
T
he invention of a totally dis-
crete model for natural phenom-
ena was made by Ulam and von
Neumann in the early fifties and

was developed to the extent possible at
the time. A few years earlier von Neu-
mann had designed the architecture for
the first serial digital computers contain-
ing stored programs and capable of mak-
ing internal decisions. These machines
are built of electronic logic devices that
understand only packets of binary bits.
Hierarchies of stored translators arrange
them into virtual devices that can do or-
dinary or radix arithmetic at high speed.
By transcribing continuum equations into
discrete form, using finite difference tech-
niques and their variants, serial digital
computers can solve complex mathemat-
ical systems such as partial differential
equations. Since most physical systems
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PART I
BACKGROUND FOR

LATTICE GAS AUTOMATA

The lattice gas automaton is an approach
to computing fluid dynamics that is still
in its infancy. In this three-purr article
one of the inventors of the model presents
its theoretical foundations and its promise
as a general approach to solving partial
differential equations and to parallel com-
puting. Readers less theoretically inclined
might begin by reading “Calculations Us-
ing Lattice Gas Techniques” at the end
of Part II. This sidebar offers a summary
of the model’s advantages and limitations
and a graphic display of two- and three-
dimensional lattice gas simulations.

with large numbers of degrees of freedom

memories have become the standard way
to simulate such phenomena.

As the architecture of serial machines
developed, it became clear to both Ulam
and von Neumann that such machines
were not the most natural or powerful
way to solve many problems. They were
especially influenced by biological exam-
ples. Biological systems appear to per-
form computational tasks using methods
that avoid both arithmetical operations
and discrete approximations to continu-
ous systems.

Though motivated by the complex in-
formation processing of biological sys-
tems, Ulam and von Neumann did not
study how such systems actually solve
tasks. Biological processes have been
operating in hostile environments for a

can be described by such equations, se- long time, finding the most efficient and
rial digital machines equipped with large often devious way to do something, a
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way that is also resistant to disturbance
by noise. The crucial principles of their
operation are hidden by the evolutionary
process. Instead, von Neumann chose
the task of simulating on a computer the
least complex discrete system capable of
self-reproduction. It was Ulam who sug-
gested an abstract setting for this problem
and many other totally discrete models,
namely. the idea of cellular spaces. The
reasoning went roughly like this.

The question is simple: Find a mini-
mal logic structure and devise a dynam-
ics for it that is powerful enough to simu-
late complex systems. Break this up into
a series of sharper and more elementary
pictures. We begin by setting up a collec-
tion of very simple finite-state machines
with, for simplicity, binary values. Con-
nect them so that given a state for each
of them, the next state of each machine
depends only on its immediate environ-
ment. In other words, the state of any
machine will depend only on the states
of machines in some small neighborhood
around it. This builds in the constraint
that we only want to consider local dy-
namics.

We will need rules to define how states
combine in a neighborhood to uniquely
fix the state of every machine, but these
can be quite simple. The natural space
on which to put all this is a lattice, with
elementary, few-bit, finite-state machines
placed at the vertices. The rules for up-
dating this array of small machines can
be done concurrently in one clock step,
that is, in parallel.

One can imagine such an abstract ma-
chine in operation by thinking of a fishnet
made of wires. The fishnet has some reg-
ular connection geometry, and there are
lights at the nodes of the net. Each light
can be on or off. Draw a disk around
each node of the fishnet, and let it have a
l-node radius. On a square net there are
four lights on the edge of each disk, on
a triangular net six lights (Fig. 1). The
next state of the light at the center of the
disk depends on the state of the lights on

CELLULAR SPACES

Fig. 1. Two examples of fishnets made of wires

with lights at the nodes. The lights are either

on or off. In each example a disk with a radius

of 1 node is drawn around one of the lights.

The next state of the light at the center de-

pends on the states of the lights on the edge of

the disk and on nothing else. Thus these are

examples of nearest-neighbor-connected cel-

lular spaces.

the edge of the disk and on nothing else.
Imagine all the disks in the fishnet ask-
ing their neighbors for their state at the
same time and switching states accord-
ing to a definite rule. At the next tick of
an abstract clock, the pattern of lights on
the fishnet would in general look differ-
ent. This is what Ulam and von Neumann
called a nearest-neighbor-connected cel-
lular space. It is the simplest case of a
parallel computing space. You can also
see that it can be imaged directly in hard-
ware, so it is also the architecture for a
physical parallel computing machine.

We have not shown that such a device
can compute. At worst, it is an elaborate
light display. Whether or not such a
cellular space can compute depends on

the definition of computation. The short
answer is that special cases of fishnets
are provably universal computers in the
standard Turing machine sense; that is,
they can simulate the architecture of any
other sequential machine.

But there are other interpretations of
computation that lie closer to the idea of
simulation. For any given mathematical
situation, we want to find the minimum
cellular space that can do a simulation of
it: At what degree of complexity does
repeated iteration of the space, on which
are coded both data and a solution algo-
rithm, possess the power to come close to
the solution of a complex problem? This
depends on the complexity or degrees of
freedom present in the problem.

An extreme case of complexity is phys-
ical systems with many degrees of free-
dom. These systems are ordinarily de-
scribed by field theories in a continuum
for which the equations of motion are
highly nonlinear partial differential equa-
tions. Fluid dynamics is an example, and
we will use it as a theoretical paradigm
for many “large” physical systems. Be-
cause of the high degree of nonlinearity,
analytic solutions to the field equations
for such systems are known only in spe-
cial cases. The standard way to study
such models is either to perform experi-
ments or simulate them on computers of
the usual digital type.

Suppose a cellular space existed that
evolved to a solution of a fluid system
with given boundary conditions. sup-
pose also that we ask for the simplest
possible such space that captured at least
the qualitative and topological aspects of
a solution. Later, one can worry about
spaces that agree quantitatively with or-
dinary simulations. The problem is three-
fold: Find the least complex set of rules
for updating the space; the simplest ge-
ometry for a neighborhood; and a method
of analysis for the collective modes and
time evolution of such a system.

At first sight, modeling the dynamics of
large systems by cellular spaces seems far
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too difficult to attempt. The general prob-
lem of a so-called “inverse compiler”-
given a partial differential system, find
the rules and interconnection geometry
that give a solution—would probably use
up a non-polynomial function of comput-
ing resources and so be impractical if not
impossible. Nevertheless cellular spaces
have been actively studied in recent years.
Their modern name is cellular automata,
and specific instances of them have sim-
ulated interesting nonlinear systems. But
until recently there was no example of a
cellular automaton that simulated a large
physical system, even in a rough, quali-
tative way.

Knowing that special cases of cellu-
lar automata are capable of arbitrarily
complex behavior is encouraging, but not
very useful to a physicist. The impor-
tant phenomenon in large physical sys-
tems is not arbitrarily complex behav-
ior, but the collective motion that de-
velops as the system evolves, typically
with a characteristic size of many ele-
mentary length scales. The problem is to
simulate such phenomena and, by using
simulations, to try to understand the ori-
gins of collective behavior from as many
points of view as possible. Fluid dy-
namics is filled with examples of collec-
tive behavior—shocks, instabilities, vor-
tices, vortex streets, vortex sheets, tur-
bulence, to list a few. Any determin-
istic cellular-automaton model that at-
tempts to describe non-equilibrium fluid
dynamics must contain in it an itera-
tive mechanism for developing collec-
tive motion. Knowing this and using
some very basic physics, we will con-
struct a cellular automaton with the ap-
propriate geometry and updating rules for
fluid behavior. It will also be the sim-
plest such model. The methods we use
to do this are very conservative from the
viewpoint of recent work on cellular au-
tomata, but rather drastic compared to
the approaches of standard mathematical
physics. Presently there is a large gap
between these two viewpoints. The sim-

ulation of fluid dynamics by cellular au-
tomata shows that there are other comple-
mentary and powerful ways to model phe-
nomena that would normally be the exclu-
sive domain of partial differential equa-
tions.

