subtler problem, currently under intense investigation, occurs when one observes
that a system is deterministically chaotic but does not know the form of the underlying
equations: can one nonetheless use the basic determinism to make some prediction?
In view of the clear value of such predictive techniques-consider the stock market—

VISCOUS FINGERING

Fig. 12. A fractal structure formed by inject-

ing water under pressure into a high-viscosity

fluid. The fractal dimension of this object

(Figure courtesy of Gerard Daccord and Jo-

hann Nittmann, Etudes et Fabrication Dowell

Schlumberger, France, and H. Eugene Stanley,

Boston University.)
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A FRACTAL SIMULATION

Fig. 13. The model used in the simulation to

form these fractal patterns uses local pressure

gradients to “drive the fluid” across a trian-

gular lattice. The growth patterns of the ob-

jects are indicated by the color coding; the first

one-sixth of the sites to be occupied are white,

the next one-sixth blue, then magenta, yellow,

green, and finally red, The model also incorpo-

rates the effects of fluctuations via the noise

eter k. The patterns in (a) and (b) have the

(k = 11 in (a) and k = 1.3 in (b)). The patterns

in (c) and (d) have the same isotropy (k = 1)

hann Nittmann, Etudes et Fabrication Dowell

Schlumberger, France, and H. Eugene Stanley,

Boston University.)
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substantial efforts are being focused on this question.
Second, and at a still broader level, are the related issues of universality and mode

reduction in chaos, both of which we mentioned previously. Universality implies that
for certain chaotic phenomena—such as the period-doubling cascade—the details of the
system and the equations describing it are irrelevant: the observed complex behavior
develops in a similar manner in every context, be it fluid dynamics, condensed-matter
physics, or biology. Indeed, the term universality is borrowed from the statistical me-

chanics of phase transitions, where it has been shown that the details of the microscopic
interactions are irrelevant for most of the important properties of the transitions. In the
context of chaos, universality also lends tremendous power to analyses of certain phe-
nomena; in essence, the simplest example—for instance, the logistic map for period
doubling---contains the critical features of the entire effect.

The central idea of mode reduction can most easily be visualized in fluid flows.
In any given fluid motion not all the (infinitely!) many possible modes are “active,”
so the effective phase-space dimension is much smaller than the full dimension of the
equations. The case of laminar flow in which fluid moves en bloc is a trivial illustration.
A more interesting and much less obvious example is observed in experiments on
Couette-Taylor flows, in which fluid is contained between two concentric rotating
cylinders. As the speed of relative rotation is increased, the flow forms bands of
Taylor vortices. Further increases in the relative rotation causes the bands to develop
“wobbling” instabilities and finally to be replaced by fully developed turbulence. In
these experiments clever techniques (sometimes referred to as “geometry from a time
series” and related to rigorous mathematical embedding theorems) have been used to
extract phase-space information directly from a time series of measurements on a single
dynamical variable. Such techniques have revealed strange attractors with effective
phase-space dimensions on the order of five. In such experiments there are, in one
sense, on the order of only five active modes. Mode reduction reduces the number of
degrees of freedom being modeled to the minimum necessary to capture the essence of
the motion.

Several important aspects of the general problem of mode reduction should be
clarified. First, techniques such as “geometry from a time series” offer no immediate
information about the nature of the reduced modes nor about the effective equations
governing their interactions. In general, obtaining such information remains an impor-
tant open problem.

Second, mode reduction is distinct from mode truncation. Specifically, we noted
that the Lorenz equations were obtained by simply truncating the Fourier expansion
of the full equations, hence ignoring certain demonstrably nonzero couplings. Ideally,
the process of mode reduction should be deductive, controlled, and constructive; that is,
one should be able to derive the equations governing the reduced modes, to bound the
error made in the reduction, and to “construct” the actual modes themselves. This, too,
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remains an elusive goal, despite substantial recent progress.
Third, if one is able to obtain a true mode reduction, the benefits are substantial.

