he invention of a totaly dis-

crete model for natural phenom-

ena was made by Ulam and von

Neumann in the early fifties and
was developed to the extent possible at
the time. A few years earlier von Neu-
mann had designed the architecture for
the first serial digital computers contain-
ing stored programs and capable of mak-
ing internal decisions. These machines
are built of electronic logic devices that
understand only packets of binary bits.
Hierarchies of stored trandlators arrange
them into virtual devices that can do or-
dinary or radix arithmetic at high speed.
By transcribing continuum equations into
discrete form, using finite difference tech-
niques and their variants, seria digital
computers can solve complex mathemat-
icad systems such as partial differential
equations. Since most physical systems
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PART |

BACKGROUND FOR
LATTICE GAS AUTOMATA

The lattice gas automaton is an approach

to computing fluid dynamics that is still
in its infancy. In this three-purr article
one of the inventors of the model presents
its theoretical foundations and its promise
as a general approach to solving partial
differential equations and to parallel com-
puting. Readers less theoretically inclined
might begin by reading “ Calculations Us-
ing Lattice Gas Techniques’ at the end
of Part Il. This sidebar offers a summary
of the model’s advantages and limitations
and a graphic display of two- and three-
dimensional lattice gas simulations.

with large numbers of degrees of freedom

can be described by such equations, se-
rial digital machines equipped with large

T

memories have become the standard way
to ssimulate such phenomena.

As the architecture of serial machines
developed, it became clear to both Ulam
and von Neumann that such machines
were not the most natural or powerful
way to solve many problems. They were
especially influenced by biological exam-
ples. Biological systems appear to per-
form computational tasks using methods
that avoid both arithmetical operations
and discrete approximations to continu-
ous systems.

Though motivated by the complex in-
formation processing of biological sys-
tems, Ulam and von Neumann did not
study how such systems actually solve
tasks. Biological processes have been
operating in hostile environments for a
long time, finding the most efficient and
often devious way to do something, a
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way that is also resistant to disturbance
by noise. The crucia principles of their
operation are hidden by the evolutionary
process. Instead, von Neumann chose
the task of simulating on a computer the
least complex discrete system capable of
self-reproduction. It was Ulam who sug-
gested an abstract setting for this problem
and many other totally discrete models,
namely. the idea of cellular spaces. The
reasoning went roughly like this.

The question is simple: Find a mini-
mal logic structure and devise a dynam-
icsfor it that is powerful enough to simu-
late complex systems. Break this up into
a series of sharper and more elementary
pictures. We begin by setting up a collec-
tion of very simple finite-state machines
with, for simplicity, binary values. Con-
nect them so that given a state for each
of them, the next state of each machine
depends only on its immediate environ-
ment. In other words, the state of any
machine will depend only on the states
of machines in some small neighborhood
around it. This builds in the constraint
that we only want to consider local dy-
namics.

We will need rules to define how states
combine in a neighborhood to uniquely
fix the state of every machine, but these
can be quite smple. The natural space
on which to put al this is a lattice, with
elementary, few-bit, finite-state machines
placed at the vertices. The rules for up-
dating this array of small machines can
be done concurrently in one clock step,
that is, in paraldl.

One can imagine such an abstract ma-
chine in operation by thinking of a fishnet
made of wires. The fishnet has some reg-
ular connection geometry, and there are
lights at the nodes of the net. Each light
can be on or off. Draw a disk around
each node of the fishnet, and let it have a
I-node radius. On a sguare net there are
four lights on the edge of each disk, on
a triangular net six lights (Fig. 1). The
next state of the light at the center of the
disk depends on the state of the lights on
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CELLULAR SPACES

Fig. 1. Two examples of fishnets made of wires
with lights at the nodes. The lights are either
on or off. In each example a disk with a radius
of 1 node is drawn around one of the lights.
The next state of the light at the center de-
pends on the states of the lights on the edge of
the disk and on nothing else. Thus these are
examples of nearest-neighbor-connected cel-
lular spaces.

N

the edge of the disk and on nothing else.
Imagine all the disks in the fishnet ask-
ing their neighbors for their state at the
same time and switching states accord-
ing to a definite rule. At the next tick of
an abstract clock, the pattern of lights on
the fishnet would in general look differ-
ent. Thisiswhat Ulam and von Neumann
caled a nearest-neighbor-connected cel-
lular space. It is the simplest case of a
parallel computing space. You can aso
see that it can be imaged directly in hard-
ware, so it is aso the architecture for a
physical paralel computing machine.
We have not shown that such a device
can compute. At worgt, it is an elaborate
light display. Whether or not such a
cellular space can compute depends on

the definition of computation. The short
answer is that special cases of fishnets
are provably universal computers in the
standard Turing machine sense; that is,
they can simulate the architecture of any
other sequential machine.

But there are other interpretations of
computation that lie closer to the idea of
simulation. For any given mathematical
situation, we want to find the minimum
cellular space that can do a simulation of
it: At what degree of complexity does
repeated iteration of the space, on which
are coded both data and a solution algo-
rithm, possess the power to come close to
the solution of a complex problem? This
depends on the complexity or degrees of
freedom present in the problem.

An extreme case of complexity is phys-
ical systems with many degrees of free-
dom. These systems are ordinarily de-
scribed by field theories in a continuum
for which the equations of motion are
highly nonlinear partial differential equa-
tions. Fluid dynamics is an example, and
we will use it as a theoretical paradigm
for many “large” physical systems. Be-
cause of the high degree of nonlinearity,
analytic solutions to the field equations
for such systems are known only in spe-
cia cases. The standard way to study
such models is either to perform experi-
ments or simulate them on computers of
the usual digital type.

Suppose a cellular space existed that
evolved to a solution of a fluid system
with given boundary conditions. sup-
pose aso that we ask for the simplest
possible such space that captured at least
the qualitative and topological aspects of
a solution. Later, one can worry about
spaces that agree quantitatively with or-
dinary simulations. The problem is three-
fold: Find the least complex set of rules
for updating the space; the simplest ge-
ometry for a neighborhood; and a method
of analysis for the collective modes and
time evolution of such a system.

At first sight, modeling the dynamics of
large systems by cellular spaces seems far
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too difficult to attempt. The genera prob-
lem of a so-called “inverse compiler”-
given a partial differential system, find
the rules and interconnection geometry
that give a solution—would probably use
up a non-polynomial function of comput-
ing resources and so be impractical if not
impossible. Nevertheless cellular spaces
have been actively studied in recent years.
Their modern name is cellular automata,
and specific instances of them have sim-
ulated interesting nonlinear systems. But
until recently there was no example of a
cellular automaton that simulated a large
physical system, even in a rough, quali-
tative way.

Knowing that specia cases of cellu-
lar automata are capable of arbitrarily
complex behavior is encouraging, but not
very useful to a physicist. The impor-
tant phenomenon in large physical sys-
tems is not arbitrarily complex behav-
ior, but the collective motion that de-
velops as the system evolves, typically
with a characteristic size of many ele-
mentary length scales. The problem is to
simulate such phenomena and, by using
simulations, to try to understand the ori-
gins of collective behavior from as many
points of view as possible. Fluid dy-
namics is filled with examples of collec-
tive behavior—shocks, instabilities, vor-
tices, vortex streets, vortex sheets, tur-
bulence, to list a few. Any determin-
istic cellular-automaton model that at-
tempts to describe non-equilibrium fluid
dynamics must contain in it an itera
tive mechanism for developing collec-
tive motion. Knowing this and using
some very basic physics, we will con-
struct a cellular automaton with the ap-
propriate geometry and updating rules for
fluid behavior. It will also be the sim-
plest such model. The methods we use
to do this are very conservative from the
viewpoint of recent work on cellular au-
tomata, but rather drastic compared to
the approaches of standard mathematical
physics. Presently there is a large gap
between these two viewpoints. The sim-
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ulation of fluid dynamics by cellular au-
tomata shows that there are other comple-
mentary and powerful ways to model phe-
nomena that would normally be the exclu-
sive domain of partial differentia equa-
tions.

The Example of Fluid Dynamics

Fluid dynamics is an especialy good
large system for a cellular automaton for-
mulation because there are two rich and
complementary ways to picture fluid mo-
tion. The kinetic picture (many simple
atomic elements colliding rapidly with
simple interactions) coincides with our in-
tuitive picture of dynamics on a cellular
space. Later we will exploit this analogy
to construct a discrete model.

The other and older way of approach-
ing flow phenomena s through the partial
differential equations that describe col-
lective motions in dissipative fluids-the
Navier-Stokes equations. These can be
derived without any reference to an un-
derlying atomic picture. The derivation
relies on the idea of the continuum; it
is simpler to grasp than the kinetic pic-
ture and mathematically cleaner. Because
the continuum argument leads to the cor-
rect functional form of the Navier-Stokes
equations, we spend some time describ-
ing why it works. The continuum view
of fluids will be called “coming down
from above,” and the microphysical view
“coming up from below” (Fig. 2). In
the intersection of these two very differ-
ent descriptions, we can trap the essential
elements of a cellular-automaton model
that leads to the Navier-Stokes equations.
Through this review we wish to show that
cellular automaton models are a natural
and evolutionary idea and not an inven-
tion come upon by accident.

Coming down from Above—
The Continuum Description

The notion of a smooth flow of some
quantity arises naturally from a contin-

Discrete Fluids

uum description. A flow has physical
conservation laws built-in, at least con-
servation of mass and momentum. With
afew additional remarks one can include
conservation of energy. The basic strat-
egy for deriving the Euler and Navier-
Stokes equations of fluid dynamics is to
imbed these conservation laws into state-
ments about special cases of the gen-
eralized Stokes theorem. We use the
usual Gauss and Stokes theorems, de-
pending on dimension, and apply them
to small surfaces and volumes that are
till large enough to ignore an underly-
ing microworld. The equations of fluid
dynamics are derived with no reference
to a ball-bearing picture of an underly-
ing atomic world, but only with a serene
reliance on the idea of a smooth flow
in a continuum with some of Newton's
laws added to connect to the observed
world. As a model (for it is not a the-
ory), the Navier-Stokes eguations are a
good example of how concepts derived
from the intuition of daily experience can
be remarkably successful in building ef-
fective phenomenological models of very
complex phenomena. It is useful to go
through the continuum derivation of the
Euler and Navier-Stokes equations pre-
sented in “The Continuum Argument” for
severa reasons: Firdt, the reasoning is
short and clear; second, the concepts in-
troduced such as the momentum flux ten-
sor, will appear pervasively when we pass
to discrete theories of fluids; third, we
learn how few ingredients are really nec-
essary to build a fluid model and so mark
out that which is essential—the role of
conservation laws.

It is clear from its derivation that the
Euler equation describing inviscid flows
is essentially a geometrical equation. The
extension to the full Navier-Stokes equa-
tions, for flows with dissipation, contains
only aminimal reference to an underlying
fluid microphysics, through the stress-rate
of strain relation in the momentum stress
tensor. So we see that continuum reason-
ing alone leads to nonlinear partial differ-
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ential equations for large-scale physical
observable that are a phenomenological
description of fluid flow. This description
is experimentally quite accurate but the-
oretically incomplete. The coupling con-
stants that determine the strength of the
nonlinear terms-that is, the transport co-
efficients such as viscosity—have a direct
physical interpretation in a microworld
picture. In the continuum approach how-
ever, these must be measured and put in
as data from the outside world. If we do
not use some microscopic model for the
fluid, the transport coefficients cannot be
derived from first principles.

Solution Techniques—The Creation
of a Microworld. The Navier-Stokes
equations are highly nonlinear; this is
prototypical of field-theoretical descrip-
tions of large physical systems. The non-
linearity allows analytic solutions only
for specia cases and, in genera, forces
one to solve the system by approximation
techniques.  Invariably these are some
form of perturbation methods in what-
ever small parameters can be devised.
Since there is no systematic way of apply-
ing perturbation theory to highly nonlin-
ear partia differential systems, the anal-
ysis of the Navier-Stokes equations has
been, and till remains, a patchwork of
ingenious techniques that are designed to
cover special parameter regimes and lim-
ited geometries.

After an approximation method is cho-
sen, the next step toward a solution is to
discretize the approximate equations in a
form suitable for use on a digital com-
puter. This discretization is equivalent to
introducing an artificial microworld. Its
particular form is fixed by mathematical
considerations of elegance and efficiency
applied to simple arithmetic operations
and the particular architecture of avail-
able machines. So, even if we adopt the
view that the molecular kinetics of afluid
is unimportant for describing the genera
features of many fluid phenomena, we are
nevertheless forced to describe the sys-
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and the atomic picture lead to the Navier-
Stokes equations but not without approxima-

Both the continuum view of fluids

tem by a microworld with a particular
microkinetics. The idea of a partial dif-
ferential equation as a physical model is
tied directly to finding an analytic solu-
tion and is not particularly suited to ma-
chine computation. In a sense, the geo-
metrically motivated continuum picture is
only a clever and convenient way of en-
coding conservation laws into spaces with
which we are comfortable.

tions (dashed lines). The text emphasizes how
cellular-automaton models embody the essen-
tials of both points of view.

Coming up from Below—
The Kinetic Theory Description

Kinetic theory models a fluid by us
ing an atomic picture and imposing New-
tonian mechanics on the motions of the
atoms. Atomic interactions are controlled
by potentials, and the number of atomic
elements is assumed to be very large.

This attempt at fluid realism has an imme-
Continued on page 181
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THE
CONTINUUM
ARGUMENT

identify with the velocity of a “macroscopic” fluid cell. The cel is not small
enough to notice a particle structure for the fluid, but it is small enough to be

treated as a mathematical point and still agree with physics.
To derive the properties of aflow defined by the vector field, one now invokes the

generalized Stokes theorem: ) )
jg A= f dA,
ax b

where ¥ is a generalized surface or volume, 9% the boundary of X, A an r-differential
form and dA an (n + 1)-differential form. This very general theorem has two familiar
forms: one is the classical Stokes theorem from one to two dimensions,

7{ A-dl= 7{VXA~dS,
Jax Je

I etv(x,t) beavector-valued field referred to a fixed origin in space, which we

and the other is the Gauss law from two to three dimensions,

7{ A~dS=/(V~A)dV,
% b))

where £ is a curve, S is a surface, and V is a volume in three-dimensional Euclidean
-_—
space R”.