The Example of Fluid Dynamics

Fluid dynamics is an especially good
large system for a cellular automaton for-
mulation because there are two rich and
complementary ways to picture fluid mo-
tion. The kinetic picture (many simple
atomic elements colliding rapidly with
simple interactions) coincides with our in-
tuitive picture of dynamics on a cellular
space. Later we will exploit this analogy
to construct a discrete model.

The other and older way of approach-
ing flow phenomena is through the partial
differential equations that describe col-
lective motions in dissipative fluids-the
Navier-Stokes equations. These can be
derived without any reference to an un-
derlying atomic picture. The derivation
relies on the idea of the continuum; it
is simpler to grasp than the kinetic pic-
ture and mathematically cleaner. Because
the continuum argument leads to the cor-
rect functional form of the Navier-Stokes
equations, we spend some time describ-
ing why it works. The continuum view
of fluids will be called “coming down
from above,” and the microphysical view
“coming up from below” (Fig. 2). In
the intersection of these two very differ-
ent descriptions, we can trap the essential
elements of a cellular-automaton model
that leads to the Navier-Stokes equations.
Through this review we wish to show that
cellular automaton models are a natural
and evolutionary idea and not an inven-
tion come upon by accident.

Coming down from Above—
The Continuum Description

The notion of a smooth flow of some
quantity arises naturally from a contin-

uum description. A flow has physical
conservation laws built-in, at least con-
servation of mass and momentum. With
a few additional remarks one can include
conservation of energy. The basic strat-
egy for deriving the Euler and Navier-
Stokes equations of fluid dynamics is to
imbed these conservation laws into state-
ments about special cases of the gen-
eralized Stokes theorem. We use the
usual Gauss and Stokes theorems, de-
pending on dimension, and apply them
to small surfaces and volumes that are
still large enough to ignore an underly-
ing microworld. The equations of fluid
dynamics are derived with no reference
to a ball-bearing picture of an underly-
ing atomic world, but only with a serene
reliance on the idea of a smooth flow
in a continuum with some of Newton’s
laws added to connect to the observed
world. As a model (for it is not a the-
ory), the Navier-Stokes equations are a
good example of how concepts derived
from the intuition of daily experience can
be remarkably successful in building ef-
fective phenomenological models of very
complex phenomena. It is useful to go
through the continuum derivation of the
Euler and Navier-Stokes equations pre-
sented in “The Continuum Argument” for
several reasons: First, the reasoning is
short and clear; second, the concepts in-
troduced such as the momentum flux ten-
sor, will appear pervasively when we pass
to discrete theories of fluids; third, we
learn how few ingredients are really nec-
essary to build a fluid model and so mark
out that which is essential—the role of
conservation laws.

It is clear from its derivation that the
Euler equation describing inviscid flows
is essentially a geometrical equation. The
extension to the full Navier-Stokes equa-
tions, for flows with dissipation, contains
only a minimal reference to an underlying
fluid microphysics, through the stress-rate
of strain relation in the momentum stress
tensor. So we see that continuum reason-
ing alone leads to nonlinear partial differ-
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ential equations for large-scale physical
observable that are a phenomenological
description of fluid flow. This description
is experimentally quite accurate but the-
oretically incomplete. The coupling con-
stants that determine the strength of the
nonlinear terms-that is, the transport co-
efficients such as viscosity—have a direct
physical interpretation in a microworld
picture. In the continuum approach how-
ever, these must be measured and put in
as data from the outside world. If we do
not use some microscopic model for the
fluid, the transport coefficients cannot be
derived from first principles.

Solution Techniques—The Creation
of a Microworld. The Navier-Stokes
equations are highly nonlinear; this is
prototypical of field-theoretical descrip-
tions of large physical systems. The non-
linearity allows analytic solutions only
for special cases and, in general, forces
one to solve the system by approximation
techniques. Invariably these are some
form of perturbation methods in what-
ever small parameters can be devised.
Since there is no systematic way of apply-
ing perturbation theory to highly nonlin-
ear partial differential systems, the anal-
ysis of the Navier-Stokes equations has
been, and still remains, a patchwork of
ingenious techniques that are designed to
cover special parameter regimes and lim-
ited geometries.

After an approximation method is cho-
sen, the next step toward a solution is to
discretize the approximate equations in a
form suitable for use on a digital com-
puter. This discretization is equivalent to
introducing an artificial microworld. Its
particular form is fixed by mathematical
considerations of elegance and efficiency
applied to simple arithmetic operations
and the particular architecture of avail-
able machines. So, even if we adopt the
view that the molecular kinetics of a fluid
is unimportant for describing the general
features of many fluid phenomena, we are
nevertheless forced to describe the sys-
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Fig. 2. Both the continuum view of fluids tions (dashed lines). The text emphasizes how

and the atomic picture lead to the Navier- cellular-automaton models embody the essen-

Stokes equations but not without approxima- tials of both points of view.

tem by a microworld with a particular Coming up from Below—
microkinetics. The idea of a partial dif- The Kinetic Theory Description
ferential equation as a physical model is
tied directly to finding an analytic solu- Kinetic theory models a fluid by us-
tion and is not particularly suited to ma- ing an atomic picture and imposing New-
chine computation. In a sense, the geo- tonian mechanics on the motions of the
metrically motivated continuum picture is atoms. Atomic interactions are controlled
only a clever and convenient way of en- by potentials, and the number of atomic
coding conservation laws into spaces with elements is assumed to be very large.
which we are comfortable. This attempt at fluid realism has an imme-

Continued on page 181
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THE
CONTINUUM
ARGUMENT

L
et V(X, t) be a vector-valued field referred to a fixed origin in space, which we
identify with the velocity of a “macroscopic” fluid cell. The cell is not small
enough to notice a particle structure for the fluid, but it is small enough to be

treated as a mathematical point
To derive the properties of

generalized Stokes theorem:

and still agree with physics.
a flow defined by the vector field, one now invokes the
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by this description but keep to a level of
precision consistent with a general under-
standing of the basic ideas.

The distribution function f is basically
a weighting function that is used to define
the mean values of physical observable.
The relation

(2)

where d/dt is a total derivative. In an
isolated system with no external fields,
we can expand the total derivative as

Liouville statement now is modified to
become the transport equation:

(4)

Similarly, particle gain into the phase
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differential equation:

Solutions to the Boltzmann Trans-
port Equation. Even though the Boltz-
mann equation is intractable in general,
by using entropy arguments (Boltzmann’s
H theorem), the following can be stated
about possible functional forms for f, the
one-particle distribution function. If the
system is uniform in space, any form for
f will relax monotonically to the global
Maxwell-Boltzmann form:

in which the macroscopic variables p,
v, and T (density, macrovelocity, and
temperature) are independent of position,
or global. In the non-equilibrium case,
with a soft space dependence, any distri-
bution function will relax monotonically
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in velocity space to a local Maxwell- izes cells whose length L in any direction
Boltzmann form. This means that p, v,
and T will depend on space as well as
time. These local distribution functions
are solutions to the Boltzmann transport
equation. For the non-uniform case, one
gets a picture of the full solution as an en-
semble of local Maxwell-Boltzmann dis-
tributions covering the description space
of the fluid, with some gluing conditions
providing the consistency of the patching.

The second integral gives the momentum
tensor equation:

In order to derive the Euler equation
for ideal gases with the usual form for
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THE HILBERT CONTRACTION

it is constructive. It explicitly displays a
recursive closed tower of constraint rela-
tions on the moments off that come di-
rectly from the Boltzmann equation. The
proof also shows that such a contracted
description is unique—a very powerful
result.