For instance, the parameters of the mode-reduced equations can easily be forced in
a time-dependent manner, and the reduced equations themselves can be damped and
driven. In this manner it may be possible to predict the behavior of the full original
system, where the effects of such forcing may be difficult to determine. A specific
instance of this technique has been carried out recently by Rabinowitz in the Soviet

Union: using numerical experiments on mode-reduced equations as a guide, he was
able to forestall the onset of turbulence in a nozzle flow by applying a periodic stress.

Fourth, rigorous mathematical results on mode reduction have been obtained for a
class of nonlinear reaction-diffusion equations that describe unstable chemical reacting
fronts, such as flames. One important example is the so-called Kuramoto-Sivashinsky
equation, which can be written in the form

(28)

being described. Although this equation represents, in dynamical-systems parlance,
an infinite-degree-of-freedom system, it is nonetheless rigorously true that in a box of
finite length L a finite number of modes proportional to L are sufficient to capture the
long-time dynamics arising from essentially any initial condition. Although the link
is not yet fully constructive, the nature of these modes can be determined, and they
are related to coherent structures observed for this equation. This general connection
between mode reduction in chaotic systems and coherent structures in spatially extended
dynamical systems will be a central issue in our discussion of complex configurations
and pattern selection.

Finally, the problem of mode reduction lies at the core of attempts to understand the
relation between chaos and fully developed turbulence in fluids and plasmas. Chaos, as
we have stressed, involves temporal disorder and unpredictability in dynamical systems
with low effective phase-space dimension. Fully developed turbulence, in addition to
the temporal disorder, involves disordered, random spatial structure on all scales (at least
apparently). Further, different spatial regions of the turbulent system act independently,
and spatial correlation functions are short-ranged. Thus the phase-space dimension of
any attractor in fully developed turbulence appears, a priori, very high.

For example, a recent numerical simulation of turbulent Poiseuille flow at a
Reynolds number of 2800 suggests that the turbulent solutions to the Navier-Stokes
equations for the flow do lie on a strange attractor, but one that has fractal dimension
of about 400! Although it is comforting to know that the turbulence observed in this
case can be described qualitatively by deterministic chaos, it is obviously disconcerting
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to contemplate trying either to analyze such flows experimentally or to model them
theoretically in terms of a dynamical system with a 400-dimensional phase space. For
higher Reynolds numbers this situation will become even worse. In the next section we
will illustrate how mode reduction, coupled with a hierarchy of approximate equations,
may make this situation more tractable.

In sum, the remarkable insights of the past twenty-five years have led to the
emergence of deterministic chaos and fractals as a second central paradigm of nonlinear
science. The impact of this paradigm on our basic view of complexity in the world, as
well as on technologies affecting our daily lives, will continue to be profound for the
foreseeable future.

Complex Configurations and Patterns

When a spatially extended nonlinear system is driven far from equilibrium, the
many localized coherent structures that typically arise can organize themselves into a
bewildering array of spatial patterns, regular or random. Perhaps the most familiar
example is turbulent fluid flow, in which the temporal behavior is chaotic yet one fre-
quently observes patterns of coherent structures: recall the complex configuration of
vortices surrounding the Red Spot in Fig. 3a. The process of pattern formation and
selection occurs throughout nature, in nonlinear phenomena ranging from electromag-
netic waves in the ionosphere through mesocale textures in metallurgy to markings on
seashells and stripes on tigers. Thus, complex configurations and patterns represents a
third paradigm of nonlinear science. Although somewhat less developed than solitons
or chaos, the paradigm already promises to provide the basis for a unified understanding
of nonlinear phenomena in many fields.

Our previous discussion of dynamical systems provides a useful conceptual frame-
work in which to approach the general problem of patterns. A typical extended nonlin-
ear, nonequilibrium system will have many possible configurations or patterns; some of
these will be stable, others unstable, and the vast majority metastable. Highly symmet-
ric patterns may be accessible analytically, but general, anisotropic configurations must
first be studied via experimental mathematics. In dissipative extended systems these
patterns are loosely analogous to the attractors of simple dynamical systems—with the
important proviso that they do not correspond to true asymptotic attractors because most
are, in fact, merely metastable. Nonetheless, the multiple-attractor analogy correctly
suggests that an extended nonlinear system has many basins of temporary attraction. In
view of our results on the damped, driven pendulum, we expect the basin boundaries
to be complicated, perhaps fractal, objects. As a result, the study of the dynamics of
complex configurations and of the sequence of patterns explored, as well as of the pat-
tern ultimately selected (if any), represents one of the most daunting challenges facing
nonlinear science.

