
by Didier Besnard, w hen the interface between two materials experiences strong accelerative

Francis H. Harlow, or shearing forces, the inevitable results are instability, turbulence, and
the mixing of materials, momentum, and energy. One of the most impor-

Norman L. Johnson, tant and exciting breakthroughs in our understanding of these disruptive

Rick Rauenzahn, processes has been the recent discovery that the features of the processes often are

and Jonathan Wolfe independent of the initial interface perturbations. This discovery is so important that
scientists at Los Alamos National Laboratory, the California Institute of Technology,
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the Atomic Weapons Research Establishment in Great Britain, Lawrence Livermore
National Laboratory, as well as scientists in France, and no doubt in the Soviet Union,
are working hard to confirm and extend this new understanding experimentally.

Theoretical analyses are likewise showing a firm basis for this astonishing dis-
covery. Two types of theory are being employed, gradually combined, and even
proved essentially equivalent. These are the multifield-interpenetration approach and
the single-field turbulence approach. Even brute-force hydrodynamics calculations are
demonstrating this same property of independence from initial perturbation.

The consequences for developments in such main-line Laboratory projects as
inertial-confinement fusion are profound. Our entire view of material mixing, tur-
bulence shear impedance, and energy transport has undergone a revolutionary shift to
qualitatively different directions.

What is the physical essence of this new way of thinking? No matter how
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TURBULENCE EFFECTS

Fig. 1. The effects of turbulence include in-

creased mixing of initially separated materi-

als, an increase in shear impedance of fluid

near rough boundaries due to the turbulent

viscosity, and increased transport of heat

into surrounding cooler regions.

Increased Mixing of Materials

Increased Shear Impedance

Increased Heat Diffusion

carefully we attempt to achieve smoothness and homogeneity, any sufficiently strong
destabilizing influence at a material discontinuity will inevitably be disruptive. Indeed,
the disruptive effects will be manifested in essentially the same manner as if there were
a considerable roughness or inhomogeneity at or near the interface. Add to this the
effects of any long-wavelength asymmetries, and we have an immutable inevitability
for major instabilities in virtually every experimental circumstance of accelerative or
shearing dynamics of interest to the Laboratory. Reliable predictability of new weapons
designs in a comprehensive test ban, the design of any locally intense energy source, the
development of workable concepts in Strategic Defense, the achievement of successful
inertial-confinement fusion devices, and the success of many other Laboratory programs
will depend crucially on our ability to model these instability and turbulence effects
realistically.

What Is Turbulence?

To describe the techniques we are using to model these effects, we must first
consider in more detail the properties of turbulence itself. Turbulence is the random
fluctuation in fluid motion that often is superimposed on the average course of the

flow. The effects of turbulence can be highly significant (Fig. 1), increasing the fluid’s
effective viscosity and enhancing the mixing of initially separated materials, such as the
mixing of dust into air or bubbles into a liquid. Turbulence is a significant factor in the
wind resistance of a vehicle, in the dispersal of fuel droplets in an internal combustion
engine, in mixing and transporting materials in chemical plants, indeed in virtually
every circumstance of high-speed fluid flow.

It is easy to be deceived into thinking that turbulence is rare, because it often
is not directly visible to the casual observer. Although water flowing rapidly through
a transparent pipe may look completely smooth, touching the pipe can reveal large
vibrations and the injection of dye through a tiny hole in the wall can demonstrate rapid
downstream mixing. Both effects are a direct result of intense turbulent fluctuations.

Turbulence in air can be demonstrated-even in a relatively calm room—by
holding one end of a long thread and watching its fluctuating response to air currents.
Sunshine streaming over the top of a hot radiator creates shadow patterns on a nearby
wall that dance restlessly in the never-ending turbulence that accompanies the upward
flow of air.

Why is nature discontent with the smooth and peaceful flow of liquids and gases,
especially at high flow speeds? What are the processes that feed energy into turbulent
fluctuations? The answers lie in the behavior of energy. In contrast to momentum,
energy has the peculiar ability to assume numerous and varied configurations. Momen-
tum constraints, while restrictive, are helpless to prevent seemingly capricious energy
rearrangements. In any real fluid flow, these rearrangements are triggered by inevitable
perturbations that can be fed from the reservoir of mean-flow energy.