It must be pointed out that Hilbert’s
construction is on the time-evolved solu-
tion to the Boltzmann transport equation,
not on the equation itself, which still re-
quires a complete specification of f. It
amounts to a hard mathematical statement
on an effective field-theory description
for times much greater than elementary
collision times, but with space gradients
still smooth enough to entertain a serious
gradient perturbation expansion. As such,
it says nothing about the turbulent regime,
for example, where all these assumptions
fail.

In standard physics texts one can read
all kinds of plausibility arguments as to
why this contraction process should ex-
ist, but they lack force, for, by arguing
tightly, one can make the conclusion go
the other way. This is why the Hilbert
contraction is important. It is really a
powerful and mathematically unexpected
result about a highly nonlinear integro-
differential equation of very special form.
Beyond Hilbert’s theorem and within the
Boltzmann transport picture, we can say
nothing more about the contraction of de-
scriptions.

The construction of towers of moment
constraints, coupled to a perturbation ex-
pansion that Hilbert developed for his
proof of contraction, was used in a some-
what different form by Chapman and En-
skog. Their main purpose was to devise
a perturbation expansion with side con-
straints in such a way as to pick off the
values of the coupling constants-which
are called transport coefficients in stan-
dard terminology-for increasingly more
sophisticated forms of macrodynamical
equations.

One makes the usual kinetic assump-
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THE HILBERT CONTRACTION (continued)

which turns out to be explicitly a spatial
gradient expansion:

which is of the form
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Boltzmann equation. The zero-order re-
lation gives the Euler equations and the
second-order relation gives the Navier-
Stokes equations. However, Hilbert’s
method is an asymptotic functional ex-
pansion, so that the higher order terms
take one away from ordinary fluids rather
than closer to them. Nevertheless, solv-
ing explicitly for the terms in the func-
tional expansion provides a way of eval-
uating transport coefficients such as vis-
cosity. (See the "Hilbert Contraction” for
more discussion.)

Summary of the Kinetic Theory Pic-
ture. Our review of the kinetic theory
description of fluids introduced a num-
ber of important concepts: the idea of
local thermal equilibrium; the character-
ization of an equilibrium state by a few
macroscopic observable; the Boltzmann
transport equation for systems of many
identical objects (with ordinary statistics)
in Collision; and the fact that a solution
to the Boltzmann transport equation is
an ensemble of equilibrium states. In
“The Hilbert Contraction” we introduced
the linear approximation to the Boltz-
mann equation with which one can de-
rive the Navier-Stokes equations for sys-
tems not too far (in an appropriate sense)
from equilibrium in terms of these same
macroscopic observable (density, pres-
sure. temperature, etc.). We then outlined
a method for calculating the coupling
constants in the Navier-Stokes system—
that is, the strengths of the nonlinear
terms-as a function of any particular mi-
crodynamics.

This review was intended to give a fla-
vor for the chain of reasoning involved.
We will use this chain again in the to
tally discrete lattice world. However, just
as important as understanding the kinetic
theory viewpoint is keeping in mind its
limitations. In particular, notice that per-
turbation theory was the main tool used
for going from the exact Boltzrnann trans-
port equation to the Navier-Stokes equa-
tions. We did not discover more pow-
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erful techniques for finding solutions to
the Navier-Stokes equations than we had
before. To go from the Boltzmann to
the Navier-Stokes description, we made
many smoothness assumptions in various
probabilistic disguises; in other words,
we recreated an approximation to the con-
tinuum. It is true one could compute (at
least for relatively simple systems) the
transport coefficients, but in a sense these
coefficients are a property of microkinet-
ics, not macrodynamics.

We are at a point where we can ask
some questions about the emergence of
macrodynamics from microscopic phys-
ics. It is clear by now that microscopic
conservation laws, those of mass, mo-
mentum, and energy are crucial in fix-
ing the form of large-scale dynamics.
These are in a sense sacred. But one
can question the importance of the de-
scription of individual collisions. How
detailed must micromechanics be to gen-
erate the qualitative behavior predicted
by the Navier-Stokes equations’? Can
it be done with simple collisions and
very few classes of them? There exists
a whole collection of equations whose
functional form is very nearly that of
the Navier-Stokes equations. What mi-
croworlds generate these? Do we have
to be exactly at the Navier-Stokes equa-
tions to generate the qualitative behavior
and numerical values that we derive from
the Navier-Stokes equations or from real
fluid experiments? Is it possible to de-
sign a collection of synthetic microworlds
that could be considered local-interaction
board games, all having Navier-Stokes
macrodynamics? In other words, does
the detailed microphysics of fluids get
washed out of the macrodynamical pic-
ture under very rapid iteration of the de-
terministic system’? If the microgame is
simple enough to update it deterministi-
cally on a parallel machine, is the density
of states required to see everything we
see in ordinary Navier-Stokes simulations
much smaller than the density of atoms in
real physical fluids? If so, these synthetic
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Fig. 3. Three ingredients are needed for the scale separation between microkinetics and
emergence of macrodynamics: local thermo- collective motion.
dynamic equilibrium, conservation laws, and

microworlds become a potentially power-
ful analytic tool.

Our approach in building a cellular
space is to move away from the idea
of a fluid state and focus instead on the
idea of the macrodynamics of a many-
element system. In abstract terms, we
want to devise the simplest determinis-
tic local game made of a collection of
few-bit, finite-state machines that has the

Navier-Stokes equations as its macrody -
namical description. From our brief look
at kinetic transport theory, we can ab-
stract the essential features of such a
game (Fig. 3). The many-element sys-
tem must be capable of supporting a
notion of local thermodynamic equilib-
rium and must also include local micro-
scopic conservation laws. The state of
a real fluid can be imagined as a col-
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consistency conditions among their pa-
rameters, which become constrained vari-
ables. These consistency conditions are
the macrodynamical equations necessary
to put a consistent equilibrium function
description onto the many-element sys-
tem. In physical fluids they are the
Navier-Stokes equations. This is the gen-
eral setup that will guide us in creating a
lattice model.

Evolution of Discrete
Fluid Models

Continuous Network Models. The Na-
vier-Stokes equations, however derived,
are analytically intractable, except in a
few special cases for especially clean ge-
ometries. Fortunately, one can avoid
them altogether for many problems, such
as shocks in certain geometries. The
strategy is to rephrase the problem in a
very simple phase space and solve the
Boltzmann transport equation directly. If
a single type of particle is constrained
to move continuously only along a reg-
ular grid, the Boltzmann equation is so
tightly constrained that it has simple ana-
lytic solutions. In the early 1960s Broad-
well and others applied this simplified
method of analysis to the dynamics of
shock problems. Their numerical results
agreed closely with much more elabo-
rate computer modeling from the Navier-
Stokes equations. However, there was no
real insight into why such a calculation
in such a simplified microworld should
give such accurate answers. The accu-
racy of the limited phase-space approach
was considered an anomaly.
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PART II THE SIMPLE
HEXAGONAL MODEL
Theory and Simulation

The Minimal Totally Discrete Model of Navier-Stokes
in Two Dimensions

We can now list the ingredients we need to build the simplest cellular-space world
with a dynamics that reproduces the collective behavior predicted by the compressible
and incompressible Navier-Stokes equations:

1.

2.

3.

4.

5.

A population of identical particles, each with unit mass and moving with the same
average speed c.
A totally discrete phase space (discrete values of x, y and discrete particle-velocity
directions) and discrete time t. Discrete time means that the particles hop from
site to site.
A lattice on which the particles reside only at the vertices. In the simplest case
the lattice is regular and has a hexagonal neighborhood to guarantee an isotropic
momentum flux tensor. We use a triangular lattice for convenience.
A minimum set of collision rules that define symmetric binary and triple collisions
such that momentum and particle number are conserved (Fig. 4).
An exclusion principle so that at each vertex no two particles can have identical
velocities. This limits the maximum number of particles at a vertex to six, each one
having a velocity that points in one of the six directions defined by the hexagonal
neighborhood.