At present this challenge is still being confronted primarily at the experimental
level, both in actual physical systems and via numerical simulations, rather than analyt-
ically. Hence we rely here chiefly on visual results from these experiments to indicate
important aspects of the paradigm.

Experiments and Numerical Simulations. Consider, as a first illustration, a gener-
alization of a familiar example: the sine-Gordon equation, only now damped, driven,
and with two spatial dimensions. This equation, which models certain planar magnetic
materials and large-area Josephson junction arrays, has the form

(29)
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We can anticipate from our earlier discussion that this model will contain coherent
structures (although not solitons, because the two-dimensional sine-Gordon equation is
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not completely integrable). We can also expect the model to contain chaos because of
the driving and damping forces.

Four snapshots of the temporal development of the system are shown in Fig. 14

coding as a means of enhancing the visual interpretation should be mentioned; color
graphics, especially in a high-speed, interactive mode, are not a frivolous luxury but,
in fact, are among the most powerful tools of experimental mathematics. Here, for

SINE-GORDON EQUATION FOR
TWO SPATIAL DIMENSIONS

Fig. 14. Four snapshots of the temporal behav-

ior of the two-dimensional sine-Gordon equa-

indicates values near O, and colors in the spec-

trum between red and blue indicate intermedi-

ate values. (a) The initial structure is annu-

lar. (b) After a time equal to approximately

100 units of the fundamental oscillation fre-

quency of the system, the initial ring breaks

into a symmetric, two-by-two pattern of four

structures. (c) This last pattern is metastable

200, to a pattern that is clearly beginning to

“smear” in the x-direction. (d) Eventually, for

stable configuration. The parameters used in

Peter Lomdahl, Los Alamos National Labora-

tory.)

of this system (Fig. 14a) eventually forms other patterns that are, in fact, oscillatory
in time. Because the boundary conditions are periodic in both x and y, the system
retains a high degree of symmetry as it evolves into four structures in a two-by-two
pattern (Fig. 14 b). Eventually, however, a “smearing” is detected parallel to the x axis
(Fig. 14c) that leads to the striped configuration of Fig. 14d. No further qualitative
change occurs after that.

Because of the original symmetry of the problem, the emergence of a final pattern
striped in the x direction rather than the y direction must depend on a slight asymmetry
external to the equations themselves, Possibilities are a slight difference in the initial
conditions for x and y due to computer round-off or an asymmetry in the solution
algorithm. Such asymmetries can be viewed as external noise that leads to a config-
uration that breaks the symmetry of the equations. The extreme sensitivity of certain
pattern selection processes to external noise and to minor asymmetries has already been
indicated in the fractal growth models of Fig. 13 and is observed experimentally in a
wide variety of contexts, including the growth of dendrites such as the snowflakes of
Fig. 11.
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The emergence and evolution of configurations related to those seen in the numer-
ical simulations has been the focus of many recent experiments involving Rayleigh-
Benard convection. By using shadowgraph techniques that clearly distinguish ascending
and descending streams of fluid, convection-roll structures are observed in silicone oil
heated from below (Figs. 15 and 16). The asymmetric pattern of Fig. 15a is typi-
cal of configurations that last for only a few minutes. On the other hand, the more
symmetric pattern of Fig. 15b is more stable, maintaining its form for ten minutes or

RAYLEIGH-BERNARD
CONVECTION PATTERNS

Fig. 15. Patterns of convection-roll stream-

ing are created here using shadowgraph tech-

niques in an experiment in which silicone oil is

heated from below. The dark lines correspond

to ascending streams of fluid, the bright lines

to descending streams. (Photos courtesy of

Pierre Berge, Commissariats a L’Energie Atom-

ique, France.)