Conservation Laws and Euler’s Equation. First, we deal with the idea of continu-
ity, or conservation of flow. If p is the density, or mass per unit volume, then the mass
of the fluid in volume V (that is, ¥), is equal to fz pdV . A two-dimensional surface
in R? has an outward normal vector n which is defined to be positive. The total mass
of fluid flowing out of a volume ¥ can be written as

pv-dS =
a%

Continuity of the fiow implies a balance between the flow through the surface and the
loss of fluid from the volume. That is, the decrease in mass in the volume must equal
the outflow of fluid mass through the surface of the volume, which implies by the Gauss
law that

pv ndsS.

r r
pv-dS = —a,/ pdV = / V- (pv)dV.
) py by
This gives the first evolution equation for a fluid, the continuity, or mass-conservation,
equation:
Op+V - (pv)=0. (1

Now we introduce the idea of pressure p as the force exerted by the fluid on a
unit surface area of an enclosed volume and use Newton’s second law, F = ma. The
total force acting on a volume of fluid due to the remainder of the fluid is given by
- faz pdS. Using Stokes theorem we can write

f f
- pdS =— f VpdV.
% b
The translation of F = ma to a continuous medium is
—Vp = pdv/dt,
where dv/dt is a total derivative. The chain rule on dv(x,t)/dt gives
pdv/dt = p{O,v+v-Vv}
thsutunno this result into the e

dissipation-free fluid:
1
ov=—(v-V)v— ;Vp. 2)
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One can generalize Euler’s equation to a form more useful for a dissipative fluid.
For this we look at the flux of momentum through a fluid volume. The momentum of
fluid passing through an element dV is pv, and its time rate of change expressed in
components is

O, (pvi) = (O, p)vi + p(Ov)).

We can rewrite 8,p and 8,v; as spatial derivatives by using Eqs. 1 and 2. Then

Oi(pvi) = =0Ty, (3)
THE where the momentum flux tensor Il;; = péix + pvivi.
The meaning of the momentum flux tensor can be seen immediately by integrating
ggg[T]II\I:[IgIEIJ’lM Eqg. 3 and applying Stokes theorem.
(continued) d, / pvidX = — / 8 IlpdS =— ¢ TLimdsS.
= b I)>

So
6,/ pvidV = — I;xnds, .
b oz

where the left-hand side is the rate of change of the ith component of momentum pv;
in the volume and II;;n;d% is the ith component of momentum flowing through dS§.
Therefore, II;; is the ith component of momentum flowing in the 4th direction. This
is more easily seen by writing

ILixny = pbixne + pvivem = pn + pv(v - n).

Equations 1, 2, and 3 are the basic formalism for classical Newtonian ideal fluids (fluids
with no dissipation) and are also true for flows in general.

Classical Dissipative Fluids—The Navier-Stokes Equations. The general Euler’s
equation is 8;(pv;) = — 8, I1;;, where IT;; is now the momentum stress tensor. The form
of this tensor changes if the fluid is dissipative, for example, if viscous forces convert
the energy in the flow into heat. Traditionally, IT;; is modified in the following way.
Take IT;x = pdix + pv;vi and introduce an unknown tensor o}, that describes the effects
of viscious stress. Then rewrite the momentum stress tensor as
ik = pbis + pViVe — pOiy = Oig + PViVi,
where o, = péix — po!, is called the stress tensor and o}, the viscosity stress tensor.
The form of o, can be deduced on general grounds. First we assume that the
gradient of the velocity changes slowly so oy is linear in 8,v;. Moreover, o}, is zero
for v = 0, and under rotation it must vanish since uniform rotation produces no overall
transport of momentum. The unique form that has these properties is

Ut{k = a(akvi + 6,~vk) + b&,‘kaj\’j,
where a and b are unknown coefficients. It is usually written in the form
O'I-Ik =v(Ovi — OV — 2/35;k6jv]-) + C&,-kajvj,

where v is the kinematic shear viscosity and ¢ is the kinematic bulk viscosity.
For an incompressible fluid (the density is constant so p = pp) this tensor simplifies,
and Euler’s equation goes over to the incompressible Navier-Stokes equations:

1
6,v+(v-V)v=—;Vp+vV2v and V-v=0.
In tensor notation we have
6v-+(v-6-)v-——16- +Viv- and Ovy =0
tVi ]]l_plp akakl kVk — VY.

In Part II we end the theoretical discussion of the lattice gas by giving the
incompressible limit of the lattice gas Navier-Stokes equations. m
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continued from page 178

diate difficulty. We are unable to specify
completely the initial state of the system
or to follow its microdynamics. It fol-
lows that we cannot use a microdynamics
that is this detailed. The obvious strategy
is to make a smoothened model that re-
duces the number of degrees of freedom
in the system to just a few. This reduc-
tion assumes maximum ignorance of the
details of the system below some time and
distance scale and replaces exact data on
events by probabilistic outcomes. Mea-
surements are assumed to be average val-
ues of quantities over large ensembles of
representative systems. The assumption
is that after a sufficiently long time these
average observables are a close descrip-
tion of the fluid.

This approach seems very familiar and
obvious from elementary courses in sta-
tistical mechanics. But it is unclear how
to go from a statistical-mechanical de-
scription of an atomic system to the pre-
diction of the details of collective motions
that come from the evolution of that sys-
tem. Fidelity to the atomic picture brings
with it considerable mathematical diffi-
culties. As we will see below and in
“The Hilbert Contraction,” the success of
the derivation of the Navier-Stokes equa-
tions from the kinetic theory picture—
that one derives the Navier-Stokes equa-
tions with the correct coefficients and not
some other macrodynamics—is justified
after the fact.

Kinetic Theory and the Boltzmann
Transport Equation. Complete infor-
mation on the statistical description of a
fluid or gas at, or near, thermal equi-
librium is assumed to be contained in
the one-particle phase-space distribution
function f(¢t,r,I') for the atomic con-
stituents of the system. The variables
t and r are the time and space coordi-
nates of the atoms and I' stands for all
other phase-space coordinates (for exam-
ple, momenta). In this rapid overview of
kinetic transport theory, we will not dwell
on the many and difficult questions raised
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by this description but keep to a level of
precision consistent with a general under-
standing of the basic ideas.

The distribution function fis basically
aweighting function that is used to define
the mean values of physical observable.
The relation

Nom)z/fmnryw (1)

defines the density function N(¢,r) for
the particles in the system over all space.
Therefore NdV is the mean number of
particles in the volume dV . Here dV is
a physical volume o L? whose character-
istic length L is much larger than /,,, the
mean free path of a particle, and much
smaller than L., some global length, such
as the edge of a container for the whole
gas. Thus /,, K L L L.

The basic equation of kinetic theory
is the evolution equation for f(¢,r,I') in
the presence of gas collisions. Imagine
first that the system has no collisions.
Conservation of phase-space volumes, or
Liouville’s theorem, tells us that

@
=0 @)

where d/dt is a total derivative. In an
isolated system with no externa fields,
we can expand the total derivative as

% =3ff+v-Vf 58,f+v,~8,-f. (3)
‘We use the convention that repeated in-
Jdices are summed over.) Equation 3 de-
fines the free-streaming operator, which
:epresents the local change in f per unit
ime caused by the independent motion of
sarticles alone.

Now imagine a simple isolated gas
with collisions. If C(f) is a function that
models the rate of change of the distribu-
ion function f caused by collisions, then
C(f)dvdr is the rate of change per unit
ime of the number of molecules in the
shase-space volume element dVdI'. The

Discrete Fluids

Liouville statement now is modified to
become the transport equation:
df
2 =, 4
where C (f) is in general a highly nonlin-
ear function of f.

Boltzmann first gave a simple approx-
imation for the collision operator, which
can be thought of as a gain-minus-loss
(G— L) operator. A straightforward phys-
ical argument defining its general struc-
ture is presented below and is due to Lan-
dau.

The Boltzmann Form of the Collision
Term. Let the particles in a two-body
collision process have incoming distribu-
tion functions g; and g, and outgoing dis-
tribution functions g, and g,. Fixing at-
tention on particle 1, assume that before
colliding it occupies a phase-space region
dI'y, and after collision it occupies diy;
similarly, particle 2 occupies dI', before
colliding and dT' afterwards. If particle
1 undergoes a collision, 4T"; will not in
general be in dT'y, and particle 1 is said
to be lost from dI'y. From these consid-
erations we can compute the functional
structure of the general loss term for a
binary collision.

The probability of loss will be propor-
tional to the product of four terms: (1)
the number of particles of type 1 already
in the volume, namely g;; (2) the num-
ber of type-2 particles that enter the vol-
ume from some phase-space range dI';,
namely, g.dT'»; (3) the total volume of
allowed outgoing phase space, d[",dl5;
and finally (4) a probability for the colli-
sion process P,{I'}. Now we sum over
all possible allowed volumes of phase
space. So the total number of losses £
in the volume 4V and from dI' due to
binary collision processes is

L= dVdF/Pg{F}glgz dFQdf[sz

Similarly, particle gain into the phase
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space volume 41’ can only come from re-
versed channel processes g1, 8> — €1, 82,
with fixed [';, and summed over all of f] s
[, and T, so

G=dvdT /Pg{r}gngarrzarf,df2

The Boltzmann form for C(f) is the net
flow into the region, which is G — £. Us-
ing this form, we get the Boltzmann trans-
port equation, a highly nonlinear integro-
differential equation:
%z@,f+v,~8,-f:(j—£. (5)
In Part II we will use the same reason-
ing to construct the Boltzmann equation
for the discrete lattice gas. The explicit
form of the lattice gas collision operator
is much simpler than in standard kinetic
models.

Note that the Boltzmann form for the
(G — £) collision term implicitly assumes
only two-body collisions. It also as-
sumes the collisions are pairwise statis-
tically independent events occurring at
a single point with detailed, or at most
semi-detailed, balance symmetry for col-
lision probabilities.

Solutions to the Boltzmann Trans-
port Equation. Even though the Boltz-
mann equation is intractable in general,
by using entropy arguments (Boltzmann’'s
H theorem), the following can be stated
about possible functional formsfor ¥, the
one-particle distribution function. If the
system is uniform in space, any form for
T will relax monotonically to the global
Maxwell-Boltzmann form:

fglobal ~ peiE(p"V)/Ta

in which the macroscopic variables p,
v, and T (density, macrovelocity, and
temperature) are independent of position,
or global. In the non-equilibrium case,

with a soft space dependence, any distri-
bution function will relax monotonically
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squation is mathematically meaningful is

where N is the number of particles,
m is the mass of each particle,

Im i1s the mean free path,
K is a constant.

RANGE OF THE BOLTZMANN TRANSPORT EQUATION

The rigorous range of physical parameters in which the Boltzmann transport

N — oc such that MmN — K

N — oo, ¢ — 0 such that (No?) — /!

o is the range of the force or the effective interaction ball,

These conditions imply a dilute gas, binary collisions, and slowly varying spatial
dependence (that is, slow space gradients). As an additional axiom we require
that there be no long-range forces in the sense of photon excitations, etc.

in velocity space to a local Maxwell-
Boltzmann form. This means that p, v,
and T will depend on space as well as
time. These local distribution functions
are solutions to the Boltzmann transport
equation. For the non-uniform case, one
gets a picture of the full solution as an en-
semble of local Maxwell-Boltzmann dis-
tributions covering the description space
of the fluid, with some gluing conditions
providing the consistency of the patching.

Recovering Macrodynamics—T'he Eu-
ler Equations. If we assume a simple
fluid and neglect all dissipative processes
(viscosity, heat transfer, etc.), we can
quickly derive the Euler equations (pre-
sented in “The Continuum Argument”)
from the Boltzmann transport equation.
But first we need the notion of average
quantities and some observations about
collisions in a dissipation-free system.
As before, let p(r,r) = [f(t,r,[)dT
be the density field of the gas. Then a
mean gas velocity v = % [v' f@t,r.D)dr,
where v’ is a microvelocity. We will use v
as a macroscopic variable that character-

izes cells whose length L in any direction
1S much, much greater than the mean tree
path in the gas, /,,; that is, L > [,,.
Since, by assumption, collisions pre-
serve conservation laws exactly, the mo-
ments of C( f), in particular the inte-
grals [C(f)dl and [v C(f)dT. are
equal to zero (similarly for any conserved
quantity). We use this fact by integrat-
ing the Boltzmann equation in two ways:
J (B.E.)dT and [ v(B.E.)dT (where B.E.
stands for the Boltzmann equation). The
first integral gives the continuity equa-
tion:
O,p+0,(pvi)=0. (6)

The second integral gives the momentum
tensor equation:

O(pvi) + O llip = 0, )

where the momentum fux tensor 1l 18
given by

H,’k = /v,-kadl“.

In order to derive the Euler equation
for ideal gases with the usua form for
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the momentum flux tensor, we need to
assume that each region in the gas has
a local Maxwell-Boltzmann distribution.
With this assumption one can show that
the momentum flux tensor in Eq. 7 has
the following form:

ILy = pvivy + .

where p is the pressure. This form of
IT;; gives the same Euler equation that we
found by general continuum arguments.
(We will see in Part Il that the form of
IT,, for the totally discrete fluid is not so
simple but depends upon the geometry of
the underlying lattice. Again by assuming
a form for the local distribution function
(the appropriate form will turn out to be
Fermi-Dirac rather than Boltzmann), 11,
will reduce to a form that gives the lattice
Euler equation.)

Recovering the Navier-Stokes Equa-
tion. The derivation of the Navier-Stokes
equation from the kinetic theory picture
is more involved and requires us to face
the full Boltzmann equation. Hilbert ac-
complished this through a beautiful argu-
ment that relies on a spatial-gradient per-
turbation expansion around some single-
particle distribution function f; assumed
to be given at . In “The Hilbert Con-
traction” we discuss the main outline of
his argument emphasizing the assump-
tions involved and their limitations. Here
we will summarize his argument. Hilbert
was able to show that the evolution of f
for times ¢t > f, is given in terms of its
initial data at #, by the first three moments
of /. namely the familiar macroscopic
variables p (density), v (mean velocity),
and 7 (temperature). In other words, he
was able to contract this many-degree-of-
freedom system down to a low-dimen-
sional descriptive space whose variables
are the same as those used in the usual hy-
drodynamical description. The beauty of
Hilbert’s proot is that it is constructive.
It explicitly displays a recursive closed
tower of constraint relations on the mo-
ments of f/ that come directly from the
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THE HILBERT CONTRACTION

he Boltzmann equation is a mi-

I croscopic equation for colliding-

gas evolution valid in a very tight
regime. It is first order in time and so
requires a complete description of the
one-particle distribution function at one
time, say ¢ = 0, after which its functional
form is completely fixed by the Boltz-
mann transport equation.