It is helpful at this point to compare turbulence with the random motion of simple
gas molecules in a box because the approaches to both of these problems include much
that is similar. However, the analogy becomes seriously misleading if pushed too far.

Molecular Systems. In a box of molecules the dynamics of each individual can

146



Turbulence

be described quite accurately by Newton’s laws. Yet we seldom try to analyze the
complex interactions of all the trajectories, which are seemingly capable of very chaotic
behavior. Instead, we appeal to the remarkably organized mean properties of the motion,
identifying such useful variables as density, pressure, temperature, and fluid velocity.

We cannot ignore the departure of the individual from the behavior of the mean;
indeed, some of the most interesting properties of the gas are directly associated
with these departures. Diffusion of heat energy, for example, represents transport of
kinetic energy by fluctuations; pressure in a “stationary” gas is the result of continual
bombardment of molecules against objects immersed in the gas (Fig. 2(a)); viscous
drag between two opposing streams of gas (Fig. 2(b)) arises because of fluctuations
from the mean-flow velocity that cause molecules to migrate from one stream to the
other.

Turbulent Eddies and Mean Flow. Turbulent eddies in a fluid superficially resem-
ble individual molecules in a gas. They likewise bounce around in random fashion,
carrying kinetic energy in their fluctuational velocities. (Such turbulence kinetic energy
is typically as much as 10 per cent of the mean-flow kinetic energy, or even more in
regions where the mean flow stagnates at a solid surface.) Eddies also diffuse mo-
mentum (plus heat and any imbedded materials), exerting pressure through momentum
transport and bombardment against walls.

But the concept of a turbulent eddy is nebulous at best. Gas molecules have an
easily identifiable shape, size, mean separation, and mean free path between collisions.
Turbulent eddies, in contrast, have a spectrum of sizes; they overlap each other; the
constraint on their motion through the fluid by the immediate presence of neighboring
fluid precludes the simple concept of a mean free path.

Moreover, identification of what part of the dynamics is turbulence and what part
is mean flow is arbitrary. For molecules the distinction is essentially unique; in most
circumstances, individual molecular fluctuations take place on a scale that is orders of
magnitude smaller than the scale of collective, fluid-like motion. For turbulent eddies
the fluctuational scale may be an appreciable fraction of the mean-flow scale. More
to the point, the observer’s experimental configuration itself establishes the distinction
between turbulence and mean flow.

To put the matter succinctly, mean flow is that part of the dynamics directly
associated with the macroscopic conditions established or measured by the observer,

whereas turbulence is the more capricious part of the flow associated with finer-scaled
perturbations not controlled by the observer but inevitably present in any real flow.

As an example, consider air flow around a parked automobile on a gusty day. With
suitable instruments an observer can record variations in the approaching wind velocity.
These measurements describe the source of the mean flow, and the macroscopic features
of the car constitute the boundary conditions. Mean-flow patterns in the wake on the
downwind side of the vehicle can be observed either with a ribbon that stretches out
with the average air velocity at each place it is held or with an upstream smoke generator
emitting a thin filament of smoke that can be photographed as it passes over the car.

Both the ribbon and the filament have an average direction to their motion that
varies on the same time scale as that of the monitored gusts of wind; the relationship
between these two features is the correlation that our investigator is seeking. In addition,

MOMENTUM FLUX

Fig. 2. (a) The pressure on a wall is the

result of the transfer of momentum during

collisions between individual molecules and

the wall. (b) Viscous drag between two op-

posing streams of gas is a result of individ-

ual departures from the mean-flow velocity

in each stream. More precisely, pressure

and viscous drag represent the normal flux

through any imaginary surface of the normal

and the tangential components of momen-

tum, respectively.