AN AVERAGE

CONVECTION PATTERN

Fig. 16. The first two of these Rayleigh-Ber-

nard convection patterns (a and b) are snap-

shots of the flow in the silicone oil experiment,

whereas (c) is a sum of ten such instantaneous

pictures. (Photos courtesy of Pierre Berge,

Commissariats a L’Energie Atomique, France.)
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more. Although one does not have a detailed understanding of the phenomenon, clearly
boundary effects are causing the system to “pin” itself to these more stable configura-
tions. Figure 16 demonstrates that a mean structure, or average pattern, can exist in
such flows. The first two images (Figs. 16a and b) are snapshots of the flow, whereas
the third (Fig. 16c) is a sum of ten such instantaneous pictures and clearly indicates the
presence of a highly symmetrical average configuration.

Fluid dynamics abounds with other examples of complex configurations and pattern
formation. Particularly relevant in technological applications is shear instability, which
occurs when a fluid moves rapidly past a fixed boundary or when two fluids move past
each other at different velocities. The performance and fuel-efficiency of aircraft, for
example, are strongly affected by the turbulent boundary layer formed as a consequence
of shear instabilities.

Figure 17 is a sequence of images of the “Kelvin-Helmholtz” shear instability
simulated using the two-dimensional Euler equations that model compressible but
inviscid fluid flow. (Strictly speaking, because the study does not resolve the thin
turbulent boundary layer, it is technically a “slip-surface” instability.) The study reveals
an incredible wealth of information, only some of which we will discuss here. Two
streams of identical fluid flow past each other, both moving at the speed of sound.
Initially, a small sinusoidal perturbation is given to the vertical velocity component of
the flow at the boundary between the layers, and the resulting entrainment and roll-up
phenomena that lead to the mixing of the two fluids is followed.
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Shortly after the simulation starts, the roll-up of the boundary has already begun to
generate coherent structures (Fig. 17a). These grow (actually, in a self-similar manner)
until the periodic boundary conditions in the x direction cause the structures to interact
(note the four vortex-like structures in Fig. 17b). In addition, sudden jumps in the
intensity of the colors in the top and bottom regions reveal the presence of shock
waves. The four vortices merge into two (Fig.17c) and thereafter entrain, forming
a bound vortex pair (Fig. 17d). The roll-up phenomenon creates incredibly complex

SHEAR INSTABILITY

Fig. 17. Two streams of identical fluid flow

past each other with the top stream (colored

green to blue) moving to the right at Mach 1

(the speed of sound) and the bottom stream

(colored red to purple) moving to the left also

at Mach 1. The boundary between layers is a

yellow line, and, initially, a small vertical sinu-

soidal velocity perturbation is applied at this

boundary with the colors indicating the initial

y value of a given bit of fluid. The series show

the roll-up of the boundary (a) and the develop-

ment of coherent structures in the form of vor-

tices. By (d), a bound vortex pair has formed.

(Figures made at Lawrence Livermore National

Laboratory by Paul Woodward, University of

Minnesota, and David Helder.)

(fractal) structure from the initially smooth boundary. Thus, we see in Fig. 17 precisely
the interplay between large-scale coherent structures and chaotic, fractal dynamics
that typifies complex configurations in extended nonlinear systems. Further, although
different in detail, Fig. 17d clearly resembles in outline the more familiar shape of
Fig. 3a; art-in this case, computer art-is indeed imitating Nature.

One feature common to all our previous examples is the limited number of
coherent structures that participate in the observed patterns of the system. In each
case, this limitation arises from the small size (relative to the scale of the coherent
structures themselves) of the “box’’—be it computational or physical—in which the
pattern-forming system is contained.

An example in which this constraint is relaxed is a numerical simulation, carried
out at Los Alamos a decade ago by Fred Tappert, of the self-focusing instability that
arises in the interaction of an intense laser beam with a plasma (Fig. 18). The instability
is closely related conceptually to the mechanism by which solitons are formed in optical
fibers and reflects an important difficulty in attempts to develop inertial confinement
fusion. On a much different scale, this phenomenon leads to significant electromagnetic
disturbances in the ionosphere.
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The particular equation used in the simulation is a two-space-dimension variant of
the nonlinear Schrodinger equation (Eq. 12). Here the equation has the specific form

(30)

contains an effective cubic nonlinearity and thus becomes the direct two-dimensional