Describing the one-particle distribution
function completely is a hopeless pro-
cedure, since the amount of information
is too large. However, one wants to
recover hydrodynamics, which is essen-
tially a partial differential equation for
a macroscopic description of the fluid
at long times and distances compared to
molecular scales. So there must exist a
contraction mechanism that reduces the
number of degrees of freedom required
to describe the solution to the Boltzmann
transport equation at such long times and
distances. It is not obvious how that can
happen, but Hilbert gave a proof that is
central to understanding that it must hap-
pen and in a rather surprising way. We
will call this process the Hilbert contrac-
tion. All analyses of the Boltzmann equa-
tion are based on this contraction. We
would like to give it in detail because it
is a beautiful argument, but space forbids
this, so we outline how Hilbert reasoned.

Since we don’t know what else to do
when faced with such a highly nonlinear
system, we construct a perturbation ex-
pansion in a small variable around some
distribution function f, assumed to be
given to us at #5. Under some very mild
assumptions, and assuming the existence
of such a general perturbation expansion
in some parameter §, Hilbert was able to
show that the evolution of f for ¢t > 1 is
given in terms of its initial data at ¢, by
the first three moments of £, namely p, v,
and T. The system has contracted down
to a low-dimensional descriptive mani-
fold whose coordinates are the same vari-
ables used by the hydrodynamic descrip-
tion. The beauty of Hilbert’s proof is that

it is constructive. It explicitly displays a
recursive closed tower of constraint rela-
tions on the moments off that come di-
rectly from the Boltzmann eguation. The
proof also shows that such a contracted
description is unique—a very powerful
result.

It must be pointed out that Hilbert's
construction is on the time-evolved solu-
tion to the Boltzmann transport equation,
not on the equation itself, which till re-
quires a complete specification of f. It
amounts to a hard mathematical statement
on an effective field-theory description
for times much greater than elementary
collision times, but with space gradients
still smooth enough to entertain a serious
gradient perturbation expansion. As such,
it says nothing about the turbulent regime,
for example, where all these assumptions
fall.

In standard physics texts one can read
all kinds of plausibility arguments as to
why this contraction process should ex-
ist, but they lack force, for, by arguing
tightly, one can make the conclusion go
the other way. This is why the Hilbert
contraction is important. It is really a
powerful and mathematically unexpected
result about a highly nonlinear integro-
differential equation of very special form.
Beyond Hilbert’s theorem and within the
Boltzmann transport picture, we can say
nothing more about the contraction of de-
scriptions.

The construction of towers of moment
constraints, coupled to a perturbation ex-
pansion that Hilbert developed for his
proof of contraction, was used in a some-
what different form by Chapman and En-
skog. Their main purpose was to devise
a perturbation expansion with side con-
straints in such a way as to pick off the
values of the coupling constants-which
are called transport coefficients in stan-
dard terminology-for increasingly more
sophisticated forms of macrodynamical
equations.

One makes the usual kinetic assump-
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THE HILBERT CONTRACTION (continued)

tions: The gas reaches local equilibrium
in a collision time or so; the one-particle
distribution function has a local Maxwell-
Boltzmann form (or whatever form is ap-
propriate), call it f7; a second time scale
is assumed where space gradients are still
small, but collective modes develop at
large distances and at times much greater
than molecular collision times. Then one
assumes a general functional perturbation
expansion exists of the form

F=RQ+&P+e® 4.,

which turns out to be explicitly a spatial
gradient expansion:

f =fi(1 +c,(VAV) + (VAV)? + - -2

where ) is the mean free path in the
system and v is the macrovelocity.

The perturbation expansion is set up
so that at nth order, the correction to f,
obeys an integral equation of the form
fL.C (™) = L,, where C is the Boltzmann
collision operator and L, is an operator
that depends only on lower order spatial
derivatives. This generates a recursive
tower of relations £&" whose solubility
conditions at order n are the (n — 1)th-
order hydrodynamical equations.

For example, assume

f=fi(1+€v);
that is, we keep only 1st order in £. Then
in the Boltzmann collision term keep con-

sistently only order £ and in the stream-
ing operator put £© = f;. So we get

0
(8t + Vaaa +aq 'aTa)fL =fLC(£(1))’

which is of the form

ACED) =L,

The solubility conditions for this are that
L, must be orthogonal to the five zero
eigenmodes of C (&) = 0 (the solutions
are 1,v, and v2). These solubility condi-
tions are the Euler equation for p, v, and
T and the ideal gas equation of state. In
this way one derives a sequence of hydro-
dynamical equations with explicit forms
for the transport coefficients. Order 0
gives the Euler equation, order 1 gives
the Navier-Stokes equations, order 2 and
greater give the generalized hydrodynam-
ical equations, which have some validity
only in special situations. The expansion
is an asymptotic functional expansion, so
going beyond Navier-Stokes takes one
away from ordinary fluids rather than
closer to them. Solving explicitly for the
various £ gives a way to evaluate the
transport quantities (viscosity, etc.).

There are many other ways to do the
same thing—multiple time expansions,
dispersion methods, etc. We have devel-
oped everything so far within the con-
ceptual frame of the Boltzmann trans-
port equation. Within that framework
the problem of deriving macrodynamical
equations and associated transport coeffi-
cients reduces to tedious but straightfor-
ward linear algebra that has absorbed the
best efforts of excellent technical people
since the tumn of the century. It is a prob-
lem best suited to a computer but only
recently have algebraic processors of suf-
ficient power been available.

This asymptotic perturbation expansion
is a way to compute measurable quantities
from microdynamical properties, but the
physical insight one gains from doing it is
small. The other methods mentioned, es-
pecially correlation-function techniques,
are much more revealing. All of these
comments and approaches carry over di-
rectly to the discrete case of the lattice
gas. Nothing conceptually new arises in
the totally discrete case, but explicit cal-
culations are a great deal casier. m
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Boltzmann equation. The zero-order re-
lation gives the Euler equations and the
second-order relation gives the Navier-
Stokes equations.  However, Hilbert's
method is an asymptotic functional ex-
pansion, so that the higher order terms
take one away from ordinary fluids rather
than closer to them. Nevertheless, solv-
ing explicitly for the terms in the func-
tional expansion provides a way of eval-
uating transport coefficients such as vis-
cosity. (See the "Hilbert Contraction” for
more discussion.)

Summary of the Kinetic Theory Pic-
ture. Our review of the kinetic theory
description of fluids introduced a num-
ber of important concepts: the idea of
local thermal equilibrium; the character-
ization of an equilibrium state by a few
macroscopic observable; the Boltzmann
transport equation for systems of many
identical objects (with ordinary statistics)
in Collision; and the fact that a solution
to the Boltzmann transport equation is
an ensemble of equilibrium states. In
“The Hilbert Contraction” we introduced
the linear approximation to the Boltz-
mann equation with which one can de-
rive the Navier-Stokes equations for sys-
tems not too far (in an appropriate sense)
from equilibrium in terms of these same
macroscopic observable (density, pres-
sure. temperature, etc.). We then outlined
a method for calculating the coupling
constants in the Navier-Stokes system—
that is, the strengths of the nonlinear
terms-as a function of any particular mi-
crodynamics.

Thisreview was intended to give afla
vor for the chain of reasoning involved.
We will use this chain again in the to
tally discrete lattice world. However, just
as important as understanding the kinetic
theory viewpoint is keeping in mind its
limitations. In particular, notice that per-
turbation theory was the main tool used
for going from the exact Boltzrnann trans-
port equation to the Navier-Stokes equa-
tions. We did not discover more pow-
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erful techniques for finding solutions to
the Navier-Stokes equations than we had
before. To go from the Boltzmann to
the Navier-Stokes description, we made
many smoothness assumptions in various
probabilistic disguises; in other words,
we recreated an approximation to the con-
tinuum. It is true one could compute (at
least for relatively simple systems) the
transport coefficients, but in a sense these
coefficients are a property of microkinet-
ics, hot macrodynamics.

We are a a point where we can ask
some questions about the emergence of
macrodynamics from microscopic phys-
ics. It is clear by now that microscopic
conservation laws, those of mass, mo-
mentum, and energy are crucia in fix-
ing the form of large-scale dynamics.
These are in a sense sacred. But one
can question the importance of the de-
scription of individual collisions. How
detailed must micromechanics be to gen-
erate the qualitative behavior predicted
by the Navier-Stokes equations'? Can
it be done with simple collisions and
very few classes of them? There exists
a whole collection of equations whose
functional form is very nearly that of
the Navier-Stokes equations. What mi-
croworlds generate these? Do we have
to be exactly at the Navier-Stokes equa-
tions to generate the qualitative behavior
and numerical values that we derive from
the Navier-Stokes equations or from rea
fluid experiments? Is it possible to de-
sign a collection of synthetic microworlds
that could be considered local-interaction
board games, all having Navier-Stokes
macrodynamics? In other words, does
the detailed microphysics of fluids get
washed out of the macrodynamical pic-
ture under very rapid iteration of the de-
terministic system’? If the microgame is
simple enough to update it deterministi-
cally on a paralel machine, is the density
of states required to see everything we
see in ordinary Navier-Stokes simulations
much smaller than the density of atomsin
real physical fluids? If so, these synthetic
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1. Local Thermodynamic Equilibrium
in a Small Region Ry

Local thermodynamic ensemble is

of the form pe—E(V)/T

2. Patching of Local Ensembles Using
Microscopic Conservation Laws

INGREDIENTS FOR THE EMERGENCE OF MACRODYNAMICS

described by one-particle distribution function

S is typically on the order of a mean free path

Form of the boundary conditions
is dictated by conservation laws

S )

3. Emergence of Dynamic

Scale Separation

Sg >> Sy >> Sp
S ~ global scale
Sy ~ scale of collective motion

Sm ~ microscale

Sg

Su

Fig. 3. Three ingredients are needed for the
emergence of macrodynamics: local thermo-
dynamic equilibrium, conservation laws, and

scale separation between microkinetics and
collective motion.

microworlds become a potentially power-
ful analytic tool.

Our approach in building a cellular
space is to move away from the idea
of a fluid state and focus instead on the
idea of the macrodynamics of a many-
element system. In abstract terms, we
want to devise the simplest determinis-
tic local game made of a collection of
few-bit, finite-state machines that has the

Navier-Stokes equations as its macrody -
namical description. From our brief look
at kinetic transport theory, we can ab-
stract the essential features of such a
game (Fig. 3). The many-element sys-
tem must be capable of supporting a
notion of local thermodynamic equilib-
rium and must also include local micro-
scopic conservation laws. The state of
a real fluid can be imagined as a col-
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lection or equilibrium distribution tunc-
tions whose macroscopic parameters are
unconstrained. These distribution func-
tions have a Maxwell-Boltzmann form,
e~EwV/T If these distribution functions
are made to deviate slightly from equilib-
rium, then local conservation laws impose
consistency conditions among their pa-
rameters, which become constrained vari-
ables. These consistency conditions are
the macrodynamical equations necessary
to put a consistent equilibrium function
description onto the many-element sys-
tem. In physica fluids they are the
Navier-Stokes equations. This is the gen-
eral setup that will guide us in creating a
lattice model.

Evolution of Discrete
Fluid Models

Continuous Network Models. The Na-
vier-Stokes eguations, however derived,
are analytically intractable, except in a
few special cases for especialy clean ge-
ometries.  Fortunately, one can avoid
them altogether for many problems, such
as shocks in certain geometries. The
strategy is to rephrase the problem in a
very simple phase space and solve the
Boltzmann transport equation directly. If
a single type of particle is constrained
to move continuously only along a reg-
ular grid, the Boltzmann equation is so
tightly constrained that it has simple ana-
lytic solutions. In the early 1960s Broad-
well and others applied this simplified
method of analysis to the dynamics of
shock problems. Their numerical results
agreed closely with much more elabo-
rate computer modeling from the Navier-
Stokes equations. However, there was no
real insight into why such a calculation
in such a simplified microworld should
give such accurate answers. The accu-
racy of the limited phase-space approach
was considered an anomaly.
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Discrete Skeletal Models, The next
development in discrete fluid theory was
a discrete modification of the continuous-
speed network models of the Broadwell
class. By forming a loose analogy to the
structure of the Ising model (spins on a
lattice), Hardy, de Pazzis, and Pomeau
created the first minimalist fluid model on
a two-dimensional square lattice. It was
a simple, binary-valued, nearest-neighbor
gas with a single species of molecule,
limited to binary collisions. The new
feature was a totally discrete velocity and
state space for the gas. Particles hopped
from one site to the next without a notion
of continuous movement between sites.
Particles were confined to the vertices
of the network, and the velocity vector
of each particle could point in only one
of four directions. Since there was no
natural way to deal with bound states,
these authors imposed the arbitrary rule
that the maximum number of particles
occupying any vertex be four.

This simple model possessed remark-
able properties including local thermo-
dynamic equilibrium and the emergence
of a scale separation; that is, the typ-
ical collective motion scale L is much
greater than the microscopic mean free
path /,,;; L > I,,. However, the macrody-
namics that emerged was not that of the
Navier-Stokes equations but a more com-
plex one with unphysical features. The
square model was the first example of
rich dynamics emerging wholly on a cel-
lular space. It had all the right ingredi-
ents except one: isotropy under the ro-
tation group of the lattice. The momen-
tum flux tensor must reduce to a scalar
for isotropy, but this is impossible with
a square lattice. In two dimensions the
neighborhood that has the minimal re-
quired symmetry and tiles the plane is a
hexagonal neighborhood. In Part Il we
will present the simple hexagonal model,
analyze it mathematically, and describe
the simulations of fluid phenomena that
have been done so far.
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N\ % /S /

/o = THE SIMPLE
\ HEXAGONAL MODEL
T\

Theory and Smulation

The Minimal Totally Discrete Model of Navier-Stokes
in Two Dimensions

We can now list the ingredients we need to build the smplest cellular-space world
with a dynamics that reproduces the collective behavior predicted by the compressible
and incompressible Navier-Stokes equations:

1. A population of identical particles, each with unit mass and moving with the same
average speed c.

2. A totally discrete phase space (discrete values of x, y and discrete particle-vel ocity
directions) and discrete time t . Discrete time means that the particles hop from
Site to Site.