The only way to make this hexagonal lattice gas simpler is to lower the rotation
symmetry of the lattice, remove collision rules, or break a conservation law. In a
two-dimensional universe with boundaries, any such modification will not give Navier-
Stokes dynamics. Left as it is, the model will. Adding attributes to the model, such
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as different types of particles, different speeds, enlarged neighborhoods, or weighted
collision rules, will give Navier-Stokes behavior with different equations of state and
different adjustable parameters such as the Reynolds number (see the discussion in Part
III). The hexagonal model defined by the five ingredients listed above is the simplest
model that gives Navier-Stokes behavior in a sharply defined parameter regime.

At this point it is instructive to look at the complete table of allowed states for
the model (Fig. 5). The states and collision rules can be expressed by Boolean logic

Other Configurations Don’t Scatter
Pure Transport
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operations with the two allowed values taken as O and 1. From this organization scheme
we see that the hexagonal lattice gas can be seen as a Boolean parallel computer. In
fact, a large parallel machine can be constructed to implement part or all of the state
table locally with Boolean operations alone. Our simulations were done this way and
provide the first example of the programming of a cellular-automaton, or cellular-space,
machine that evolves the dynamics of a many-degrees-of-freedom, nonlinear physical
system.

STATE TABLE FOR HEXAGONAL MODEL

Right Three Bits

(000) (001) (010) (01 1) (loo) (101) (1 10) (111)

(000)
Scattering Rules for Simple

Hexagonal Model in 6-Bit Notation

Additional Rules for Extended
Hexagonal Model

Fig. 5. All possible states of the hexagonal lat- and the maximally occupied state shown in the are written beside the table. All other states do

tice gas are shown in the state table. Each lower right hand corner of the table is written not result in scattering. The extended hexag-

state can be expressed in 6-bit notation (a (111, 111). Collision states for the simplest onal model includes scattering rules for four-

combination of 3 right bits and 3 left bits). For hexagonal model are shown in red and shaded body states (shaded in gray). The extended

example, the empty state is written (000,000) in gray. The scattering rules for these states model lowers the viscosity of the lattice gas.
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3 2 Theoretical Analysis of the Discrete Lattice Gas

particle

can point in one of six possible directions. All

particles have the same speed c.

(8)
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To lowest order in h and k, we have

So far we have kept only the leading terms of the Taylor series expansion in
the scaling factors that relate to the discreteness of the lattice. It’s easy to show that
keeping quadratic terms in this lattice-size expansion leaves the continuity equation
invariant but alters the momentum equation by introducing a free-streaming correction
to the measured viscosity. This rather elegant way of viewing this correction was first
developed by D. Levermore. The correction comes from breaking the form of a Galilean
covariant derivative and is a geometrical effect. Specifically, to second order in the
lattice size expansion, the momentum equation does not decompose simply into factors
of these covariant derivatives but instead the expansion introduces a nonvanishing
covariant-breaking term:

This term is of the same order as those terms that contribute to the viscosity. Later we
will show how to use the Chapman-Enskog expansion to compute an explicit form for
the lattice-gas viscosity.
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The systematic expansion becomes

The Lattice Collision Operator and the Solution to the Lattice Boltzmann
Transport Equation. We will write down the discrete form of the Boltzmann equation,
especially noting the collision operator, for a number of reasons. First, writing the
explicit form of the collision kernel builds up an intuition of how the heart of the model
works; second, we can show in a few lines that the Femi-Dirac distribution satisfies the
lattice gas Boltzmann equation; third, knowing this, we can quickly compute the lattice
form of the Euler equations; fourth, we can see that many properties of the lattice-gas
model are independent of the types of collisions involved and come only from the form
of the Fermi-Dirac distribution.

Collision operators for lattice gases with continuous speeds were derived by Broad-
well, Harris, and other early workers on continuum lattice-gas systems. For totally
discrete lattice gases with an exclusion principle, we must be careful to apply this prin-
ciple correctly. It is similar to the case of quasi-particles in quantum Fermi liquids.
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(16)

where we have taken the particle speed as 1 (c = 1). The coefficient g(p) is

3 – pg ( p )  .  —
6 – p“

The lattice Euler equation (Eq. 12) thus becomes

(17)

In the usual Euler equation g(p) = 1. Here g(p) is the lattice correction to the convective
term due to the explicit lattice breaking of Galilean invariance. The equation of state
for Eq. 17 is
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and
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(18)

and
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(19)

We end this theoretical analysis by showing under what conditions we recover these
equations for lattice gases. One way is to freeze the density everywhere except in the
pressure term of the momentum equation (Eq. 18). Then, in the low-velocity limit, we
can write the lattice Navier-Stokes equations as
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SIMULATED VELOCITY PROFILE

Fig. 7. The predicted velocity profile was ob-

tained in a low-velocity lattice gas simulation

of two- dimensional flow in a channel with vis-

cous boundaries (Kadanoff, McNamara, and

Zanetti 1987).
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SIMULATED AND THEORETICAL KINEMATIC VISCOSITIES

Fig. 8.  Theoretical shear (solid line) and bulk (dashed line) reduced viscosities as a function of
reduced density compared with the results of hexagonal lattice gas simulation with rest particles
and all possible collisions (d’ Humieres and Lallemand 1987).

functional forms for various fluid dynamical laws. The question of quantitative accuracy
of various known constants is harder to answer, and we will take it up in detail later.

The next broad class of flows studied are flows past objects. Here, we look for
distinctive qualitative behavior characteristic of a fluid or gas obeying Navier-Stokes
dynamics. The geometries studied, through a wide range of Reynolds numbers, were
flows past flat plates placed normal to the flow, flows past plates inclined at various
angles to the flow, and flows past cylinders, 60-degree wedges, and typical airfoils. The
expected scenario changes as a function of increasing Reynolds number: recirculating
flow behind obstacles should develop into vortices, growing couples of vortices should
eventually break off to form von Karman streets with periodic oscillation of the von
Karman tails; finally, and as the Reynolds number increases, the periodic oscillations
should become aperiodic, and the complex phenomena characteristic of turbulent flow
should appear. The lattice gas exhibits all these phenomena with no non-Navier-Stokes
anomalies in the range of lattice-gas parameters that characterize near incompressibility.

The next topic is quantitative self-consistency. We used the Boltzmann transport
approximation for the discrete model to calculate viscosities for the simple hexagonal
automaton as well as models with additional scattering rules and rest particles. We then
checked these analytic predictions against the viscosities deduced from two kinds of
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simulations. We ran plane-parallel Poiseuille flow in a channel, saw that it developed the
expected parabolic velocity profile (Fig. 7) and then deduced the viscosity characteristic
of this type of flow. We also ran an initially flat velocity distribution and deduced a
viscosity from the observed velocity decay. These two simulations agree with each other
to within a few percent and agree with the analytic predictions from the Boltzmann
transport calculation to within 10 percent. Viscosity was also measured by observing the
decay of sound waves of various frequencies (Fig. 8). The level of agreement between
simulation and the computed Boltzmann viscosity is generic: we see a systematic error
of approximately 10 percent. Monte Carlo calculations of viscosities computed from
microscopic correlation functions improve agreement with simulations to at least 3
percent and indicate that the Boltzmann description is not as accurate an analytic tool
for the automaton as are microscopic correlation techniques. One would call this type of
viscosity disagreement a Boltzmann-induced error. Other consistency checks between
the automaton simulation and analytic predictions display the same level of agreement.