CAVITONS:
SELF-FOCUSING INSTABILITIES

Fig. 18. The development of a self-focusing

instability in a laser beam passing through a

plasma. These frames, taken from a computer-

generated movie, show both a contour plot

(upper left) and a projected plot of the laser

intensity across the profile of the beam. (a)

Initially, the beam is essentially uniform with

a small amount of random spatial “noise,” but

as it moves into the plasma, the self-focusing

instability generates filaments of high intensity

that (b) grow dramatically as the beam pro-

gresses further. (Photos made at Los Alamos

by Fred Tappert, University of Miami.)

generalization of Eq. 12. As E approaches infinity, the nonlinearity saturates, and
Eq. 30 becomes effectively linear.

From a random initial condition of spatial white noise (Fig. 18a), a complex
configuration involving a large number of coherent structures develops (Fig. 18 b).
Having observed these complex patterns involving many coherent structures, Tappert
went on to isolate the individual coherent structures—now known as cavitons- and to
study their interactions numerically. Since the dynamics can not be properly appreciated
without showing the time evolution, I will not attempt to describe it here; however,
this study is an excellent example of using experimental mathematics to unravel the
role that analytically inaccessible coherent structures play in the formation of complex
configurations.

Analytic Developments. Our brief pictorial survey of numerical and experimental
studies of pattern formation should make clear the daunting nature of the general
problem. Thus it is hardly surprising that current analytic approaches focus on special
and isolated instances of pattern formation that reduce the problem to a more tractable
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form. Although much remains to be done, this “divide and conquer” philosophy has
recently demonstrated such substantial promise that, in the next decade, we should
witness a revolution for patterns comparable to those for solitons and chaos.

One line of analytic attack is to start with a system that has exact solitons—the
one-dimensional sine-Gordon or nonlinear Schrodinger equations, for example. One
then perturbs the system with driving and damping forces and studies the patterns
that emerge from the evolution of the analytically known coherent structures under
the influence of the chaotic dynamics. This approach has been used extensively in
the case of the damped, driven sine-Gordon equation, and a very rich phenomenology
has developed. However, detailed quantitative understanding, even in the case of a
perturbed integrable system, can only be produced at present if the purely analytic
approach is guided and supplemented by numerical simulations.

To describe other semi-analytic approaches, let me focus on pattern formation in
fluid flows. I shall discuss three related techniques that derive approximate or effective
equations appropriate to specific situations called the amplitude-, phase-, and protoype-
equation techniques.

As previously observed, a nonlinear system often exhibits bifurcations or sharp
transitions in the qualitative behavior of its solutions as a function of one of its
parameters. The Rayleigh-Benard instability in a fluid heated from below is one such
case (Figs. 15 and 16). When the rate of heating is less than a certain threshold, the
fluid simply conducts the heat from the hot bottom to the cooler top, in effect acting
like a solid object. At a critical value of the heating rate, this conducting state becomes
unstable and convection-the familiar rolling motion that can be seen in boiling water—
sets in. This transition is the nonequilibrium analog of a phase transition. We can
model the temporal and spatial structure of the transition with a phenomenological
equation written in terms of a parameter that describes the amplitude of the convecting
state. This convection order parameter will be zero below threshold and nonzero
above. A variety of near-threshold phenomena have been treated successfully using
such amplitude equations.

Now consider a nonlinear system already in a state with an overall, regular pattern:
for example, a sequence of straight convection rolls in a large box or the rectangular
arrangement of convection cells in Fig. 16c. Let this pattern be described by a dominant
wave vector (or vectors) that we call ko. Many patterns close to the initial one can
be studied by considering slow spatial and temporal modulation of ko. The resulting
phase equations can be viewed as the nonequilibrium analogs of hydrodynamics since
they apply to low-frequency, long-wavelength motions near a given state. Again, such
phase equations have been used to analyze many specific fluid flows.