3. A lattice on which the particles reside only at the vertices. In the simplest case
the lattice is regular and has a hexagonal neighborhood to guarantee an isotropic
momentum flux tensor. We use a triangular lattice for convenience.

4. A minimum set of collision rules that define symmetric binary and triple collisions
such that momentum and particle number are conserved (Fig. 4).

5. An exclusion principle so that at each vertex no two particles can have identical
velocities. This limits the maximum number of particles at a vertex to six, each one
having a velocity that points in one of the six directions defined by the hexagonal
neighborhood.

The only way to make this hexagonal lattice gas simpler is to lower the rotation
symmetry of the lattice, remove collision rules, or break a conservation law. In a
two-dimensional universe with boundaries, any such modification will not give Navier-
Stokes dynamics. Left as it is, the model will. Adding attributes to the model, such
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as different types of particles, different speeds, enlarged neighborhoods, or weighted
collision rules, will give Navier-Stokes behavior with different equations of state and
different adjustable parameters such as the Reynolds number (see the discussion in Part
[11). The hexagonal model defined by the five ingredients listed above is the simplest
model that gives Navier-Stokes behavior in a sharply defined parameter regime.

At this point it is instructive to look at the complete table of alowed states for
the model (Fig. 5). The states and collision rules can be expressed by Boolean logic

Fig 4. SCATTERING RULES FOR SIMPLE HEXAGONAL MODEL

Scattering Rules

Two-Body Scattering Rules
- -—— \

or

Three-Body Scattering Rules

< -

Other Configurations Don't Scatter

For Example

v v
T

Resuits of Scattering Plus Transport

\

- p—
Only a head-on collision of \
two particles causes scatter-
ing, that is, the particles change t t+1
direction by +60°. The par-
ticles then continue to move
at constant speed (one node /
per time stop) in the new di-
rection.

- p—

/
t t+1

Three particles colliding at 120°

angles to each other change

directions by 60° in the scat-

tering process. All other con- >—> —
figurations of these particles

do not affect particle direc-
tion.

t r+1

Pure Transport

In most configurations parti-
cles do not scatter, that is,
they do not change direction
but are simply transported at 7—) —> |- —
constant speed.

I t+1
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operations with the two allowed values taken as O and 1. From this organization scheme
we see that the hexagonal lattice gas can be seen as a Boolean parallel computer. In
fact, a large parallel machine can be constructed to implement part or al of the state
table locally with Boolean operations alone. Our simulations were done this way and

Discrete Fluids

provide the first example of the programming of a cellular-automaton, or cellular-space,
machine that evolves the dynamics of a many-degrees-of-freedom, nonlinear physical

system.

(000) (001) (010)

STATE TABLE FOR HEXAGONAL MODEL

Right Three Bits

(011) (loo) (101) (110) (111)

(000)

Z’i\ .

(001)

L

(010)

(011)

Left Ihree Biis

(100)

(101)

(110)

(111)

=D
>[>¢4:4\I‘¢

ko kg kK KK

Scattering Rules for Simple
Hexagonal Model in 6-Bit Notation

Two-Body Rule

(001, 001) <«— (100,100)
or
(001, 001) <— (010, 010)

Three-Body Rule
(010, 101)  «— (101, 010)

Additional Rules for Extended
Hexagonal Model

Four-Body Rule

(110, 110) -<«— (011, 011)
or
(110, 110) «—— (101, 101)

Fig. 5. All possible states of the hexagonal lat-
tice gas are shown in the state table. Each
state can be expressed in 6-bit notation (a
combination of 3 right bits and 3 left bits). For
example, the empty state is written (000,000)

Los Alamos Science Special Issue 1987

and the maximally occupied state shown in the
lower right hand corner of the table is written
(111, 111). Collision states for the simplest
hexagonal model are shown in red and shaded
in gray. The scattering rules for these states

are written beside the table. All other states do
not result in scattering. The extended hexag-
onal model includes scattering rules for four-
body states (shaded in gray). The extended
model lowers the viscosity of the lattice gas.
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PARTICLE DIRECTIONS
IN THE HEXAGONAL MODEL

Fig. 6. The velocity vector of each particle
can point in one of six possible directions. All
particles have the same speed c.
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Theoretical Analysis of the Discrete Lattice Gas

Before presenting the results of simulations with the lattice-gas automaton, we will
analyze its behavior theoretically. The setup we work on is a regular triangular grid
with hexagonal neighborhood. The natural explicit coordinate system for a single-speed,
six-directional world (Fig. 6) is the set of unit vectors:

. 273 . (273 )
lg={COS<T}),Sm<%)}, g=1---,6. (8)

One never requires this much detail except to work out explicit tensor structures and
scalar products particular to the hexagonal model case, but the index conventions
are important to avoid disorientation. From now on the Greek indices «, 3, - -- label
lattice direction indices; i,jflA(, ... are lattice unit vectors and i,/,k label space indices
(x1.x2,...); on a square lattice we have r = (x1,x2) = (v, y).

The first thing we will look at is pure transport on the lattice with no collisions.
Because the basic space is a discrete lattice with a fundamental lattice spacing, rather
than a continuum, a shadow of the lattice is induced into the coupling constant of the
theory, namely the viscosity. This lattice effect is not obvious, but we will make it so
by looking at transport on the lattice in detail. As a corollary we will derive the usual
Euler equations for the “macroscopic” flow of the lattice gas.

To do a quick analysis on lattice models we lift the restriction of a deterministic
gas and pass to a probabilistic description familiar from kinetic theory; then we can use
familiar stochastic and kinetic theory tools outlined in Part 1 of this article. In going
from a continuous to a discrete probabilistic formalism we introduce the lattice form
of the single-particle distribution function by making the identifications

felot) — fa(r, 1)
[rornar = S0 = .
and py — Zﬂiﬁfﬁ
To begin we write the master equation for f5 in the absence of collisions. The
master equation expresses conservation of probability. For simplicity we write it for a
square lattice with the following conventions: ng(r+ ig, t) = number of particles in the

direction 3 at the node r+i[3 at time ¢. The master equation for the system, neglecting
collisions and written in a continuum notation for convenience, is

far+h,t +k) —f5(r,1) =0, with h =igd, k =d,,

where d,.d, < 1.

If we expand the first term in the master equation out to QO°(h, k) using the Taylor
series expansion f(xg + A, yo + k) = ZK’;)' %(h O + ka},)*f(xo,yg) + R,,, we obtain

s 1 [ s
0=d,0, f3+dig- Vfs+ Ed,za,zfg + Edf(.ﬂ V)5 +dodi (i - V)0, f3
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To lowest order in h and k, we have
Ofs+is- Vfs =0, 9

which has the standard form of the kinetic theory transport equation in the absence of
collisions. If we include collisions, the full Boltzmann transport equations schematically

become
Ofs+1ig-Vfz=Cs(f) (10)

where C3( f) is the collision operator on the lattice. The form of the lattice collision
operator will tell us a great deal about how the model works, but for the moment we
just look at the general structure of the “macroscopic” equations for the lattice gas to
the lowest order in the lattice expansion parameters.

As in standard kinetic theory, the usual zero integrals of the motion hold, since
the lattice model is assumed to have some kind of detailed balance (that is, microscopic
reversibility of reaction pathways). Accordingly >, Cs(f)=0and ", i,jCﬁ(f) =0
for a skeletal gas. Following the kinetic theory proéedure, we write the continuity and
momentum equations that follow from these conditions as:

G p+0;(pvi)=0 (11
and
O (pvi) + Gl =0, (12)
where the tensor I1;; is defined as
I = > () a)fs (13)
3

So far we have kept only the leading terms of the Taylor series expansion in
the scaling factors that relate to the discreteness of the lattice. It's easy to show that
keeping quadratic terms in this lattice-size expansion leaves the continuity equation
invariant but alters the momentum equation by introducing a free-streaming correction
to the measured viscosity. This rather elegant way of viewing this correction was first
developed by D. Levermore. The correction comes from breaking the form of a Galilean
covariant derivative and is a geometrical effect. Specifically, to second order in the
lattice size expansion, the momentum equation does not decompose simply into factors
of these covariant derivatives but instead the expansion introduces a nonvanishing
covariant-breaking term:

~ ~ 2.4
Noncovariant term = Z{(i/;),- 0;0, + ((i,;),- 8,-) Hafs. (14)
3
This term is of the same order as those terms that contribute to the viscosity. Later we

will show how to use the Chapman-Enskog expansion to compute an explicit form for
the lattice-gas viscosity.

The Chapman-Enskog Expansion and the Direct Expansion. The form of II;;
depends on the form of f, the solution to the full lattice Boltzmann transport equation.
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By Hilbert’s construction we know that an efficient expansion can be developed in terms
of the collision invariants of the model up to powers of terms linear in the gradient
of the macroscopic velocity. In whatever perturbation expansion of f we choose, the
coefficients in the expansion are fixed by solving for them under the Lagrange multiplier
constraints of mass and momentum conservation: p =y ;fg and (pv) = 3 i‘gfg. In
the simple hexagonal model there is no explicit mechanism provided for storing energy
in internal state space, so there is no independent energy equation.

For the lattice case, the Chapman-Enskog version of Hilbert’s expansion reduces
to an expansion in all available scalar products using the vectors i@,v and the vector

operator 9. The expansion is made around the global equilibrium solution for v = 0,

which we will call Ne‘('f) and terms are kept up to those linear in 9. The relevant scalar
products are

s -1, Qs v, Ay D)ds-v. (3w, s V2 (v- W +0().

The systematic expansion becomes

fa=Ng* {1 +odg v+ G {(i,, vy — %|v|2] + 3 {(ig?)(iﬂ-v) - %5’ ~v] +O(v3)...}.
(15)

In the usual kinetic theory approach the coefficients « and 3 can be found by
neglecting collisions and /[, the gradient term, can be determined only by an explicit
solution to the full Boltzmann equation including collision terms. In this way one
obtains the viscosity in terms of 3;. For the discrete lattice, however, both 3 and
1 depend on the explicit form of the solution to the full Boltzmann equation with
collisions. We also need that form to recover the correction to the raw viscosity that,
as mentioned in the last section, comes from pure translation effects on the lattice.

Given that we have to use the full solution to the Boltzmann transport equation
almost immediately, we now derive its structure, find the general and equilibrium
solution, and then use a direct expansion to fix both 3 and 3;. In the process we will
recover the Euler equations for inviscid flow and the Navier-Stokes equations for the
flow with dissipation.

The Lattice Collision Operator and the Solution to the Lattice Boltzmann
Transport Equation. We will write down the discrete form of the Boltzmann equation,
especialy noting the collision operator, for a number of reasons. First, writing the
explicit form of the collision kernel builds up an intuition of how the heart of the model
works; second, we can show in a few lines that the Femi-Dirac distribution satisfies the
lattice gas Boltzmann equation; third, knowing this, we can quickly compute the lattice
form of the Euler equations; fourth, we can see that many properties of the lattice-gas
model are independent of the types of collisions involved and come only from the form
of the Fermi-Dirac distribution.

Collision operators for lattice gases with continuous speeds were derived by Broad-
well, Harris, and other early workers on continuum lattice-gas systems. For totaly
discrete lattice gases with an exclusion principle, we must be careful to apply this prin-
ciple correctly. It is similar to the case of quasi-particles in quantum Fermi liquids.
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The construction reduces to following definitions of collision operators introduced in
the section on classical kinetic theory and counting properly.

Taking any hexagonal neighborhood, let i be one of the six directions and use
the convention i,i + 1,i +2,... = igzi,igzi+1,i31i+2,... for convenience. (Later we
will return to our original notation.) First consider binary collisions alone, and assume
detailed balance, which implies microscopic reversibility of a collision at each vertex.
One need not use detailed balance, but other balancing schemes are algebraically tedious
and conceptually similar extensions of this basic case. Given a vertex at (r,t) we
compute the gain and loss of particles into a neighborhood along a fixed direction, say
i. This is, by definition, the collision kernel for binary processes. First compute the
number of particles thrown in a collision into a phase-space region along the direction
i. Let n;(r,t) be the probability that a particle is at the node (r,t) and has a velocity
in the ith direction.

If a particle scatters into a vector direction i, it must have come from binary
processes along directions (i + 1 and i +4) or (i +2 and i + 5) (see the two-body
scattering rules in Fig. 4). Interpreted as probabilities for the two events to happen,
the probability for gain in the i direction due to binary processes alone is
P,-MnaJy = N1 Nisafii 23 Miss + N Nias iR Rieafliva,
where #; = (1 —ny). The i;’s impose the exclusion rule in the output channel, namely,
that a particle cannot scatter there if one is already present.

Loss of a particle from direction i can occur only by the binary collision (i +3,1),
and this can happen for each of the two choices of gain collisions separately. So
we have (—2n;n;,437;417; 420, 14fi;15) as the probability for loss in the { direction due
to binary collisions alone. Note that these products can be compactly expressed as
ﬁ,‘ﬁ,’+3n;-5:0(] — I’l,') where ﬁ,‘ = l_i,n_,

The three-body gain-loss term can be written down by inspection in the same
way as the binary term. The complete two- and three-body collision term for the ith
direction, in compact notation, is

243 s s A . A A U 5
Ci = [(Ainfiiva + Risahiss — 2RiAiia) + (RinAiafies — iR | TE_o(1 — ;).

For extensive calculations more compact notations are easily devised, but this one
clearly brings out the essential idea in constructing arbitrary collision schema. With
some minor modifications this form for the collision operator can be reinterpreted as a
master equation for a transition process, which is useful as a starting point for a detailed
microkinetic analysis by stochastic methods.

Given the C( f) for two- and three-body collisions in the above compact form,
and given detailed balance, we show that C( f3) = O for the Fermi-Dirac distribution.
The proof is simple and well known from quantum Fermi-liquid theory where the same
functional form for the collision operator appears but with a different interpretation.

If n is a Fermi-Dirac distribution, it has the form (1 + ¢£)~! = n(E) where E is
expanded in collision invariants, in this case particle number and momentum. Then
note that {*— = fi = e~ ¥, the form of the Maxwell-Boltzmann distribution. This is
also the form of the collision kemel, and the exponential terms just contain the sum
of momenta in the collision. Since this sum is conserved, each collision term (binary,
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triple, efc.) vanishes separately, because of the exclusion principle. So the solution is a

Fermi-Dirac distribution. This proof also shows that as long as conservation laws of any

kind are embodied in the collision term, each type of collision is separately zero under

the Fermi-Dirac distribution. Accordingly, the Fermi-Dirac solution is universal across

collision types. This implies that one cannot alter the character of the Fermi-Dirac

distribution in the lattice gas by adding collision types that respect collision invariants.
Since fj is now assumed to be a Fermi-Dirac distribution, we take it as

fa=+ebH

. — A
with E=olp,v)+ G(p,v)-is.