Detailed quantitative comparisons between conventional discretizations of the
Navier-Stokes equations and lattice-gas simulations have yet to be done for several
reasons. The simple lattice-gas automaton has a Fermi-Dirac distribution rather than
the standard Maxwell-Boltzmann distribution. This difference alone causes deviations
of 0(v2) in the macrovelocity from standard results. For the same reason and unlike
standard numerical spectral codes for fluid dynamics, the simple lattice-gas automa-
ton has a velocity-dependent equation of state. A meaningful comparison between the
two approaches requires adjusting the usual spectral codes to compute with a velocity-
dependent equation of state. This rather considerable task has yet to be done. So far our
simulations can be compared only to traditional two-dimensional computer simulations
and analytic results derived from simple equations of state.

Some simple quantities such as the speed of sound and velocity profiles have been
measured in the automaton model. The speed of sound agrees with predicted values and
functional forms for channel velocity profiles and D’Arcy’s law agree with calculations
by standard methods. The automaton reaches local equilibrium in a few time steps and
reaches global equilibrium at the maximum information-transmission speed, namely, at
the speed of sound.

Simulations with the two-dimensional lattice-gas model hang together rather well
as a simulator of Navier-Stokes dynamics. The method is accurate enough to test
theoretical turbulent mechanisms at high Reynolds number and as a simulation tool for
complex geometries, provided that velocity-dependent effects due to the Fermi nature
of the automaton are correctly included. Automaton models can be designed to fit
specific phenomena, and work along these lines is in progress.

Three-dimensional hydrodynamics is being simulated, both on serial and parallel
machines, and early results show that we can easily simulate flows with Reynolds
numbers of a few thousand. How accurately this model reproduces known instabilities
and flows remains to be seen, but there is every reason to believe agreement will be
good since the ingredients to evolve to Navier-Stokes dynamics are all present. We end
Part II of this article with a graphical display of two- and three-dimensional simulations
in “Calculations Using Lattice-Gas Techniques. ” My Los Alamos collaborators and I
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have accompanied this display with a summary of the known advantages and present
limitations of lattice gas methods. (Part 111 begins on page 21 1.)
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over the last few years the tantaliz-
ing prospect of being able to per-
form hydrodynamic calculations

orders-of-magnitude faster than present
methods allow has prompted considerable
interest in lattice gas techniques. A few
dozen published papers have presented
both advantages and disadvantages, and
several groups have studied the possibil-
ities of building computers specially de-
signed for lattice gas calculations. Yet the
hydrodynamics community remains gen-
erally skeptical toward this new approach.
The question is often asked, “What cal-
culations can be done with lattice gas
techniques?” Enthusiasts respond that in
principle the techniques are applicable to
any calculation, adding cautiously that in-
creased accuracy requires increased com-
putational effort. Indeed, by adding more
particle directions, more particles per site,
more particle speeds, and more variety
in the interparticle scattering rules, lattice
gas methods can be tailored to achieve
better and better accuracy. So the real
problem is one of tradeoff: How much
accuracy is gained by making lattice gas
methods more complex, and what is the
computational price of those complica-
tions? That problem has not yet been well
studied. This paper and most of the re-
search to date focus on the simplest lattice
gas models in the hope that knowledge of
them will give some insight into the es-
sential issues.

We begin by examining a few of the
features of the simple models. We then
display results of some calculations. Fi-
nally, we conclude with a discussion of
limitations of the simple models.

Features of Simple
Lattice Gas Methods

We will discuss in some depth the
memory efficiency and the parallelism of
lattice gas methods, but first “we will touch
on their simplicity, stability, and ability to

model complicated boundaries.
Computer codes’ for lattice gas meth-

ods are enormously simpler than those
for other methods, Usually the essential
parts of the code are contained in only a
few dozen lines of FORTRAN. And those
few lines of code are much less com-
plicated than the several hundred lines
of code normally required for two- and
three-dimensional hydrodynamic calcula-
tions.

There are many hydrodynamic prob-
lems that cause most standard codes (such
as finite-difference codes, spectral codes,
and particle-in-cell codes) to crash. That
is, the code simply stops running because
the algorithm becomes unstable. Stability
is not a problem with the codes for lattice
gas methods. In addition, such methods
conserve energy and momentum exactly,
with no roundoff errors.

Boundary conditions are quite easy to
implement for lattice gas methods, and
they do not require much computer time.
One simply chooses the cells to which
boundary- conditions apply and updates
those cells in a slightly different way.
One of three boundary conditions is com-
monly chosen: bounce-back, in which
the directions of the reflected particles
are simply reversed; specular, in which
mirror-like reflection is simulated; or dif-
fusive, in which the directions of the re-
flected particles are chosen randomly.

We consider next the memory effi-
ciency of the lattice gas method, When
the two-dimensional hydrodynamic lat-
tice gas algorithm is programmed on a
computer with a word length of, say,
64 bits (such as the Cray X-MP), two
impressive efficiencies occur. The first
arises because every single bit of mem-
ory is used equally effectively. Coined
“bit democracy” by von Neumann, such
efficient use of memory should be con-
trasted with that attainable in standard
calculations, where each number requires
a whole 64-bit word. The lattice gas
is “bit democratic” because all that one
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fact that lattice gas operations are bit ori-
ented rather than floating-point-number
oriented and therefore execute more natu-
rally on a computer. Most computers can
carry out logic operations bit by bit. For
example, the result of the logic operation
AND on the 64-bit words A and B is a
new 64-bit word in which the ith bit has
a value of 1 only if the ith bits of both
A and B have values of 1. Hence in one
clock cycle a logic operation can be per-
formed on information for 64 cells. Since
a Cray X-MP/416 includes eight logical
function units, information for 8 times
64, or 512, cells can be processed dur-
ing each clock cycle, which lasts about
10 nanoseconds. Thus information for
51,200,000,000 cells can be processed
each second. The two-dimensional lattice
gas models used so far require from about
thirty to one hundred logic operations to
implement the scattering rules and about
another dozen to move the particles to the
next cells. So the number of cells that
can be updated each second by logic op-
erations is near 500,000,000. Cells can
also be updated by table-lookup meth-
ods. The authors have a table-lookup
code for three-dimensional hydrodynam-
ics that processes about 30,000,000 cells
per second.

A final feature of the lattice gas method
is that the algorithm is inherently parallel.
The rules for scattering particles within
a cell depend only on the combination
of particle directions in that cell. The
scattering can be done by table lookup,
in which one creates and uses a table of
scattering results-one for each possible
cell configuration. Or it can be done by
logic operations.

Using Lattice Gas Methods
To Approximate Hydrodynamics

In August 1985 Frisch, Hasslacher, and
Pomeau demonstrated that one can ap-
proximate solutions to the Navier-Stokes
equations by using lattice gas methods,

D

c

E

but their demonstration applied only to
low-velocity incompressible flows near
equilibrium. No one knew whether more
interesting flows could be approximated.
Consequently, computer codes were writ-
ten to determine the region of validity of
the lattice gas method. Results of some of
the first simulations done at Los Alamos
and of some later simulations are shown
in Figs. 1 through 6. (Most of the early
calculations were done on a Celerity com-
puter, and the displays were done on a
Sun workstation.) All the results indicate
qualitatively correct fluid behavior.

Figure la demonstrates that a stable
trailing vortex pattern develops in a two-
dimensional lattice gas flowing past a
plate. Figure lb shows that without a
three-particle scattering rule, which re-
moves the spurious conservation of mo-
mentum along each line of particles, no
vortex develops. (Scattering rules are de-
scribed in Part II of the main text.)

Figure 2 shows that stable vortices de-
velop in a lattice gas at the interface be-
tween fluids moving in opposite direc-
tions. The Kelvin-Helmholtz instability
is known to initiate such vortices. The
fact that lattice gas methods could simu-
late vortex evolution was reassuring and
caused several scientists to begin to study
the new method.

Figure 3 shows the complicated wake
that develops behind a V-shaped wedge in
a uniform-velocity flow.

Figure 4 shows the periodic oscillation
of a low-velocity wake behind a cylin-

der. With a Reynolds number of 76, the
flow has a stable period of oscillation that
slowly grows to its asymptotic limit.