Prototype equations, although perhaps motivated by specific fluid motions, are
not necessarily strictly derivable from the fundamental Navier-Stokes equations but
rather are intended to capture the essence of certain nonlinear effects. More precisely,
prototype equations often serve as a means of gaining insight into competing nonlinear
effects and are thus extremely important in developing analytic understanding. The
Korteweg-deVries equation (Eq. 10), which played a central role in the discovery
of solitons, can be viewed as an example of a prototype equation. That it is also
derivable for surface waves in shallow, narrow channels is an added bonus. Similarly,
the Kuramoto-Sivashinsky (KS) equation (Eq. 28)—is another prototype equation.

Very recently, pattern formation in convecting fluid flows in large containers
has been studied using the Kolmogorov-Spiegel-Sivashinsky, or KSS, equation—a
generalization of the original KS equation. Because some very interesting results about
the interplay of coherent structures and chaos have come from these studies, I will use
the KSS equation to illustrate the prototype-equation technique.

The specific form of the equation is
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This equation models large-scale
unidirectional flow. An example is the Kolmogorov flow in which an effectively two-
dimensional viscous fluid is subjected to a unidirectional external force field periodic
in one of the spatial directions. Such a flow can be realized in the laboratory using thin
layers of electrolytic fluids moving in a periodic magnetic field.

local derivative for the fluid motion, ,8@ represents the classical linear damping of

unfamiliar form, and the last terms describe viscosity effects.
One can see the role of the local and convective derivative terms more directly

by differentiating Eq. 31 with respect to x and considering the gradient of the stream

the Korteweg-deVries equation (Eq. 10). Note that the convective term in Eq. 31

correctly suggesting that this term leads to a flow of energy from large to small spatial
scales.

A careful examination of the viscosity effects-given by the final three terms in
Eq. 3 l—reveals the interplay and competition essential to the pattern-forming properties

sign for stable diffusion and hence leads to an exponential growth of the solution for all

exhibits the linear instability that leads to rapid growth. This negative viscosity region
causes a flow of energy from small to larger spatial scales and thus creates the coherent
structures observed in the equations. In turn, the growth of these structures is limited
by the nonlinear terms-in particular, by the convective derivative terms-and the
resulting competition between the negative viscosity and convective terms provides a
mechanism for energy to cycle back and forth between small and large scales. Finally,

dissipation of energy at small scales.
For the KSS equation, recent analytic studies have shown that the full partial

differential equation is strictly equivalent to a set of coupled ordinary differential
equations corresponding to a finite-dimensional dynamical system. Further, the phase-
space dimension of this dynamical system is proportional to the number of linearly
unstable modes and hence increases linearly with the length of the system L. In addition,
the finite dynamical system possesses a universal strange attractor with fractal dimension
also proportional to L. These results are concrete examples of the mode-reduction
program, and their attainment in an equation involving local negative viscosity effects
marks a step forward in analytic understanding of turbulence. However, as in the case
of the KS equation, the results are not of themselves sufficient to identify the natural
coherent structures that arise in Eq. 31 nor to relate them directly to the reduced modes.

To search for the coherent structures, extensive numerical simulations of the KSS

black cross-hatched structures are regions of (spatially homogeneous) chaos. Note that,
with the horizontal axis representing time and the vertical axis representing position,
these regions often propagate through the system, as indicated by the diagonal “motion”
of the cross-hatched areas.

The most striking features in Fig. 19 are the orange horizontal bands, which
intermittently appear and disappear at various locations and times within the system.
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These are relatively quiescent, large-scale spatial subdomains and are the candidates for
the coherent structures. Notice that the propagating chaotic regions do not penetrate
these structures. However, as suggested in particular by the region around the long-lived
coherent structure in the lower right comer, one may be able to describe interactions
of the propagating chaotic regions with the coherent structures. Such interactions may
involve phase shifts (as in the case of solitons) as well as creation and annihilation of
both the propagating chaos and the coherent structures. At present, these and related

THE KSS SYSTEM

Fig. 19. This solution of the KSS equation

in Eq. 31) has both regions of chaos (cross-

hatched) and regions of relatively quiescent

behavior (orange). Since time is represented

by the horizontal axis and the spatial vari-

able by the vertical axis, the diagonal ‘mo-

tion” of crosshatched areas represents prop-

agation of these chaotic regions through the

system. (Photo courtesy of Basil Nicolaenko

and Hughes Chate, Los Alamos National Lab-

oratory.)

questions are under active investigation.
From our discussion it is clear that, although exciting results are beginning to

appear, development of the paradigm of complex configurations and pattern formation
will occupy researchers in nonlinear science for years to come. It is perhaps of interest
to suggest a few of the broad questions that must be addressed.