(Here we have returned to our original conventions for i5.) The equilibrium value for

fs at v =0, namely Nequ)’ is £ where p is the density. Expanding the Fermi-Dirac form

for f3 about this equilibrium value gives us

. . 1
fs=& {1 +alp)ip - v) + Blp) [(iﬁ'v)z - §|V|2] e } ) (16)

the same form as the Chapman-Enskog expansion (Eq. 15). To fix a and 3 we use
number and momentum conservation as constraints, so that f3 becomes

2 2 1
fs= g {1 +2(15 - v) +4g(p) [(1,3 vy — §|v|2} + } ,
where we have taken the particle speed as 1 (¢ = 1). The coefficient g(p) is

3—p
9(p) 6 p

If we substitute this result for f3 in the momentum tensor (Eq. 13) and do the sum
over 3, the particle directions, we have

L = g (1 — g(pIV?) bix + pg(PIViVi-
The lattice Euler equation (Eq. 12) thus becomes

G(pvi) + 0 | pgpIVivi + -] = —dip. (17)

In the usual Euler equation g(p) = 1. Here g(p) is the lattice correction to the convective
term due to the explicit lattice breaking of Galilean invariance. The equation of state

for Eq. 17 is
(e
P—Z gpz .
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For general single-speed models with particle speed ¢ and b velocity vectors in D
dimensions, the result above generalizes to

fz= gwhen v=0

D b-2p
D+2b—p

and g(p) =

These forms depend only on the structure of tensor products of i, in D dimensions.
When we discuss the full Navier-Stokes equations, we will show how to absorb
the g(p) Galilean-invariance-breaking term in Eq. 17 into a rescaling of variables.

Isotropy and The Momentum Tensor. We will go on to discuss viscosity and
the lattice form of the Navier-Stokes equation, but first we comment briefly on how
the structure of the momentum tensor depends on the geometry of the lattice. Those
interested in all the details can find them discussed from several viewpoints in Frisch,
d’Humiéres, Hasslacher, Lallemand, and Pomeau 1987.

By definition II;; = 5 ;(i5):(i5);fs, where f5 is determined by the Chapman-
Enskog, or direct, expansion (Eq. 15). Isotropy implies invariance under rotations
and reflections; tensors that are isotropic are proportional to a scalar. Define the
tensors E™ = 3" 2(la);, . .. (13)i,- For E® with regular b-sided polygons, we can derive
conditions on b for E™ to be isotropic. These conditions are

(E@b>2), (EPNb>2,b643), (EPb>2,b44), (E®Pb>2.b%#3,5).....
For b = 4, the case of the HPP (Hardy, de Pazzis, and Pomeau) square lattice, £¥
is not isotropic. For b = 6, the hexagonal neighborhood case, all tensors upto n = 5
are isotropic.
Using the Chapman-Enskog expansion for f3 and the notation above for tensors,
II;; has the following tensor structure.

oV 2 3 4 2 . 4 2)
I;; = Nevq{’ (E,.(j) +aE,.(jk)vk +3 Ei(j,zlvkv,,Ei(j )vkvk] + 5 [Ei(j,z,akvz,E,-(j 3ka])

where we are following the discussion of Wolfram. The momentum stress tensor must
be isotropic up to E® in order that the leading terms in the momentum equation
(corresponding to the convective and viscous terms in the Navier-Stokes equation) be
isotropic. For the square model, the original discrete-lattice model, we have nonisotropy
manifested in two places through the momentum flux tensor.

Iy = pg(p)(vi — v3) + g +0 (v,
Ty = pg(p)(v3 — v3) + ;—’ +OWh,
Iy, =1 =0,

where g(p)= Z;p
4-p

See Frisch et al. for further discussion.
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The nonisotropy implies that we do not get a Navier-Stokes type equation for the
square lattice. For the hexagonal model, 3 = 6, isotropy is maintained through order
E®. By using general considerations on tensor structures for polygons and polyhedra
in D-dimensional space, one can quickly arrive at probable models for Navier-Stokes
dynamics in any dimension. The starting point is that isotropy, or the lack of it, in both
convective and viscous terms (the Euler and the Navier-Stokes equations), is controlled
completely by the geometry of the underlying lattice. This crucial point was missed by
all earlier workers on lattice models who thought that the geometry of the underlying
lattice was irrelevant.

Viscosity for Lattice Gas Models. In “The Continuum Argument” we saw that the
general form of the compressible Navier-Stokes equation with bulk viscosity { =0 is

2.
O (pvi) + 0, (p(viv;) = =Oip + ; (Vp(ajvi +0v; — §6ijdkvk)> ,

where v is the kniematic shear viscosity. To derive this form for the discrete model,
one must solve for IL; using both the Chapman-Enskog approximation for f3 and
the momentum-conservation equation. We noted earlier that the momentum equation
contained corrections as powers of the lattice spacing but chose to ignore these at first
pass. However, if we use the full Taylor expansion developed in the lattice-size scaling,
we find that the contribution to the viscous term of the momentum equation is —% pV2v.
Note that the correction to the viscosity is a constant (see Eq. 19) that depends only
on the lattice and dimension and is independent of the scattering-rule set. This extra
noncovariant-derivative contribution to the viscosity must be subtracted from the bare
viscosity calculated from the normal perturbation expansion to get the renormalized
viscosity, which is the one actually measured in the lattice gas. In other words, the
bare coupling constant of the lattice gas model gets ““dressed” by this constant amount,
owing to the discrete vacuum that the particle must pass through, to become the physical
lattice-gas viscosity.

Viscosity is a coupling constant and can be found by any method that can isolate
the 3, term in the Chapman-Enskog expansion. The simplest methods involve solving
for the eigenvalues and right eigenvectors of the linearized collision operator, which
is a tedious exercise in linear algebra. Using the results of such a calculation, we can
write the Navier-Stokes form of the momentum equation in which the viscosity v(p)
appears explicitly:

8,(/)V,-) + ajH,'j = 8/'5,'.,', (18)

where the momentum tensor 11;; and the viscosity stress tensor are
2 v
I, = c2p(1 — g(p);)&,j +pg(pIviv;

2
and Sij = v(p) (&'(PV]') +0i(pvi) — 55ij6k(PVk)> .
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The coefficient ¢} is given by

and ¢; can be identified as the speed of sound. For the simple hexagonal mode!
=; = 1/+/2, and the viscosity is given by

1 1 1

_ 1 1 19
YThda—ar " ® 49

where d = £, that is, the mass density per cell. (The —g in the viscosity was mentioned
above as the noncovariant correction due to the finite lattice size.)

I'he Incompressible Limit. Many features of low Mach number (M = v/¢, <
1) flows in an ordinary gas can be described by the incompressible Navier-Stokes
>quations:

Ov+v-Vv=—Vp+vVy (20)

inda V-v=0.

We end this theoretical analysis by showing under what conditions we recover these
equations for lattice gases. One way is to freeze the density everywhere except in the
pressure term of the momentum equation (Eq. 18). Then, in the low-velocity limit, we
can write the lattice Navier-Stokes equations as

200V + pog(po)V - Vv = —c2Vp' + por(pg) V7, 2n
ind V-.-v=40

vhere p = p, + p’ and we allow density fluctuations in the pressure term only. As it
stands, Eq. 21 is not Galilean invariant. To make it so, we must scale away the g(pq)
erm in a consistent way. We rescale time and viscosity as follows:

4

- g(po)

and v — g(pov.

o be more precise, we do an ¢ expansion of the momentum equation, where ¢~ ' is

he same order as the global lattice size L, (see Frisch et al. for details), and rescale
he variables as follows:

1
t = e T
g (po)

’

veeV, o= pog_(zpo)ezp,’
s

nd
v =g(po)'.

vhere €' is on the order of the global lattice size L,. (Note that this rescaling
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SIMULATED VELOCITY PROFILE

Fig. 7. The predicted velocity profile was ob-
tained in a low-velocity lattice gas simulation
of two- dimensional flow in a channel with vis-
cous boundaries (Kadanoff, McNamara, and
1987).
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of variables keeps the Reynolds number fixed.) Now all the relevant terms in the
momentum equation are of O(e®) and higher order terms are O (¢*) or smaller. So to
leading order (where ¥V, means %) we get

HV+V-VV=-V P +/V3Vand V,-V=0.

Thus we recover the incompressible Navier-Stokes equations. To obtain this result,
we have done a fixed-Reynolds-number, large-scale, low-Mach-number expansion and
Galilean invariance has been restored, at least formally, by a time rescaling.

Simulations of Fluid Dynamics
with the Hexagonal Lattice Gas Automaton

In the last two years several groups in the United States and France have done
simulations of fluid-dynamical phenomena using the hexagonal lattice-gas automaton.
The purpose of these simulations was twofold: first, to check the internal consistency of
the automaton, and second, to determine, by both qualitative and quantitative measures,
whether the model behaves the same or nearly the same as the known analytic and
numerical solutions of the Navier-Stokes equations.

The classes of experiments done can be grouped roughly as free flows, flow
instabilities, flows past objects, and flows in channels or pipes. These simulations
were run in a range of Reynolds numbers between 100 and 700 (and for relatively low
mean flow velocities, so that the fluid is nearly incompressible). We first checked to
see whether the automaton developed various classic instabilities when triggered by
two types of mechanisms, external perturbations and internal noise. The two classic
instabilities studied were the Kelvin-Helmbholtz instability of two opposing shear flows
and the Rayleigh-Taylor instability. We describe the Kelvin-Helmholtz instability in
some detail.

In the Kelvin-Helmholtz instability one is looking for the development of a final-
state vortex structure of appropriate vortex polarity. From an initial state of two op-
posing flows undergoing shear, the detailed development of the instability depends on
the initial perturbation of the flows. Left unperturbed, except by internal noise in the
automaton, at first the two opposing flows develop velocity fields that signal the devel-
opment of a boundary layer, then sets of vortices develop in these boundary layers, and
finally vortex interactions occur that trigger a large-scale instability and the develop-
ment of large-vortex final states. The same pattern appears in standard two-dimensional
numerical simulations of the Navier-Stokes equations near the incompressible regime.
No pathological non-Navier-Stokes behavior was observed. These results extend over
the entire range of Reynolds numbers (100-700) run with the simple hexagonal model.
It is notable that the Kelvin-Helmholtz instability is self-starting due to the automaton
internal noise, and the instability proceeds rapidly.

The Rayleigh-Taylor instability was simulated by a French group in a slightly
compressible fluid range, where it behaves like a Navier-Stokes fluid with no anomalies.

These global topological tests check whether automaton dynamics captures the
correct overall structure of fluids. In general, whenever the automaton is run in the
Navier-Stokes range, it produces the expected global topological behavior and correct
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SIMULATED AND THEORETICAL KINEMATIC VISCOSITIES
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Fig. 8. Theoretical shear (solid line) and bulk (dashed line) reduced viscosities as a function of
reduced density compared with the results of hexagonal lattice gas simulation with rest particles
and all possible collisions (d' Humieres and Lallemand 1987).

functional forms for various fluid dynamical laws. The question of quantitative accuracy
of various known constants is harder to answer, and we will take it up in detail later.
The next broad class of flows studied are flows past objects. Here, we look for
distinctive qualitative behavior characteristic of a fluid or gas obeying Navier-Stokes
dynamics. The geometries studied, through a wide range of Reynolds numbers, were
flows past flat plates placed normal to the flow, flows past plates inclined at various
angles to the flow, and flows past cylinders, 60-degree wedges, and typica airfoils. The
expected scenario changes as a function of increasing Reynolds number: recirculating
flow behind obstacles should develop into vortices, growing couples of vortices should
eventually break off to form von Karman streets with periodic oscillation of the von
Karman tails; findly, and as the Reynolds number increases, the periodic oscillations
should become aperiodic, and the complex phenomena characteristic of turbulent flow
should appear. The lattice gas exhibits all these phenomena with no non-Navier-Stokes
anomalies in the range of lattice-gas parameters that characterize near incompressibility.
The next topic is quantitative self-consistency. We used the Boltzmann transport
approximation for the discrete model to calculate viscosities for the simple hexagonal
automaton as well as models with additional scattering rules and rest particles. We then
checked these analytic predictions against the viscosities deduced from two kinds of
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simulations. We ran plane-parallel Poiseuille flow in achannel, saw that it developed the
expected parabolic velocity profile (Fig. 7) and then deduced the viscosity characteristic
of this type of flow. We also ran an initialy flat velocity distribution and deduced a
viscosity from the observed velocity decay. These two simulations agree with each other
to within a few percent and agree with the analytic predictions from the Boltzmann
transport calculation to within 10 percent. Viscosity was also measured by observing the
decay of sound waves of various frequencies (Fig. 8). The level of agreement between
simulation and the computed Boltzmann viscosity is generic: we see a systematic error
of approximately 10 percent. Monte Carlo calculations of viscosities computed from
microscopic correlation functions improve agreement with simulations to at least 3
percent and indicate that the Boltzmann description is not as accurate an analytic tool
for the automaton as are microscopic correlation techniques. One would call this type of
viscosity disagreement a Boltzmann-induced error. Other consistency checks between
the automaton simulation and analytic predictions display the same level of agreement.

Detailed quantitative comparisons between conventional discretizations of the
Navier-Stokes equations and lattice-gas simulations have yet to be done for severa
reasons. The simple lattice-gas automaton has a Fermi-Dirac distribution rather than
the standard Maxwell-Boltzmann distribution. This difference alone causes deviations
of 0(V’) in the macrovelocity from standard results. For the same reason and unlike
standard numerical spectral codes for fluid dynamics, the simple lattice-gas automa-
ton has a velocity-dependent equation of state. A meaningful comparison between the
two approaches requires adjusting the usual spectral codes to compute with a velocity-
dependent equation of state. This rather considerable task has yet to be done. So far our
simulations can be compared only to traditional two-dimensional computer simulations
and analytic results derived from simple equations of state.

Some simple quantities such as the speed of sound and velocity profiles have been
measured in the automaton model. The speed of sound agrees with predicted values and
functional forms for channel velocity profiles and D’ Arcy’s law agree with calculations
by standard methods. The automaton reaches local equilibrium in a few time steps and
reaches global equilibrium at the maximum information-transmission speed, namely, at
the speed of sound.