(a)

(b)

Viscous Drag

Flow
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TANGENTIAL DRAG

Fig. 3. Fluid moving in a circular trough

loses mean-flow kinetic energy because of

tangential drag on the walls. Although this

entire loss in energy will eventually appear

as heat, a significant fraction may first ap-

pear as the kinetic energy of turbulence.

however, the ribbon flutters rapidly about that average (at the rate of many fluctuations
per second), and the smoke filament diffuses in contorted kinks into the surrounding
air. This capricious variation around the time-varying average is what our observer
calls turbulence.

A second observer standing nearby, but paying no attention to the detailed obser-
vations of the first, feels buffeted by the gusts and, likewise, would agree that there is
much turbulence. However, this observer can legitimately disagree as to which part of
the air flow is mean flow and which part is turbulence, seeing an average southwesterly
wind with turbulent variations that last several seconds. Meanwhile, an earth-orbiting
satellite reveals that the southwesterly wind is simply a momentary fluctuation (of a
half hour or so) from the general westerlies crossing the continent that day.

This example has three different fluctuational scales, all properly identified as
turbulence on the basis of the observer’s chosen viewpoint. The difference, however,
is not merely one of semantics, and we discuss below the consequences of this multiple
viewpoint to mathematical modeling of the flow processes. Important guidance is
furnished by a careful consideration of interactions among the various dynamical scales.

There is thus a seemingly random nature to both molecular dynamics and turbu-
lence. The detailed flow field of a group of molecules or eddies can vary by large
amounts as a result of minor initial perturbations on a microscopic scale. But the re-
markable feature of these dynamical systems is that the overall stochastic behavior is
essentially independent of the manner in which the fluctuations are introduced.

However, not every fluid flow is sensitive to minor perturbations. Viscous or
slowly moving fluids travel in a purely laminar fashion, responding negligibly to fine-
scale perturbations. Why does flow remain stable for some conditions and exhibit
turbulence for others? The answer lies in the ways in which energy is drawn from the
mean flow as the motion gradually decays to quiescence.

Turbulence Energy: Sources and Sinks

The statements of mass, momentum, and energy conservation lie at the foundations
of fluid dynamics. In particular, fluid flow implies the presence of energy, which can
exist in any of various forms: kinetic, heat, turbulence, potential, chemical. For the
moment we are concerned only with the first three. By kinetic energy we mean the
motion energy carried by the mean flow; heat energy refers to the kinetic energy of
molecular fluctuations. Turbulence energy is at a scale between these first two: it is
the kinetic energy of fluctuations that are large compared with the individual molecular
scale but small compared with the mean-flow scale.

As we said earlier, in contrast to mass and momentum, which are highly constrained
by their conservation laws, energy behaves very capriciously. Although total energy
is rigorously conserved, transitions among the many manifestations of energy occur
continuously. It is a remarkable fact of nature that, as a result of such transitions, any
system devoid of remedial influences inevitably tends to move from order to disorder.
An egg hitting the floor turns to a mess as ordered kinetic energy is converted into splat.
Cars break down, rust, and eventually end up as nondescript piles of metallic and organic
compounds blowing in the wind or leached by groundwater into a progressively wider
and less ordered distribution. Fluids in a nicely ordered state of mean flow likewise
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Mean-Flow Kinetic Energy I

tend toward (mass- and momentum-conserving) states of disordered energy in which

ENERGY DEGRADATION

Fig. 4. The mean-flow kinetic energy of a

moving fluid inevitably degrades to thermal

energy. Frequently, however, part of that

kinetic energy is first transformed to kinetic

energy of turbulence.

STABLE FLOW BETWEEN

MOVING PLATES



UNSTABLE FLOW

Fig, 6. A discontinuity in the velocity pro-

file between two oppositely moving fluid re-

gions can lead to a Kelvin-Helmholtz insta-

bility at that interface, resulting in turbu-

lence. For example, if, as in (b), the inter-

face experiences a sinusoidal perturbation

of wavelength X and amplitude A, such a

perturbation will act effectively as a series of

Venturi nozzles (c) that alter the mean-flow

velocities and pressure p. These pressure

variations, in turn, further increase the dis-

tortion.