● To what extent can the complex structures and patterns be thought of as superposi-
tions of coherent structures, and in what “space” can these structures be superposed? In
this regard, we know that for weakly perturbed soliton-bearing systems, the appropri-
ate space in which approximate superposition holds is the inverse scattering transform
space. Further, some recent studies suggest that certain turbulent flows can usefully be
decomposed as sums of terms, each having vorticity parallel to the velocity.
● What is the dynamics of competition among patterns? How does this competition
depend on the nature of the interactions among individual coherent structures? For what
systems can one view the different patterns as local minima in a “pattern accessibility”
space? What can one say about the basins of attraction in this space?
● In systems with constrained geometry-such as the fluid experiment of Figs. 15
and 16---can one understand quantitatively the observed selection of more symmetric
patterns over less symmetric ones? Here the analogy to pinning phenomena in solid
state systems may be useful.
● For what pattern-forming systems can one construct a hierarchy of equations in
which successive levels of approximation lead downward from the Navier-Stokes equa-
tions through an approximate partial differential equation to a finite set of coupled or-
dinary differential equations? How can one match the solutions across various levels
of this hierarchy? Such matching will be essential, in particular to understand what
happens when the effective equations lower in the hierarchy break down.
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● What can one say about pattern formation in fully-developed, three-dimensional
turbulence? For the full Navier-Stokes equations, can anything analogous to the
competing mechanisms in the KSS equation be identified, so that both a cycle involving
a flow of energy from large to small spatial scales and the re-emergence of large-scale
coherent structures can exist? If so, this cycle could form the basis for a “turbulence
engine,” which would explain at least the major features of transport in turbulent flows.

Since most of our remarks have focused on problems in fluid dynamics, it is im-
portant to re-emphasize the broad impact of our last paradigm. The complex fractal
structures observed in ceramic cracks and in oil recovery problems, although treated
for convenience in our discussion of fractals, are, in fact, more accurately viewed
as examples of patterns. Similarly, dendritic growth is a solidification process criti-
cally dependent on a pattern selection mechanism that is itself exquisitely sensitive to
anisotropy and extrinsic noise. The development of mesoscale textures—that is, pat-
terns larger than the atomic scale but yet not macroscopic—remains an important issue
for metallurgy.

In fact, in the microscopic theories of solid state materials, the mechanism under-
lying pattern dynamics is a question not yet fully resolved. Here, in distinction to the
case of fluids, one does not have a fundamental model such as the Navier-Stokes equa-
tions to rely on, so one cannot naively assume diffusive coupling among the patterns.
Instead, a variety of possible mechanisms must be looked at closely.

In biology, pattern formation and selection is ubiquitous, with applications from
the cellular to the whole organism level. And in ecology, nonlinear reaction-diffusion
equations suggest spatial patterns in predator-prey distributions and in the spread of
epidemics.

To conclude this section, I will look at an intriguing feature of nonlinear pattern-
forming systems—the property of pattern self reproduction-using a cellular automaton.
Cellular automata are nonlinear dynamical systems that are discrete in both space and
time and, importantly, have, at each site, a finite number of state values (allowed
values of the dependent variable). Such systems were invented, and first explored,
by John von Neumann and Stan Ulam. Currently, they are being studied both for
their fascinating intrinsic properties and for a number of applications, including pattern
recognition. They are also being used as novel computational algorithms for solving
continuum partial differential equations (see “Discrete Fluids” for the example of lattice-
gas hydrodynamics).

Figure 20 shows four stages in the growth of a self-reproducing pattern found in
a cellular atuomaton with eight possible states per site. At each step in time, the new
state of a given cell is determined by a small set of rules based on the current state of
the cell and the state of its nearest four neighbors on a square lattice. The particular
pattern shown generates copies of itself, forming a colony. On an infinite lattice the
colony would continue to grow forever. Despite its simplicity and the rigidity of its
predetermined rules, the self-reproduction of this automaton is intriguingly reminiscent
of the development of real organisms, such as coral, that grow in large colonies.