Figure 5 shows a flow with a higher
Reynolds number past an ellipse. The
wake here becomes chaotic and quite sen-
sitive to details of the flow.

Figure 6 shows views of a three-
dimensional flow around a square plate,
which was one of the first results from
Los Alamos in three-dimensional lattice
gas hydrodynamic simulations.

Rivet and Frisch and other French sci-
entists have developed a similar code
that measures the kinematic shear viscos-
ity numerically; the results compare well
with theoretical predictions (see Fig. 8 in
the main text).

The lattice gas calculations of a group
at the University of Chicago (Kadanoff,
McNamara, and Zanetti) for two-dimen-
sional flow through a channel (Fig. 7
of the main text) agree with the known
parabolic velocity profile for low-velocity
channel flows.

The above calculations, and many oth-
ers, have established some confidence
that qualitative features of hydrodynamic
flows are simulated by lattice-gas meth-
ods. Problems encountered in detailed
comparisons with other types of calcula-
tions are discussed in the next section.

Limitations of Simple
Lattice Gas Models

As we discussed earlier, lattice gas
methods can be made more accurate by
making them more complicated—by, for
example, adding more velocity directions
and magnitudes. But the added complica-
tions degrade the efficiency. We mention
in this section some of the difficulties (as-
sociated with limited range of speed, ve-
locity dependence of the equation of state,
and noisy results) encountered in the sim-
plest lattice-gas models.

The limited range of flow velocities
is inherent in a model that assumes a

continued on page 210
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continued from page 203

But in the incompressible, low-velocity
limit the single-speed hexagonal lattice
gas follows the equation

Conclusion

In the last few years lattice gas methods
have been shown to simulate the quali-
tative features of hydrodynamic flows in
two and three dimensions. Precise com-
parisons with other methods of calcula-
tion remain to be done, but it is believed
that the accuracy of the lattice gas method

Note added in proof: Recently Kadanoff
McNamara, and Zanetti reported precise
comparisons between theoretical predic-
tions and lattice gas simulations (Univer-
sity of Chicago preprint, October 1987)
They used a seven-bit hexagonal model
on a small automaton universe to simu
late forced two-dimensional channel flow
for long times. Three tests were used to
probe the hydrodynamic and statistical
mechanical behavior of the model. The
tests determined (1) the profile of mo-
mentum density in the channel, (2) the
equation of state given by the statistical
mechanics of the system, and (3) the log-
arithmic divergence in the viscosity (a fa-
mous effect in two- dimensional hydrody-
namics and a deep test of the accuracy 01
the model in the strong nonlinear regime)

The results were impressive, First,
to within the accuracy of the simula-
tion, there is no discrepancy between
the parabolic velocity profile predicted by
macroscopic theory and the lattice gas
simulation data. Second, the equation of
state derived from theory fits the simula-
tion data to better than 1 percent. Finally,
the measured logarithmic divergence in
the viscosity as a function of channel
width agrees with prediction. These re-
sults are at least one order of magni-
tude more accurate than any previously
reported calculations.
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In the sidebar “Calculations Using Lat-
tice Gas Techniques” we displayed
the results of generalizing the sim-

ple hexagonal model to three dimensions.
Here, in the last part of the article, we
will discuss numerous ways to extend and
adapt the simple model. In particular, we
emphasize its role as a paradigm for par-
allel computing.

Adjusting the Model To Fit
the Phenomenon

There are several reasons for altering
the geometry and rule set of the funda-
mental hexagonal model. To understand
the mathematical physics of lattice gases,
we need to know the class of functionally
equivalent models, namely those models
with different geometries and rules that
produce the same dynamics in the same
parameter range.

To explore turbulent mechanisms in
fluids, the Reynolds number must be sig-
nificantly higher than for smooth flow,
so models must be developed that in-
crease the Reynolds number in some way.
The most straightforward method, other
than increasing the size of the simula-
tion universe, is to lower the effective
mean free path in the gas. This lowers
the viscosity and the Reynolds number
rises in inverse proportion. Increasing
the Reynolds number is also important
for practical applications. In “Reynolds
Number and Lattice Gas Calculations”

Los Alamos Science  Special Issue 1987

PART III THE PROMISE OF
LATTICE GAS METHODS

we discuss the computational storage and
work needed to simulate high-Reynolds-
number flows with cellular automata.

To apply lattice gas methods to sys-
tems such as plasmas, we need to develop
models that can support widely separated
time scales appropriate to, for example,
both photon and hydrodynamical modes.
The original hexagonal model on a single
lattice cannot do so in any natural way
but must be modified to include several
lattices or the equivalent (see below).

Within the class of fluids, problems in-
volving gravity on the gas, multi-compo-
nent fluids, gases of varying density, and
gases that undergo generalized chemical
reactions require variations of the hexago-
nal model. Once into the subject of appli-
cations rather than fundamental statistical
mechanics, there is an endless industry
in devising clever gases that can simulate
the dynamics of a problem effectively.

We outline some of the possible ex-
tensions to the hexagonal gas, but do so
only to give an overview of this develop-
ing field. Nothing fundamental changes
by making the gas more complex. This
model is very much like a language. We
can build compound sentences and para-
graphs out of simple sentences, but it
does not change the fundamental rules by
which the language works.

The obvious alterations to the hexago-
nal model are listed below. They com-
prise almost a complete list of what can
be done in two dimensions, since a lattice
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els are in general equivalent to single-
species models operating on separate lat-
tices. Colored collision rules couple the
lattices so that information can be trans-
ferred between them at different time
scales. Certain statistical-mechanical phe-
nomena such as phase transitions can be
done this way.

By altering the rule domain and adding
gas species with distinct speeds, it is pos-
sible to add independent energy conserva-
tion. This allows one to tune gas models
to different equations of state. Again, we
gain no fundamental insight into the de-
velopment of large collective models by
doing so. but it is useful for applications.

In using these lattice gas variations to
construct models of complex phenomena,
we can proceed in two directions. The
first direction is to study whether or not
complex systems with several types of
coupled dynamics are described by skele-
tal gases. Can complex chemical reac-
tions in fluids and gases, for example,
be simulated by adding collision rules
operating on colored multi-speed lattice
gases? Complex chemisty is set up in the
gas in outline form, as a gross scheme of
closed sets of interaction rules. The same
idea might be used for plasmas. From a
theoretical viewpoint one wants to study
how much of the known dynamics of such
systems is reproduced by a skeletal gas;
consequently both qualitative and quanti-
tative results are important.

Exploring Fundamental Questions.
Models of complex gas or fluid systems,
like other lattice gas descriptions, may ei-
ther be a minimalist description of mi-
crophysics or simply have no relation to
microphysics other than a mechanism for
carrying known conservation laws and re-
actions. We can always consider such gas
models to be pure computers, where we
fit the wiring, or architecture, to the prob-
lem, in the same fashion that ordinary dis-
cretization schemes have no relation to
the microphysics of the problem. How-
ever for lattice gas models, or cellular-

continued on page 214
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REYNOLDS
NUMBER

and
Lattice Gas

Calculations

The only model-dependent coupling
constant in the Navier-Stokes equa-
tion is the viscosity. Its main role

in lattice gas computations is its influence
on the Reynolds number, an important
scaling concept for flows. Given a system
with a fixed intrinsic global length scale,
such as the size of a pipe or box, and
given a flow, then the Reynolds number
can be thought of as the ratio of a typical
macrodynamic time scale to a time scale
set by elementary molecular processes in
the kinetic model.

Reynolds numbers characterize the be-
havior of flows in general, irrespective
of whether the system is a fluid or a
gas. At high enough Reynolds num-
bers turbulence begins, and turbulence
quickly loses all memory of molecular
structure, becoming universal across liq-

uids and gases. For this reason and
because many interesting physical and
mathematical phenomena happen in tur-
bulent regimes, it is important to be able
to reach these Reynolds numbers in real-
istic simulations without incurring a large
amount of computational work or storage.