(c)

where p is the density of the fluid. Differentiating Eq. 3 and substituting Eq. 2, we see
that turbulence energy K, in turn, grows as

or

(4)

(5)
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(7)

Local Initial
Reynolds Pertur-
Number bation
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Reynolds
Number

To design and test proposed large-
scale equipment, such as airfoils or
entire aircraft, it is often much more

practical to experiment with scaled-down
versions. If such tests are to be success-
ful, however, dynamic similitude must
exist between model and field equipment,
which, in turn, implies that geometric, in-
ertial, and kinematic similitude must ex-
ist.

The Navier-Stokes equations (Eqs. 9
and 10 in the main text) are a good start-
ing point for deriving the relationships
needed to establish dynamic similitude.
First, we look at the case of laminar flow.
Ignoring body force and pressure effects,
we examine the momentum conservation
relationship for steady, laminar, incom-
pressible, two-dimensional flow, equating
just the advection and diffusion terms in
the x-direction:

Advection Diffusion

where the highlighted variables are di-
mensionless. This portion of the momen-
tum equation can thus be uniquely char-
acterized by the ratio of the coefficients
multiplying the dimensionless advection
and diffusion terms. The ratio, called the
Reynolds number

(3)

can be thought of as a comparative mea-
sure of inertial and viscous (diffusive) ef-
fects within the flow field. To achieve dy-
namic similitude in two different laminar-
flow situations, the Reynolds numbers for
both must be identical.

What happens if we increase the flow
speed to the point that viscous dissipa-
tion can no longer stabilize the flow, and
the macroscopic balance between mean-
flow inertia and viscous effects breaks
down? At this point there is a transition
from purely laminar flow to turbulence.
In similar flows, the transition occurs at
a specific Reynolds number characteris-
tic of the flow geometry. For instance,
any fluid traveling inside a circular pipe—
regardless of the specific fluid or conduit

(4)

(5)
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What then can we deduce from this example about the features necessary for the
creation of turbulence?

● A mean-flow profile richer in kinetic energy than other momentum-conserving
states to which it can transform (such as the profile in Fig. 6(a) that can transform
to the one in Fig. 5).

● A viscosity low enough that dissipation to heat cannot absorb all the mean-flow
energy during the transition to the low-energy profile.

● A driving mechanism for enhancement of the inevitable microscopic perturbations
(such as the Kelvin-Helmholtz instability in Fig. 6).
However, the energy of turbulence frequently comes from sources (Fig. 7) other

than a velocity profile rich in mean-flow kinetic energy. For example, turbulence can
be fed directly from potential energy as when a Rayleigh-Taylor instability develops at
the interface between, say, water overlying a less dense layer of oil or cold air overlying
warm air. The latter instance, called buoyancy-driven turbulence, produces the dancing
air currents that can be seen by looking across the surface of a sunlit roof on a cold day.
Similarly, turbulence can be fed by accelerative forces as when a Richtmyer-Meshkov
instability develops at the deformable interface between two materials that are perturbed
by, say, a passing shock wave or the sudden acceleration of the entire system.

Droplets, particles, or bubbles projected through a liquid or gaseous fluid with
some relative velocity likewise can serve as a good source of turbulence energy. The
momentum-conserving transition induced by drag tends always to bring such entities
and the fluid to the same velocity. Competition for the center-of-mass kinetic energy
results in a partition into both heat and turbulence—the winner again depending on the
level of viscosity.

Likewise, if a quiescent suspension is subjected to a pressure gradient or shock,
a differential acceleration occurs that is in proportion to the difference in densities
between the suspended entities and the surrounding medium. Turbulence often gleans
a significant share of the resulting interpenetrational energy.

Turbulence Sinks. So far we have been discussing only sources for turbulence and
the manner in which the turbulence decays. Here we must return to what constitutes
turbulence and, in particular, reaffirm that the existence of turbulence depends on the
observer’s point of view. Mean flow is that part of the dynamics whose structure is
comparable in size to the region being measured; it is capable of being reproducibly
duplicated or monitored—at least in some statistical sense. Finer dynamical scales of a
capricious nature arising from random initial, boundary, or bulk perturbations constitute
the fluid’s turbulence. But the mean flow for one observer may simply be the larger
scales of a turbulence spectrum for an observer whose field of view encompasses a
somewhat larger domain. Thus, the source of turbulence seen by one observer becomes
the energy sink for the decay of turbulence at the larger scales of another observer.