The Future of Nonlinear Science

From the many open questions posed in the previous sections, it should be clear that
nonlinear science has a bright and challenging future. At a fundamental level issues such
as the scaling structure of multifractal strange sets, the basis for the ergodic hypothesis,
and the hierarchy of equations in pattern-forming systems remain unresolved. On the
practical side, deeper understanding of the role of complex configurations in turbulent
boundary layers, advanced oil recovery, and high-performance ceramics would provide
insight valuable to many forefront technologies. And emerging solutions to problems
such as prediction in deterministically chaotic systems or modeling fully developed
turbulence have both basic and applied consequences. Further, the nonlinear revolution
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promises to spread to many other disciplines, including economics, social sciences, and
perhaps even international relations.

If, however, one had to choose just one area of clearest future opportunity, one
would do well to heed another of Stan Ulam well-known bons mots:

“Ask not what mathematics can do for biology,
Ask what biology can do for mathematics. ”

CELLULAR AUTOMATON

Fig. 20. This cellular automaton consists of a

grid of square cells with each cell able to take

on any of eight possible states (indicated by

different colors). (a) The basic building block

of a repeating pattern for this automaton is

a hollow square occupying an area of 10 by

15 cells with a tail that develops (b) until it

produces a second hollow square. (c) The

pattern continues to grow in time until (d) it

has produced a large colony of the original

pattern. (Figures courtesy of Chris Langton,

Los Alamos National Laboratory.)

If we replace “mathematics” with “nonlinear science,” Stan’s comment becomes even
more appropriate to the present situation. We have already seen the beginnings of
an understanding of many aspects of morphology, from fractal structures in ferns to
nonlinear pattern-selection models for human digits. Similarly, the role of chaos in
biological cycles, from heartbeats to cell densities, is rapidly being clarified. And the
basic observation that incredibly complex behavior—including both pattern formation
and self-reproduction-can emerge in systems governed by very simple rules has
obvious implications for modeling biological phenomena.

But the greatest challenge is clearly to understand adaptation, learning, and evo-
lution. Adaptive complex systems will have features familiar from conventional dy-
namical systems, including hierarchical structures, multiple basins of attraction, and
competition among many metastable configurations. In addition, they must also have a
mechanism for responding to, and taking advantage of, changes in their environment.

One approach to adaptation is to construct an explicit temporal hierarchy: one
scale describes the actual dynamics and a second, slower time scale allows for changes
in the nonlinear equations themselves. Models for the human immune system and for
autocatalytic protein networks are among the prospective initial applications for this
concept.

A second approach to adaptation, sometimes termed connectionism, is based on
the idea that many simple structures exhibit complex collective behavior because of
connections between the structures. Recent specific instances of this approach include
mathematical models called neural networks. Although only loosely patterned after
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true neurological systems, such networks show remarkable promise of being able to
learn from experience. A related set of adaptive models, called classifier systems, show
an ability to self-generate a hierarchy of behavioral rules: that is, the hierarchy is not
placed a priori into the system but develops naturally on the basis of the system’s
experience. In general, connectionist models suggest a resolution of the long-standing
issue of building a reliable computer from unreliable parts.

In all these future developments, the tripartite methodology incorporating experi-
mental mathematics, real experiments, and novel analytic approaches will continue to
play a critical role. One very exciting prospect involves the use of ultraspeed interactive
graphics, in which enormous data sets can be displayed visually and interactively at
rates approaching the limits of human perception. By using color and temporal evo-
lution, these techniques can reveal novel and unexpected phenomena in complicated
systems.

To insure the long-term success of nonlinear science, it is crucial to train young
researchers in the paradigms of nonlinearity. Also, interdisciplinary networks must be
fostered that consist of scholars who are firmly based in individual disciplines but are
aware of, and eager to understand, developments in other fields.

In all these respects, nonlinear science represents a singularly appropriate intel-
lectual legacy for Stan Ulam: broadly interdisciplinary, intellectually unfettered and
demanding, and—very importantly-fun. ■
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