Simulations with the two-dimensional |attice-gas model hang together rather well
as a ssimulator of Navier-Stokes dynamics. The method is accurate enough to test
theoretical turbulent mechanisms at high Reynolds number and as a simulation tool for
complex geometries, provided that velocity-dependent effects due to the Fermi nature
of the automaton are correctly included. Automaton models can be designed to fit
specific phenomena, and work along these lines is in progress.

Three-dimensional hydrodynamics is being simulated, both on serial and parallel
machines, and early results show that we can easily simulate flows with Reynolds
numbers of a few thousand. How accurately this model reproduces known instabilities
and flows remains to be seen, but there is every reason to believe agreement will be
good since the ingredients to evolve to Navier-Stokes dynamics are all present. We end
Part 11 of this article with a graphical display of two- and three-dimensional simulations
in “Calculations Using Lattice-Gas Techniques. ” My Los Alamos collaborators and |
have accompanied this display with a summary of the known advantages and present
limitations of lattice gas methods. (Part 111 begins on page 21 1.)
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Discrete Fluids

ver the last few years the tantaliz-
O ing prospect of being able to per-

form hydrodynamic calculations
orders-of-magnitude faster than present
methods allow has prompted considerable
interest in lattice gas techniques. A few
dozen published papers have presented
both advantages and disadvantages, and
several groups have studied the possibil-
ities of building computers specialy de-
signed for lattice gas calculations. Yet the
hydrodynamics community remains gen-
erally skeptical toward this new approach.
The question is often asked, “What cal-
culations can be done with lattice gas
techniques?’ Enthusiasts respond that in
principle the techniques are applicable to
any calculation, adding cautiously that in-
creased accuracy requires increased com-
putational effort. Indeed, by adding more
particle directions, more particles per site,
more particle speeds, and more variety
in the interparticle scattering rules, lattice
gas methods can be tailored to achieve
better and better accuracy. So the real
problem is one of tradeoff: How much
accuracy is gained by making lattice gas
methods more complex, and what is the
computational price of those complica
tions? That problem has not yet been well
studied. This paper and most of the re-
search to date focus on the simplest attice
gas models in the hope that knowledge of
them will give some insight into the es-
sential issues.

We begin by examining a few of the
features of the smple models. We then
display results of some calculations. Fi-
nally, we conclude with a discussion of
limitations of the simple models.

Features of Simple
Lattice Gas Methods

We will discuss in some depth the
memory efficiency and the parallelism of
|attice gas methods, but first “we will touch
on their simplicity, stability, and ability to

model complicated boundaries.

Computer codes' for lattice gas meth-
ods are enormously simpler than those
for other methods, Usually the essential
parts of the code are contained in only a
few dozen lines of FORTRAN. And those
few lines of code are much less com-
plicated than the several hundred lines
of code normally required for two- and
three-dimensional hydrodynamic calcula-
tions.

There are many hydrodynamic prob-
lems that cause most standard codes (such
as finite-difference codes, spectral codes,
and particle-in-cell codes) to crash. That
is, the code simply stops running because
the algorithm becomes unstable. Stability
is not a problem with the codes for lattice
gas methods. In addition, such methods
conserve energy and momentum exactly,
with no roundoff errors.

Boundary conditions are quite easy to
implement for lattice gas methods, and
they do not require much computer time.
One simply chooses the cellsto which
boundary- conditions apply and updates
those cells in a dlightly different way.
One of three boundary conditions is com-
monly chosen: bounce-back, in which
the directions of the reflected particles
are simply reversed; specular, in which
mirror-like reflection is simulated; or dif-
fusive, in which the directions of the re-
flected particles are chosen randomly.

We consider next the memory effi-
ciency of the lattice gas method, When
the two-dimensional hydrodynamic |at-
tice gas algorithm is programmed on a
computer with a word length of, say,
64 bits (such as the Cray X-MP), two
impressive efficiencies occur. The first
arises because every single bit of mem-
ory is used equally effectively. Coined
“bit democracy” by von Neumann, such
efficient use of memory should be con-
trasted with that attainable in standard
calculations, where each number requires
a whole 64-bit word. The lattice gas
is “bit democratic” because all that one

needs to know is whether or not a particle
with a given velocity direction exists in a
given cell. Since the number of possible
velocity directions is six and no two par-
ticles in the same cell can have the same
direction, only six bits of information are
needed to completely specify the state of
a cell. Each of those six bits corresponds
to one of the six directions and is set to
1 if the cell contains a particle with that
direction and to 0 otherwise. Suppose we
designate the six directions by A,B,C,D,
E,F as shown on the next page. We as-
sociate each bit in the 64-bit word A with
a different cell, say the first 64 cells in the
first row. If the first cell contains (does
not contain) a particle with direction A,
we set the first bit in A to 1 (0). Similarly,
we pack information about particles in the
remaining 63 cells with direction A into
the remaining 63 bits of A. The same
scheme is used for the other five direc-
tions. Consequently, all the information
for the first 64 cells in the first row is
contained in the six words A, B, C, D,
E, and F. Note that all bits are equally
important and all are fully utilized.

To appreciate the significance of such
efficient use of memory, consider how
many cells can be specified in the solid-
state storage device presently used with
the Cray X-MP/416 at Los Alamos. That
device stores 512,000,000 64-bit words.
Since the necessary information for 10%
cells can be stored in each word, the
device can store information for about
5,000,000,000 cells, which corresponds
to a two-dimensional lattice with 100,000
cells along one axis and 50,000 cells
along the other. That number of cells is
a few orders of magnitude greater than
the number normally treated when other
methods are used. (Although such high
resolution may appear to be a significant
advantage of the lattice gas method, some
averaging over cells is required to ob-
tain smooth results for physical quantities
such as velocity and density.)

The second efficiency is related to the

202

Los Alamos Science Special Issue 1987



Discrete Fluids

fact that lattice gas operations are bit ori-
ented rather than floating-point-number
oriented and therefore execute more natu-
rally on a computer. Most computers can
carry out logic operations bit by bit. For
example, the result of the logic operation
AND on the 64-bit words A and B is a
new 64-bit word in which the ith bit has
a vaue of 1 only if the ith bits of both
A and B have values of 1. Hence in one
clock cycle a logic operation can be per-
formed on information for 64 cells. Since
a Cray X-MP/416 includes eight logical
function units, information for 8 times
64, or 512, cells can be processed dur-
ing each clock cycle, which lasts about
10 nanoseconds. Thus information for
51,200,000,000 cells can be processed
each second. The two-dimensional lattice
gas models used so far require from about
thirty to one hundred logic operations to
implement the scattering rules and about
another dozen to move the particles to the
next cells. So the number of cells that
can be updated each second by logic op-
erations is near 500,000,000. Cells can
also be updated by table-lookup meth-
ods. The authors have a table-lookup
code for three-dimensional hydrodynam-
ics that processes about 30,000,000 cells
per second.

A final feature of the lattice gas method
is that the algorithm is inherently parallel.
The rules for scattering particles within
a cell depend only on the combination
of particle directions in that cell. The
scattering can be done by table lookup,
in which one creates and uses a table of
scattering results-one for each possible
cell configuration. Or it can be done by
logic operations.

Using Lattice Gas Methods
To Approximate Hydrodynamics

In August 1985 Frisch, Hasslacher, and
Pomeau demonstrated that one can ap-
proximate solutions to the Navier-Stokes
equations by using lattice gas methods,

D €«—

E F

but their demonstration applied only to
low-velocity incompressible flows near
equilibrium. No one knew whether more
interesting flows could be approximated.
Conseguently, computer codes were writ-
ten to determine the region of validity of
the lattice gas method. Results of some of
the first simulations done at Los Alamos
and of some later simulations are shown
in Figs. 1 through 6. (Most of the early
calculations were done on a Celerity com-
puter, and the displays were done on a
Sun workstation.) All the results indicate
qualitatively correct fluid behavior.

Figure la demonstrates that a stable
trailing vortex pattern develops in a two-
dimensional lattice gas flowing past a
plate. Figure Ib shows that without a
three-particle scattering rule, which re-
moves the spurious conservation of mo-
mentum along each line of particles, no
vortex develops. (Scattering rules are de-
scribed in Part |1 of the main text.)

Figure 2 shows that stable vortices de-
velop in a lattice gas at the interface be-
tween fluids moving in opposite direc-
tions. The Kelvin-Helmholtz instability
is known to initiate such vortices. The
fact that lattice gas methods could simu-
late vortex evolution was reassuring and
caused several scientists to begin to study
the new method.

Figure 3 shows the complicated wake
that develops behind a V-shaped wedge in
a uniform-velocity flow.

Figure 4 shows the periodic oscillation
of a low-velocity wake behind a cylin-

der. With a Reynolds number of 76, the
flow has a stable period of oscillation that
slowly grows to its asymptotic limit.

Figure 5 shows a flow with a higher
Reynolds number past an dlipse. The
wake here becomes chaotic and quite sen-
sitive to details of the flow.

Figure 6 shows views of a three-
dimensional flow around a square plate,
which was one of the first results from
Los Alamos in three-dimensional lattice
gas hydrodynamic simulations.

Rivet and Frisch and other French sci-
entists have developed a similar code
that measures the kinematic shear viscos-
ity numerically; the results compare well
with theoretical predictions (see Fig. 8 in
the main text).

The lattice gas calculations of a group
at the University of Chicago (Kadanoff,
McNamara, and Zanetti) for two-dimen-
sional flow through a channel (Fig. 7
of the main text) agree with the known
parabolic velocity profile for low-velocity
channel flows.

The above calculations, and many oth-
ers, have established some confidence
that qualitative features of hydrodynamic
flows are simulated by lattice-gas meth-
ods. Problems encountered in detailed
comparisons with other types of calcula-
tions are discussed in the next section.

Limitations of Simple
L attice Gas Models

As we discussed earlier, lattice gas
methods can be made more accurate by
making them more complicated—nby, for
example, adding more velocity directions
and magnitudes. But the added complica-
tions degrade the efficiency. We mention
in this section some of the difficulties (as-
sociated with limited range of speed, ve-
locity dependence of the equation of state,
and noisy results) encountered in the sim-
plest lattice-gas models.

The limited range of flow velocities
is inherent in a model that assumes a

continued on page 210

Los Alamos Science Special Issue 1987

203




L

Flow Past a Plate

Fig. 18, Flow past a plate with pericdic baundary
conditkana. This simulelion, whech was done in
Brplember 1985, shaws worticas tarming hakind ba
e, The pwarage llow velocity has a magnbuda of
0.2 loHice afan peer lone wlap wred s peependicular ta
Ihe plate, poimling ta 1ha lawar fghl. The diactian
ol the Now velocity is color ceded.

Fig. 1b. The same simulalion as that described in
Fig. 1a aun witly ing thiee-ody scallermg rale. s a
result, spuricus laws af carservation of moemenbom
akpng Che firss af tne grd gresrsn? the develapment
al Fydrody namics.






Fig. 3. A wake grows behind a wedge. The flow is
trom left to right with periodic boundary conditions.,
The flow is initialized as uniform flow 1o the right. The

wedge is inserted at [ = 0. Then vortices grow and are
carried downstream. For this simulation 20 million par-

ticles and 16 million cells were used.

Flow Past
a Cylinder

Fig. 4. Low-velocity flow (from top to bot-
tom) past a cylinder creates a periodically
oscillating wake. Four snapshots from one
period of the oscillation are shown. In this
simulation, which has periodic right and
left boundaries, 1.4 million particles flowed
through 1 million cells. The flow was ini-

tially uniform.

Turbulent
Wake

Fig. 5. A turbulent wake grows behind an
ellipse being dragged through a fluid con-
sisting of 11 million particles and 8 million
cells. The ellipse is composed of about
2400 cells in which the velocity directions
of the entering particles are reversed. The
flow has periodic right and left boundaries
{&n infinile sequence of equivalent ellipses
exists to the lefl and right of the frame
shown.) The Reynolds number in the flow
is 1021,
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Discrete Fluids

continued from page 203

single speed for all particles. T'he sound
speed in such models can be shown to
be about two-thirds of the particle speed.
Hence flows in which the Mach number
(flow speed divided by sound speed) is
greater than 1.5 cannot be simulated. This
difficulty is avoided by adding particles
with a variety of speeds.

The limited range of velocities also
restricts the allowed range of Reynolds
numbers. For small Reynolds numbers
(0 to 1000) the flow is smooth, for mod-
erate Reynolds numbers (2000 to 6000)
some turbulence is observed, and for high
Reynolds numbers (10,000 to 10,000,000)
extreme turbulence occurs. Since the ef-
fective viscosity, v, is typically about 0.2
in two-dimensional problems, the Rey-
nolds number scales with the characteris-
tic length, /, allowed by computer mem-
ory. Currently the upper bound on / is of
the order of 100,000.

The velocity dependence of the equa-
tion of state is unusual and is a conse-
quence of the inherent Fermi-Dirac dis-
tribution of the lattice gas (see the sec-
tion on Theoretical Analysis of the Dis-
crete Lattice Gas in the main text). The
low-velocity equation of state for a lattice
gas can be written as p = 1p (1 — 1v?),
where p is the pressure, p is the den-
sity, and v is the flow speed. Thus, for
constant-pressure flows, regions of higher
velocity flows have higher densities.

The velocity dependence of the equa-
tion of state is related to the fact that lat-
tice gas models lack Galilean invariance.
The standard Navier-Stokes equation for
incompressible fluids is

;—:+V-VV=-—VP+VV2V.

But in the incompressible, low-velocity
limit the single-speed hexagonal lattice
gas follows the equation

v

5 +g(p)v-Vv=—-Vp+vVy,

where

3-p
ﬂM—6_p

and p is the average number of parti-
cles per cell. The extra factor g(p) re-
quires special treatment. The conven-
tional way to adjust for the fact that g(p)
does not equal unity (as it does in the
Navier-Stokes equation) is to simply scale
the time, ¢, and the viscosity, v, by the
factor g(p) as follows: ¢’ = g(p)t and
v = v/g(p). (The pressure must also
be scaled.) Hence a density-dependent
scaling of the time, the viscosity, and the
pressure is required to bring the lattice
gas model into a form that closely ap-
proximates the hydrodynamics of incom-
pressible fluids in the low-velocity limit.