Some simple arguments based on di-
mensional analysis and phenomenolog-
ical theories of turbulence indicate, at
first glance, that any cellular automaton
model has a high cost in computer re-
sources when simulating high-Reynolds-
number flows. These arguments appeared
in the first paper on the subject (Frisch,
Hasslacher, and Pomeau 1987) and were
later elaborated on by other authors. We
will go through the derivation of some
of the more severe constraints on simu-
lating high-Reynolds-number flows with
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continued from page 212

automaton models in general, there al-
ways seems to be a deep relation between
the abstract computer embodying the gas
algorithm for a physical problem and the
mathematical physics of the system itself.

This duality property is an important
one, and it is not well understood. One
of the main aims of lattice gas theory is
to make the underlying mathematics of
dynamical evolution clearer by providing
a new perspective on it. One would, for
example, like to know the class of all lat-
tice gas systems that evolve to a dynam-
ics that is, in an appropriate sense, nearby
the dynamics actually evolved by nature.
Doing this will allow us to isolate what
is common to such systems and identify
universal mathematical mechanisms.

Engineering Design Applications. The
second direction of study is highly ap-
plied. In most engineering-design sit-
uations with complicated systems, one
would like to know first the general qual-
itative dynamical behavior taking place
in some rather involved geometry and
then some rough numerics. Given both,
one can plot out the zoo of dynamical
development within a design problem.
Usually, one does not know what kinds
of phenomena can occur as a parameter
in the system varies. Analytic methods
are either unavailable, hard to compute
by traditional methods, or simply break
down. Estimating phenomena by scal-
ing or arguments depending on order-of-
magnitude dimensional analysis is often
inaccurate or yields insufficient informa-
tion. As a result, a large amount of ex-
pensive and scarce supercomputer time is
used just to scan the parameter space of
a system.

Lattice gas models can perform such
tasks efficiently, since they simulate at
the same speed whether the geometry and
system are simple or complex. Compli-
cated geometries and boundary conditions
for massively parallel lattice gas simula-
tors involve only altering collision rules
in a region. This is easily coded and
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can be done interactively with a little in-
vestment in expert systems. There is no
question that for complex design prob-
lems, lattice gas methods can be made
into powerful design tools.

Beyond Two Dimensions

In two dimensions there exists a single-
speed skeletal model for fluid dynamics
with a regular lattice geometry. It re-
lies on the existence of a complete tiling
of the plane by a domain of sufficiently
high symmetry to guarantee the isotropy
of macroscopic modes in the model. In
three dimensions this is not the case, for
the minimum appropriate domain symme-
try is icosahedral and such polyhedra do
not tile three-space. If we are willing
to introduce multiple-speed models, there
may exist a model with high enough ro-
tational symmetry, as in the square model
with nearest and next-to-nearest neighbor
interaction in two dimensions, but it is not
easy to find and may not be efficient for
simulations.

A tactic for developing an enlarged-
neighborhood, three-dimensional model,
which still admits a regular lattice, is to
notice that the number of regular polyhe-
dra as a function of dimension has a max-
imum in four dimensions. Examination
of the face-centered four-dimensional hy-
percube shows that a single-speed model
connected to each of twenty-four near-
est neighbors has exactly the right in-
variance group to guarantee isotropy in
four dimensions. So four-dimensional
single-speed models exist on a regular
tiling. Three-dimensional, or regular, hy-
drodynamics can be recovered by taking a
thin one-site slice of the four-dimensional
case, where the edges of the slice are
identified. Projecting such a scheme into
three-dimensional space generates a two-
speed model with nearest and next-to-
nearest neighbor interactions of the sort
guaranteed to produce three-dimensional
Navier-Stokes dynamics.

Such models are straightforward ex-

tensions of all the ideas present in the
two-dimensional case and are being sim-
ulated presently on large Cray-class ma-
chines and the Connection Machine 2.
Preliminary results show good agreement
with standard computations at least for
low Reynolds numbers. In particular,
simulation of Taylor-Green vortices at
a Reynolds number of about 100 on a
(128)3 universe (a three-dimensional cube
with 128 cells in each direction) agrees
with spectral methods to within 1 per-
cent, the error being limited by Monte
Carlo noise. The ultimate comparison is
against laboratory fluid-flow experiments.
As displayed at the end of Pant H, three-
dimensional flows around flat plates have
also been done.

A more intriguing strategy is to give
up the idea of a regular lattice. Phys-
ical systems are much more like a lat-
tice with nodes laid down at random. At
present, we don’t know how to analyze
such lattices, but an approximation can be
given that is intermediate between regu-
lar and random grids. Quasi-tilings are
sets of objects that completely tile space
but the grids they generate are not peri-
odic. Locally, various types of rotation
symmetry can be designed into such lat-
tices, and in three dimensions there ex-
ists such a quasi-tiling that has icosahe-
dral symmetry everywhere. The beauty
of quasi-tilings is that they can all be
obtained by simple slices through hyper-
cubes in the appropriate dimension. For
three dimensions the parent hypercube is
six-dimensional.

The idea is to run an automaton model
containing the conservation laws with as
simple a rule set as possible on the six-
dimensional cube and then take an appro-
priately oriented three-dimensional slice
out of the cube so arranged as to gen-
erate the icosahedral quasi-tiling. Since
we only examine averaged quantities, it is
enough to do all the averaging in six di-
mensions along the quasi-slice and image
the results. By such a method we guar-
antee exact isotropy everywhere in three
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dimensions and avoid computing directly
on the extremely complex lattices that the
quasi-tiling generates. Ultimately, one
would like to compute on truly random
lattices, but for now there is no simple
way of doing that efficiently.

The simple four-dimensional model is
a good example of the limits of present
super-computer power. It is just barely
tolerable to run a (1000)3 universe at a
Reynolds number of order a few thousand
on the largest existing Cray’s. It is far
more efficient to compute in large paral-
lel arrays with rather inexpensive custom
machines, either embedded in an existing
parallel architecture or on one designed
especially for this class of problems.

Lattice Gases as Parallel
Computers

Let us review the essential features of a
lattice gas. The first property is the totally
discrete nature of the description: The
gas is updated in discrete time steps, lat-
tice gas elements can only lie on discrete
space points arranged in a space-filling
network or grid, velocities can also have
only discrete values and these are usually
aligned with the grid directions, and the
state of each lattice gas site is described
by a small number of discrete bits instead
of continuous values.

The second crucial property is the local
deterministic rules for updating the array
in space and time. The value of a site
depends only on the values of a few lo-
cal neighbors so there is no need for in-
formation to propagate across the lattice
universe in a single step. Therefore, there
is no requirement for a hardwired inter-
connection of distant sites on the grid.

The third element is the Boolean nature
of the updating rules. The evolution of
a lattice gas can be done by a series of
purely Boolean operations, without ever
computing with radix arithmetic.

To a computer architect, we have just
described the properties of an ideal con-
current, or parallel, computer. The iden-
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tical nature of particles and the locality
of the rules for updating make it natural
to update all sites in one operation—this
is what one means by concurrent or par-
allel computation. Digital circuitry can
perform Boolean operations naturally and
quickly. Advancing the array in time is a
sequence of purely local Boolean opera-
tions on a deterministic algorithm.

Most current parallel computer designs
were built with non-local operations in
mind. For this reason the basic architec-
ture of present parallel machines is over-
laid with a switching network that en-
ables all sites to communicate in various
degrees with all other sites. (The usual
model of a switching network is a tele-
phone exchange.) The complexity of ma-
chine architecture grows rapidly with the
number of sites, usually as n log n at best
with some time tradeoff and as O (n2) at
worst. In a large machine, the complex-
ity of the switching network quickly be-
comes greater than the complexity of the
computing configuration.