Finally, the discreteness of the lattice
gas approximation introduces noise into
the results. One method of smoothing the
results for comparison with other methods
is to average in space and time. In prac-
tice, spatial averages are taken over 64,
256, 512, or 1024 neighboring cells for
time-dependent flows in two dimensions.
For steady-state flows, time averaging is
done. The details of noise reduction are
complicated, but they must be addressed
in each comparison calculation. The pres-
ence of noise is both a virtue and a defect.
Noise ensures that only robust (that is,
physical) singularities survive, whereas in
standard codes, which are subject to less
noise, mathematical artifacts can produce
singularities. On the other hand, the noise
in the model can trigger instabilities.

Conclusion

In the last few years lattice gas methods
have been shown to simulate the quali-
tative features of hydrodynamic flows in
two and three dimensions. Precise com-
parisons with other methods of calcula-
tion remain to be done, but it is believed
that the accuracy of the lattice gas method

can be increased by making the models
more complicated. But how complicated
they have to be to obtain the desired ac-
curacy is an unanswered question,

Calculations based on the simple mod-
els are extremely fast and can be made
several orders-of-magnitude faster by us-
ing special-purpose computers, but the
models must be extended to get quantita-
tive results with an accuracy greater than
1 percent. Significant research remains
to be done to determine the accuracy of a
given lattice gas method for a given flow
problem. m

Note added in proof: Recently Kadanoff
McNamara, and Zanetti reported precise
comparisons between theoretical predic-
tions and lattice gas simulations (Univer-
sity of Chicago preprint, October 1987)
They used a seven-bit hexagona model
on a small automaton universe to smu
late forced two-dimensional channel flow
for long times. Three tests were used to
probe the hydrodynamic and statistical
mechanical behavior of the model. The
tests determined (1) the profile of mo-
mentum density in the channel, (2) the
equation of state given by the statistical
mechanics of the system, and (3) the log-
arithmic divergence in the viscosity (afa-
mous effect in two- dimensional hydrody-
namics and a deep test of the accuracy 01
the model in the strong nonlinear regime)

The results were impressive,  Firs,
to within the accuracy of the smula-
tion, there is no discrepancy between
the parabolic velocity profile predicted by
macroscopic theory and the lattice gas
simulation data. Second, the equation of
state derived from theory fits the simula-
tion data to better than 1 percent. Finaly,
the measured logarithmic divergence in
the viscosity as a function of channel
width agrees with prediction. These re-
sults are at least one order of magni-
tude more accurate than any previously
reported calculations.
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tice Gas Techniques’ we displayed

the results of generalizing the sim-
ple hexagonal model to three dimensions.
Here, in the last part of the article, we
will discuss numerous ways to extend and
adapt the simple model. In particular, we
emphasize its role as a paradigm for par-
allel computing.

I n the sidebar “ Calculations Using Lat-

Adjusting the Model To Fit
the Phenomenon

There are severa reasons for altering
the geometry and rule set of the funda-
mental hexagonal model. To understand
the mathematical physics of lattice gases,
we need to know the class of functionally
equivalent models, namely those models
with different geometries and rules that
produce the same dynamics in the same
parameter range.

To explore turbulent mechanisms in
fluids, the Reynolds number must be sig-
nificantly higher than for smooth flow,
so models must be developed that in-
crease the Reynolds number in some way.
The most straightforward method, other
than increasing the size of the simula-
tion universe, is to lower the effective
mean free path in the gas. This lowers
the viscosity and the Reynolds number
rises in inverse proportion. Incressing
the Reynolds number is also important
for practical applications. In “Reynolds
Number and Lattice Gas Calculations”

Los Alamos Science Special Issue 1987
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PART 11l THE PROMISE OF
LATTICE GAS METHODS

we discuss the computational storage and
work needed to simulate high-Reynolds-
number flows with cellular automata.

To apply lattice gas methods to sys-
tems such as plasmas, we need to develop
models that can support widely separated
time scales appropriate to, for example,
both photon and hydrodynamical modes.
The original hexagonal model on a single
lattice cannot do so in any natural way
but must be modified to include several
lattices or the equivalent (see below).

Within the class of fluids, problemsin-
volving gravity on the gas, multi-compo-
nent fluids, gases of varying density, and
gases that undergo generalized chemical
reactions require variations of the hexago-
nal model. Once into the subject of appli-
cations rather than fundamental statistical
mechanics, there is an endless industry
in devising clever gases that can simulate
the dynamics of a problem effectively.

We outline some of the possible ex-
tensions to the hexagona gas, but do so
only to give an overview of this develop-
ing field. Nothing fundamental changes
by making the gas more complex. This
model is very much like a language. We
can build compound sentences and para-
graphs out of simple sentences, but it
does not change the fundamental rules by
which the language works.

The obvious alterations to the hexago-
nal model are listed below. They com-
prise amost a complete list of what can
be done in two dimensions, since a lattice

gas model contains only a few adjustable
structural elements.

Indistinguishable particles can be col-
ored to create distinguishable species in
the gas, and the collision rules can be
appropriately modified. Rules can be
weighted to different outcomes; for ex-
ample, one can create a chiral gas (left-
or right-handed) by biasing collisions
to make them asymmetric. In three di-
mensions there is an instability at any
Reynolds number caused by lack of mi-
croscopic parity, so the chiral gas is an
important model for simulating this in-
stability.

At the next order of complexity, multi-
speed particles can be introduced, either
alone or with changes in geometry. The
simplest example is a square neighbor-
hood in two dimensions in which the col-
lision domain is enlarged to include next-
to-nearest neighbors, and a diagonal parti-
cle with speed v/2 is introduced to force
an isotropic lattice gas. In general, any
lattice model with only two-body colli-
sions and a single speed will contain spu-
rious conservation laws. But if multiple
speeds are allowed, models with binary
collisions can maintain isotropy. In other
words, models with multiple speeds are
equivalent to single-speed models with a
higher order rotation group and extended
collision sets. Many variations are possi-
ble and each can be designed to a problem
where it has a special advantage.

Finally, colored multiple-speed mod-
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els are in general equivalent to single-
species models operating on separate lat-
tices. Colored collision rules couple the
lattices so that information can be trans-
ferred between them at different time
scales. Certain statistical-mechanical phe-
nomena such as phase transitions can be
done this way.

By altering the rule domain and adding
gas species with distinct speeds, it is pos-
sible to add independent energy conserva-
tion. This alows one to tune gas models
to different equations of state. Again, we
gain no fundamental insight into the de-
velopment of large collective models by
doing so. but it is useful for applications.

In using these lattice gas variations to
construct models of complex phenomena,
we can proceed in two directions. The
first direction is to study whether or not
complex systems with several types of
coupled dynamics are described by skele-
tal gases. Can complex chemica reac-
tions in fluids and gases, for example,
be simulated by adding collision rules
operating on colored multi-speed lattice
gases? Complex chemisty is set up in the
gasin outline form, as a gross scheme of
closed sets of interaction rules. The same
idea might be used for plasmas. From a
theoretical viewpoint one wants to study
how much of the known dynamics of such
systems is reproduced by a skeletal gas;
consequently both qualitative and quanti-
tative results are important.

Exploring Fundamental Questions.
Models of complex gas or fluid systems,
like other lattice gas descriptions, may ei-
ther be a minimalist description of mi-
crophysics or ssmply have no relation to
microphysics other than a mechanism for
carrying known conservation laws and re-
actions. We can always consider such gas
models to be pure computers, where we
fit the wiring, or architecture, to the prob-
lem, in the same fashion that ordinary dis-
cretization schemes have no relation to
the microphysics of the problem. How-

ever for lattice gas models, or cellular-
continued on page 214
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REYNOLDS
NUMBER

and

Lattice Gas
Calculations

congtant in the Navier-Stokes equa-

tion is the viscosity. Its main role
in lattice gas computations is its influence
on the Reynolds number, an important
scaling concept for flows. Given a system
with a fixed intrinsic global length scale,
such as the size of a pipe or box, and
given a flow, then the Reynolds number
can be thought of as the ratio of atypical
macrodynamic time scale to a time scale
set by elementary molecular processes in
the kinetic model.

Reynolds numbers characterize the be-
havior of flows in general, irrespective
of whether the system is a fluid or a
gas. At high enough Reynolds num-
bers turbulence begins, and turbulence
quickly loses all memory of molecular
structure, becoming universal across lig-

T he only model-dependent coupling

uids and gases. For this reason and
because many interesting physical and
mathematical phenomena happen in tur-
bulent regimes, it is important to be able
to reach these Reynolds numbers in real-
istic simulations without incurring alarge
amount of computational work or storage.

Some simple arguments based on di-
mensional analysis and phenomenolog-
ical theories of turbulence indicate, at
first glance, that any cellular automaton
model has a high cost in computer re-
sources when simulating high-Reynolds-
number flows. These arguments appeared
in the first paper on the subject (Frisch,
Hasslacher, and Pomeau 1987) and were
later elaborated on by other authors. We
will go through the derivation of some
of the more severe constraints on simu-
lating high-Reynolds-number flows with

Los Alamos Science Special Issue 1987



Discrete Fluids

cellular automata, then discuss some pos-
sible ways out, and finally estimate the
seriousness of the situation for a realistic
large-scale simulation.

The turbulent regime has many length
scales, bounded above by the length of
the simulation box and below by the scale
at which turbulent dynamics degenerates
into pure dissipation, the so-called dissi-
pation scale. We focus on these extreme
scales and, with a few definitions, de-
rive a bound on the computational stor-
age and work needed for simulating high-
Reynolds-number flows with cellular au-
tomata.

The Reynolds number R is usually de-
fined not in terms of time but simply
as R = vL/v where L is a characteris-
tic length, v is characteristic speed, and
v is the kinematic shear viscosity. One
sees immediately why calculating viscos-
ity functions for particular models is im-
portant. It is the only variable one can
adjust in a flow problem, given a fixed
flow in a fixed geometry. First, we cal-
culate a rough upper bound on Reynolds
numbers attainable with lattice models. If
the speed of sound in the lattice gas is ¢,
and the spacing between lattice nodes is
£, then by definition the kinematic vis-
cosity v > c.£. Now viscosity estimated
this way must agree with that fixed by
the scale of hydrodynamic modes. Given
a global length L and a global velocity V
associated with these modes, R = VL/v
at best. In terms of the Mach number
M = V /c;), the Reynolds number is
equal to ML/¢. But M also character-
izes fluid flow, and L and ¢ are model-
dependent. In a lattice gas we can re-
late the ratio L/£ to the number of nodes
in the gas simulator, namely n = (L/£)%,
where d is the space dimension of the
model. Therefore, the number of nodes
in a lattice model must grow at least as
n ~ (R/M)?. Computational work is the
number of lattice nodes per time step
multiplied by the number of time steps
required to resolve hydrodynamical fea-

tures. This is L/¢M steps (to cross the hy-
drodynamical feature at the given Mach
number), and so we find the computa-
tional work is of order R%*! /M 4+, For
a so-called normal simulation based on
the usual ways of discretizing the Navier-
Stokes equation, the growth in storage is
roughly proportional to one power lower
in the Reynolds number than the growth
in storage for the lattice gas. So at first
it seems that simulating high-Reynolds-
number flows by lattice gas techniques is
costly compared to ordinary methods.

This argument is not only approximate;
it is also tricky and must be applied with
great care. The normal way of sim-
ulating flows escapes power-law penal-
ties by cutting off degrees of freedom
at the turbulence-dissipation scale, which
the lattice gas does not do. The gas com-
putes within these scales and so wastes
computational resources for some prob-
lems. Actually computation of these very
small scales is the source of the noisy
character of the gas and is responsible for
its power to avoid spurious mathemati-
cal singularities. One way around this
is to find an effective gas with new colli-
sion rules for which the dissipation length
scales are averaged out. A possible tech-
nique uses the renormalization group, but
it is useful only if the effective gas is not
too complex and has the attributes that
made the original gas attractive, includ-
ing locality. Work is going on at present
to explore this possibility, and it seems
likely that some such method will be de-
veloped.

The more serious consideration is what
happens in a realistic large-scale simula-
tion, and here we will find the lattice gas
does very well indeed.

First, we note that a dissipation length
l; with the behavior [; — o0 as R — o0
is actually required to guarantee the scale
separation between the lattice spacing and
the hydrodynamic modes that is necessary
to develop hydrodynamic behavior.

The actual Reynolds number in lat-

tice gas models is much more complex
than in normal fluid models. An accu-
rate form is R = Lvg(po)/v(po), where
v is an averaged velocity and the funda-
mental unit of distance (the lattice spac-
ing ¢) and the fundamental unit of time
(the speed required to traverse the lattice
spacing £) have been set to 1. To re-
main nearly incompressible, the velocities
in the model should remain small com-
pared to the speed of sound c;, but ¢ in
lattice gases is model-dependent. So we
factor the Reynolds number into model-
dependent and invariant factors this way:
we define R(po) = ¢ (g(po)/v(po)) so
that R = MLR(po). The value of R de-
pends critically on the model used. In two
dimensions it ranges from 0.39 to about
6 times that, depending on the amount of
the state table we want to include. For the
three-dimensional projection of the four-
dimensional model, it is known that R is
about 9.

By repeating essentially the same di-
mensional arguments, only more care-
fully, we find that the dissipation length
I; = MR™R™'/? for two dimensions
and Iy = (MR)~'R~1/* for three dimen-
sions.

For a typical simulation in three dimen-
sions, we take M = 0.3 for incompress-
ibility, R ~ 9, and L = 10?, which is
a large simulation, possible only on the
largest Cray-class machines. Then I is
about three lattice spacings, and the sim-
ulation wastes very little computational
power. The subtle point is that the highly
model-dependent factor R is not of order
1, as is usually estimated. It depends crit-
ically on the complexity of the collision
set, going up a factor of 20 from the ele-
mentary hexagonal model in two dimen-
sions to the projected four-dimensional
case with an optimal collision table.

There is a great deal of work to be
done on the high-Reynolds-number prob-
lem, but it is clear that the situation is
complicated and rich in possibilities for
evading simple dimensional arguments. m
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continued from page 212

automaton models in general, there al-
ways seems to be a deep relation between
the abstract computer embodying the gas
algorithm for a physical problem and the
mathematical physics of the system itself.
This duality property is an important
one, and it is not well understood. One
of the main aims of lattice gas theory is
to make the underlying mathematics of
dynamical evolution clearer by providing
a new perspective on it. One would, for
example, like to know the class of al lat-
tice gas systems that evolve to a dynam-
icsthat is, in an appropriate sense, nearby
the dynamics actually evolved by nature.
Doing this will alow us to isolate what
is common to such systems and identify
universal mathematical mechanisms.