In a purely local architecture switch-
ing networks are unnecessary, so two-
dimensional systems can be built in a
two-dimensional, or planar configuration,
which is the configuration of existing
large-scale integrated circuits. Such an
architecture can be made physically com-
pact by arranging the circuit boards in an
accordion configuration similar to a piece
of folded paper. Since the type of geome-
try chosen is vital to the collective behav-
ior of the lattice gas model and no unique
geometry fits all of parameter space, it
would be a design mistake to hardwire a
particular model into a machine architec-
ture. Machines with programmable ge-
ometries could be designed in which the
switching overhead to change geometries
and rules would be minimal and the gain
in flexibility large (Fig. 9).

In more than two dimensions a purely
two-dimensional geometry is still effi-
cient, using a combination of massive
parallel updating in a two-dimensional
plane and pipelining for the extra dimen-

sions. As technology improves, it is easy
to imagine fully three-dimensional ma-
chines, perhaps with optical pathways be-
tween planes, that have a long mean time
to failure.

The basic hardware unit in conven-
tional computers is the memory chip,
since it has a large storage capacity (256
K bytes or 1 M bytes presently) and is
inexpensive, reliable, and available com-
mercially in large quantities. In fact,
most modem computers have a memory-
bound architecture, with a small number
of controlling processors either doing lo-
cal arithmetic and logical operations or
using fast hashing algorithms on large
look-up tables. An alternative is the lo-
cal architecture described above for lat-
tice gas simulators. In computer archi-
tecture terms it becomes very attractive
to build compact, cheap, very fast simu-
lators which are general over a large class
of problems such as fluids. Such ma-
chines have a potential processing capac-
ity much larger than the general-purpose
architectures of present or foreseen vec-
torial and pipelined supercomputers. A
number of such machines are in the pro-
cess of being designed and built, and it
will be quite interesting to see how these
experiments in non-von Neumann archi-
tectures (more appropriately called super-
von Neumann) turn out.

At present, the most interesting ma-
chine existing for lattice gas work is the
Connection Machine with around 65,000
elementary processors and several giga-
bytes of main memory. This machine
has a far more complex architecture than
needed for pure lattice-gas work, but it
was designed for quite a different pur-
pose. Despite this, some excellent simu-
lations have been done on it. The simu-
lations at Los Alamos were done mainly
on Crays with SUN workstations serv-
ing as code generators, controllers, and
graphical units. The next generation of
machines will see specialized lattice gas
machines whether parallel, pipelined, or
some combination, running either against
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ARCHITECTURE OF THE
LATTICE GAS SIMULATOR

Fig. 9. The lattice gas code is a virtual machine
in the sense that the way the code works is
exactly the way to build a machine.

(a) The basic processor unit in a lattice gas
simular has five units: (1) a memory unit that
stores the state at each node of the lattice grid;
(2) a propagation unit that advances particles
from one node to the next; (3) a scattering unit
that checks the state at each node and imple-
ments the scattering rules where appropriate;
(4) an averaging unit that averages velocities
over a preassigned region of the lattice uni-
verse; and (5) an output and display unit.

(b) Processors are arranged in a parallel ar-
ray. Each processor operates independently
except at nodes on shared boundaries of the
lattice gas universe.

(c) Processor units are overlaid by units that
can alter the geometry of the lattice, the col-
lision rules and boundary conditions, and the
type of averaging.

Connection Machine style architectures
or using them as analyzing engines for
processing data generated in lattice gas
“black boxes.” This will be a learn-
ing experience for everyone involved in
massive simulation and provide hardware
engines that will have many interesting
physics and engineering applications.

Unfortunately, fast hardware alone is
not enough to provide a truly useful ex-
ploration and design tool. A large amount
of data is produced in a typical many de-
gree of freedom system simulation. In
three dimensions the problems of access-
ing, processing, storing, and visualizing
such quantities of data are unsolved and
are really universal problems even for
standard supercomputer technology. As
the systems we study become more com-

(c) Control Unit Modifying Processors

plex, all these problems will also. It will that information and introduce artificial
take innovative engineering and physics
approaches to overcome them.

Conclusion

To any system naturally thought of
as classes of simple elements interacting
through local rules there should corre-
spond a lattice-gas universe that can sim-
ulate it. From such skeletal gas models,
one can gain a new perspective on the
underlying mathematical physics of phe-
nomena. So far we have used only the
example of fluids and related systems that
naturally support flows. The analysis of
these systems used the principle of max-
imum ignorance: Even though we know
the system is deterministic, we disregard

probabilistic methods. The reason is that
the analytic tools for treating problems
in this way are well developed, and al-
though tedious to apply, they require no
new mathematical or physical insight.

A deep problem in mathematical phys-
ics now comes up. The traditional meth-
ods of analyzing large probabilistic sys-
tems are asymptotic perturbation expan-
sions in various disguises. These contain
no information on how fast large-scale
collective behavior should occur. We
know from computer simulations that lo-
cal equilibrium in lattice gases takes only
a few time steps, global equilibrium oc-
curs as fast as sound propagation will al-
low, and fully developed hydrodynamic
phenomena, including complex instabil-
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ities, happen again as fast as a traverse
of the geometry by a sound wave. One
might say that the gas is precociously
asymptotic and that this is basically due
to the deterministic property that conveys
information at the greatest possible speed.

Methods of analyzing the transient and
invariant states of such complex multi-
dimensional cellular spaces, using de-
terminism as a central ingredient, are
just beginning to be explored. They are
non-perturbative. The problem seems as
though some of the methods of dynam-
ical systems theory should apply to it,
and there is always the tempting shadow
of renormalization-group ideas waiting to
be applied with the right formalism. So
far we have been just nibbling around the
edges of the problem. It is an extraordi-
narily difficult one, but breaking it would
provide new insight into the origin of ir-
reversible processes in nature.

The second feature of lattice gas mod-
els, for phenomena reducible to natural
skeletal worlds, is their efficiency com-
pared to standard computational meth-
ods. Both styles of computing reduce
to inventing effective microworlds, but
the conventional one is dictated and con-
strained by a limited vocabulary of differ-
ence techniques, whereas the lattice gas
method designs a virtual machine inside
a real one, whose architectural structure is
directly related to physics. It is not a pri-
ori clear that elegance equals efficiency.
In many cases, lattice gas methods will
be better at some kinds of problems, es-
pecially ones involving highly complex
systems, and in others not. Its usefulness
will depend on cleverness and the prob-
lem at hand. At worst the two ways of
looking at the microphysics are comple-
mentary and can be used in various mix-
tures to create a beautiful and powerful
computational tool.

We close this article with a series of
conjectures. The image of the physical
world as a skeletal lattice gas is essen-
tially an abstract mathematical framework
for creating algorithms whose dynamics
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spans the same solution spaces as many
physically important nonlinear partial dif-
ferential equations that have a micrody-
namical underpinning. There is no intrin-
sic reason why this point of view should
not extend to those rich nonlinear sys-
tems which have no natural many-body
picture. The classical Einstein-Hilbert ac-
tion, phrased in the appropriate space, is
no more complex than the Navier-Stokes
equations. It should be possible to in-
vent appropriate skeletal virtual comput-
ers for various gauge field theories, be-
ginning with the Maxwell equations and
proceeding to non-Abelian gauge mod-
els. Quantum mechanics can perhaps
be implemented by using a variation on
the stochastic quantization formulation of
Nelson in an appropriate gas. When such
models are invented, the physical mean-
ing of the skeletal worlds is open to in-
terpretation. It may be they are only a
powerful mathematical device, a kind of
virtual Turing machine for solving such
problems. But it may also be that they
will provide a new point of view on the
physical origin and behavior of quan-
tum mechanics and fundamental field-
theoretic descriptions of the world. ■
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