Engineering Design Applications. The
second direction of study is highly ap-
plied. In most engineering-design sit-
uations with complicated systems, one
would like to know first the general qual-
itative dynamical behavior taking place
in some rather involved geometry and
then some rough numerics. Given both,
one can plot out the zoo of dynamical
development within a design problem.
Usually, one does not know what kinds
of phenomena can occur as a parameter
in the system varies. Analytic methods
are either unavailable, hard to compute
by traditional methods, or simply break
down. Estimating phenomena by scal-
ing or arguments depending on order-of-
magnitude dimensional analysis is often
inaccurate or yields insufficient informa-
tion. As a result, a large amount of ex-
pensive and scarce supercomputer time is
used just to scan the parameter space of
a system.

Lattice gas models can perform such
tasks efficiently, since they simulate at
the same speed whether the geometry and
system are simple or complex. Compli-
cated geometries and boundary conditions
for massively parallel lattice gas simula
tors involve only altering collision rules
in aregion. This is easily coded and
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can be done interactively with a little in-
vestment in expert systems. There is no
question that for complex design prob-
lems, lattice gas methods can be made
into powerful design tools.

Beyond Two Dimensions

In two dimensions there exists asingle-
speed skeletal model for fluid dynamics
with a regular lattice geometry. It re-
lies on the existence of a complete tiling
of the plane by a domain of sufficiently
high symmetry to guarantee the isotropy
of macroscopic modes in the model. In
three dimensions this is not the case, for
the minimum appropriate domain symme-
try is icosahedral and such polyhedra do
not tile three-space. If we are willing
to introduce multiple-speed models, there
may exist a model with high enough ro-
tational symmetry, as in the square model
with nearest and next-to-nearest neighbor
interaction in two dimensions, but it is not
easy to find and may not be efficient for
simulations.

A tactic for developing an enlarged-
neighborhood, three-dimensional model,
which dtill admits a regular lattice, is to
notice that the number of regular polyhe-
draas a function of dimension has a max-
imum in four dimensions. Examination
of the face-centered four-dimensional hy-
percube shows that a single-speed model
connected to each of twenty-four near-
est neighbors has exactly the right in-
variance group to guarantee isotropy in
four dimensions. So four-dimensiona
single-speed models exist on a regular
tiling. Three-dimensional, or regular, hy-
drodynamics can be recovered by taking a
thin one-site slice of the four-dimensional
case, where the edges of the dlice are
identified. Projecting such a scheme into
three-dimensional space generates a two-
speed model with nearest and next-to-
nearest neighbor interactions of the sort
guaranteed to produce three-dimensional
Navier-Stokes dynamics.

Such models are straightforward ex-

tensions of al the ideas present in the
two-dimensional case and are being sim-
ulated presently on large Cray-class ma-
chines and the Connection Machine 2.
Preliminary results show good agreement
with standard computations at least for
low Reynolds numbers. In particular,
simulation of Taylor-Green vortices at
a Reynolds number of about 100 on a
(128)*universe (a three-dimensional cube
with 128 cells in each direction) agrees
with spectral methods to within 1 per-
cent, the error being limited by Monte
Carlo noise. The ultimate comparison is
against laboratory fluid-flow experiments.
As displayed at the end of Pant H, three-
dimensional flows around flat plates have
also been done.

A more intriguing strategy is to give
up the idea of a regular lattice. Phys
ica systems are much more like a lat-
tice with nodes laid down at random. At
present, we don't know how to analyze
such lattices, but an approximation can be
given that is intermediate between regu-
lar and random grids. Quasi-tilings are
sets of objects that completely tile space
but the grids they generate are not peri-
odic. Locally, various types of rotation
symmetry can be designed into such lat-
tices, and in three dimensions there ex-
ists such a quasi-tiling that has icosahe-
dral symmetry everywhere. The beauty
of quasi-tilings is that they can al be
obtained by simple slices through hyper-
cubes in the appropriate dimension. For
three dimensions the parent hypercube is
six-dimensional.

The ideais to run an automaton model
containing the conservation laws with as
simple a rule set as possible on the six-
dimensional cube and then take an appro-
priately oriented three-dimensiona dlice
out of the cube so arranged as to gen-
erate the icosahedral quasi-tiling. Since
we only examine averaged quantities, it is
enough to do all the averaging in six di-
mensions along the quasi-dice and image
the results. By such a method we guar-
antee exact isotropy everywhere in three
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dimensions and avoid computing directly
on the extremely complex lattices that the
quasi-tiling generates. Ultimately, one
would like to compute on truly random
lattices, but for now there is no simple
way of doing that efficiently.

The simple four-dimensional model is
a good example of the limits of present
super-computer power. It is just barely
tolerable to run a (1000)3 universe at a
Reynolds number of order afew thousand
on the largest existing Cray’'s. It is far
more efficient to compute in large paral-
lel arrays with rather inexpensive custom
machines, either embedded in an existing
parallel architecture or on one designed
especially for this class of problems.

Lattice Gases as Parallel
Computers

Let us review the essential features of a
lattice gas. The first property is the totally
discrete nature of the description: The
gas is updated in discrete time steps, lat-
tice gas elements can only lie on discrete
space points arranged in a space-filling
network or grid, velocities can aso have
only discrete values and these are usually
aligned with the grid directions, and the
state of each lattice gas site is described
by a small number of discrete bits instead
of continuous values.

The second crucia property is the local
deterministic rules for updating the array
in space and time. The vaue of a site
depends only on the values of a few lo-
cal neighbors so there is no need for in-
formation to propagate across the lattice
universe in a single step. Therefore, there
is no requirement for a hardwired inter-
connection of distant sites on the grid.

The third element is the Boolean nature
of the updating rules. The evolution of
a lattice gas can be done by a series of
purely Boolean operations, without ever
computing with radix arithmetic.

To a computer architect, we have just
described the properties of an ideal con-
current, or parallel, computer. The iden-
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tical nature of particles and the locality
of the rules for updating make it natura
to update all sites in one operation—this
is what one means by concurrent or par-
allel computation. Digital circuitry can
perform Boolean operations naturally and
quickly. Advancing the array in time is a
sequence of purely local Boolean opera-
tions on a deterministic algorithm.

Most current parallel computer designs
were built with non-local operations in
mind. For this reason the basic architec-

ture of present parallel machines is over-
laid with a switching network that en-

ables al sites to communicate in various
degrees with all other sites. (The usua
model of a switching network is a tele-
phone exchange.) The complexity of ma-
chine architecture grows rapidly with the
number of sites, usually as nlog n at best
with some time tradeoff and as O (") at
worst. In a large machine, the complex-
ity of the switching network quickly be-
comes greater than the complexity of the
computing configuration.

In a purely local architecture switch-
ing networks are unnecessary, so two-
dimensional systems can be built in a
two-dimensional, or planar configuration,
which is the configuration of existing
large-scale integrated circuits. Such an
architecture can be made physically com-
pact by arranging the circuit boards in an
accordion configuration similar to a piece
of folded paper. Since the type of geome-
try chosen is vital to the collective behav-
ior of the lattice gas model and no unique
geometry fits all of parameter space, it
would be a design mistake to hardwire a
particular model into a machine architec-
ture. Machines with programmable ge-
ometries could be designed in which the
switching overhead to change geometries
and rules would be minimal and the gain
in flexibility large (Fig. 9).

In more than two dimensions a purely
two-dimensional geometry is still effi-
cient, using a combination of massive
parallel updating in a two-dimensional
plane and pipelining for the extra dimen-
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sions. As technology improves, it is easy
to imagine fully three-dimensional ma-
chines, perhaps with optical pathways be-
tween planes, that have a long mean time

to failure.
The basic hardware unit in conven-

tional computers is the memory chip,
since it has a large storage capacity (256
K bytes or 1 M bytes presently) and is
inexpensive, reliable, and available com-
mercidly in large quantities. In fact,
most modem computers have a memory-
bound architecture, with a small number
of controlling processors either doing lo-
cal arithmetic and logical operations or
using fast hashing algorithms on large
look-up tables. An aternative is the lo-
cal architecture described above for lat-
tice gas simulators. In computer archi-
tecture terms it becomes very attractive
to build compact, cheap, very fast simu-
lators which are general over alarge class
of problems such as fluids. Such ma-
chines have a potential processing capac-
ity much larger than the general-purpose
architectures of present or foreseen vec-
torial and pipelined supercomputers. A
number of such machines are in the pro-
cess of being designed and built, and it
will be quite interesting to see how these
experiments in non-von Neumann archi-
tectures (more appropriately called super-
von Neumann) turn out.

At present, the most interesting ma
chine existing for lattice gas work is the
Connection Machine with around 65,000
elementary processors and several giga
bytes of main memory. This machine
has a far more complex architecture than
needed for pure lattice-gas work, but it
was designed for quite a different pur-
pose. Despite this, some excellent simu-
lations have been done on it. The simu-
lations at Los Alamos were done mainly
on Crays with SUN workstations serv-
ing as code generators, controllers, and
graphical units. The next generation of
machines will see specialized lattice gas
machines whether parallel, pipelined, or
some combination, running either against
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ARCHITECTURE OF THE
LATTICE GAS SIMULATOR

Fig. 9. The lattice gas code is a virtual machine
in the sense that the way the code works is
exactly the way to build a machine.

(a) The basic processor unit in a lattice gas
simular has five units: (1) a memory unit that
stores the state at each node of the lattice grid;
(2) a propagation unit that advances particles
from one node to the next; (3) a scattering unit
that checks the state at each node and imple-
ments the scattering rules where appropriate;
(4) an averaging unit that averages velocities
over a preassigned region of the lattice uni-
verse; and (5) an output and display unit.

(b) Processors are arranged in a parallel ar-
ray. Each processor operates independently
except at nodes on shared boundaries of the
lattice gas universe.

(c) Processor units are overlaid by units that
can alter the geometry of the lattice, the col-
lision rules and boundary conditions, and the
type of averaging.

Connection Machine style architectures
or using them as analyzing engines for
processing data generated in lattice gas
“black boxes” This will be a learn-
ing experience for everyone involved in
massive simulation and provide hardware
engines that will have many interesting
physics and engineering applications.
Unfortunately, fast hardware alone is
not enough to provide a truly useful ex-
ploration and design tool. A large amount
of datais produced in a typical many de-
gree of freedom system simulation. In
three dimensions the problems of access-
ing, processing, storing, and visualizing
such quantities of data are unsolved and
are really universal problems even for
standard supercomputer technology. As
the systems we study become more com-
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plex, al these problems will aso. It will
take innovative engineering and physics
approaches to overcome them.

Conclusion

To any system naturally thought of
as classes of simple elements interacting
through loca rules there should corre-
spond a lattice-gas universe that can sim-
ulate it. From such skeletal gas models,
one can gain a new perspective on the
underlying mathematical physics of phe-
nomena. So far we have used only the
example of fluids and related systems that
naturally support flows. The analysis of
these systems used the principle of max-
imum ignorance: Even though we know
the system is deterministic, we disregard

that information and introduce artificial
probabilistic methods. The reason is that
the analytic tools for treating problems
in this way are well developed, and al-
though tedious to apply, they require no
new mathematical or physical insight.

A deep problem in mathematical phys-
ics now comes up. The traditional meth-
ods of analyzing large probabilistic sys-
tems are asymptotic perturbation expan-
sions in various disguises. These contain
no information on how fast large-scale
collective behavior should occur. We
know from computer simulations that lo-
cal equilibrium in lattice gases takes only
a few time steps, global equilibrium oc-
curs as fast as sound propagation will al-
low, and fully developed hydrodynamic
phenomena, including complex instabil-
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ities, happen again as fast as a traverse
of the geometry by a sound wave. One
might say that the gas is precociously
asymptotic and that this is basically due
to the deterministic property that conveys
information at the greatest possible speed.

Methods of analyzing the transient and
invariant states of such complex multi-
dimensional cellular spaces, using de-
terminism as a central ingredient, are
just beginning to be explored. They are
non-perturbative. The problem seems as
though some of the methods of dynam-
ica systems theory should apply to it,
and there is aways the tempting shadow
of renormalization-group ideas waiting to
be applied with the right formalism. So
far we have been just nibbling around the
edges of the problem. It is an extraordi-
narily difficult one, but bresking it would
provide new insight into the origin of ir-
reversible processes in nature.

The second feature of lattice gas mod-
els, for phenomena reducible to natural
skeletal worlds, is their efficiency com-
pared to standard computational meth-
ods. Both styles of computing reduce
to inventing effective microworlds, but
the conventional one is dictated and con-
strained by alimited vocabulary of differ-
ence techniques, whereas the lattice gas
method designs a virtual machine inside
areal one, whose architectural structureis
directly related to physics. It is not a pri-
ori clear that elegance equals efficiency.
In many cases, lattice gas methods will
be better at some kinds of problems, es-
pecialy ones involving highly complex
systems, and in others not. Its usefulness
will depend on cleverness and the prob-
lem at hand. At worst the two ways of
looking at the microphysics are comple-
mentary and can be used in various mix-
tures to create a beautiful and powerful
computationa tool.

We close this article with a series of
conjectures. The image of the physical
world as a skeletal lattice gas is essen-
tially an abstract mathematical framework
for creating algorithms whose dynamics
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spans the same solution spaces as many
physically important nonlinear partial dif-
ferential equations that have a micrody-
namical underpinning. There is no intrin-
sic reason why this point of view should
not extend to those rich nonlinear sys-
tems which have no natural many-body
picture. The classical Einstein-Hilbert ac-
tion, phrased in the appropriate space, is
no more complex than the Navier-Stokes
equations. It should be possible to in-
vent appropriate skeletal virtual comput-
ers for various gauge field theories, be-
ginning with the Maxwell equations and
proceeding to non-Abelian gauge mod-
els. Quantum mechanics can perhaps
be implemented by using a variation on
the stochastic quantization formulation of
Nelson in an appropriate gas. When such
models are invented, the physical mean-
ing of the skeletal worlds is open to in-
terpretation. It may be they are only a
powerful mathematical device, a kind of
virtual Turing machine for solving such
problems. But it may also be that they
will provide a new point of view on the
physical origin and behavior of quan-
tum mechanics and fundamental field-
theoretic descriptions of the world. =
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