This principle and its generalizations have powerful consequences for our math-
ematical modeling of turbulence dynamics, leading to the concept of a turbulence
cascade. In this process turbulence energy is transferred to progressively smaller and
smaller fluctuational scales with the source of energy for each scale coming from the
mean-flow velocity contortions of the next larger scale (Fig. 8). At each stage, there
is competition for the energy, part going into heat and part going into even smaller
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SOURCES OF TURBULENCE

Fig. 7. Although we have so far dealt only

with shear instabilities (Figs. 5 and 6), there

are many other sources of turbulence, rang-

ing from the instability of one fluid overlying

a less dense one, through the interpenetra-

tion of two distinct phases, to the interaction

of a shock wave with particles or surfaces.

Body Force Buoyancy

(Rayleigh-Taylor)

Shock Interactions
with Deformable Surface

(Richtmyer-Meshkov)

Energy from Relative Interpenetration (Two-Phase Instability)

turbulent fluctuations. However, as the scale decreases, the characteristic length of the
eddies decreases, and the velocity gradients in the eddies become steeper and steeper.
In other words, dH /dt eventually wins, and, at the smallest of turbulence scales, energy
goes directly to heat.

Thus, cascading of turbulence is consistent with nature’s universal law dictating
that ordered motion must become progressively more disordered until the energy in a
flow degrades to heat. The direction and magnitude of energy flow within the cascade
guides us in mathematically describing the decay of turbulence, not only into heat
from very small-scale eddies but also from large scales to smaller scales. Because the
transfer of energy through the cascade is, in some sense, equal at all steps, we can
easily describe the energy decay rate in a manner independent of molecular processes.
We will describe this approach more extensively when we consider detailed modeling
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in the next section.
In an idealized steady-state approximation of turbulence, exactly as much energy

enters the fluctuational spectrum of motion at the largest scale as leaves it to become
heat at the smallest scale. More accurately, there is some loss of energy to heat at
every scale, but the loss at the smallest scale is dominant (Fig. 9). Although these
ideas have been exploited to derive interesting properties of the small-scale spectrum
of turbulence energy, our principal concern here is with the largest scales. It is these
scales that contain most of the energy and thus exert the dominant effects on mean-flow
dynamics.

Transport Modeling of Turbulence

There are numerous theoretical approaches to turbulence: some reach to the
conceptual heart of the matter, others are directed toward the solution of practical
problems, and a few attempt to cover the entire range. Despite its present shortcomings,
turbulence transport theory, which fits into the last category, already shows promise
of considerable success in both illuminating the fundamental dynamical processes and
serving as a vehicle for the solution of practical problems.

TURBULENCE CASCADE

Fig. 8. With each reduction in scale, tur-

bulent motion of the larger scale becomes

mean-flow motion of the smaller scale (ar-

rows). Because each reduction in scale has

approximately the same change in mean-
flow velocity occurring over a much smaller

distance, velocity gradients become steep-

er, and a larger fraction of the turbulence

energy goes directly into heat.
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TURBULENCE ENERGY FLOW Largest Eddy

Fig. 9. Mean-flow kinetic energy transforms

into turbulence energy and thence to heat

energy, but the relative amounts (indicated

by the sizes of the arrows) transported by

each mechanism changes as the scale of

the turbulence changes. For example, in

the highly turbulent system being illustrated

here, much of the mean-flow kinetic energy

feeds into large-scale turbulence, whereas

thermal energy receives much of its energy

from small-scale turbulence.

Smallest Eddy

Even for a single fluid with constant, uniform density the relevant mathematical

formulations are lengthy, and there are significant difficulties yet to be resolved. Nev-

ertheless. we can capture in a relatively; simple manner much of’ the flavor of turbulence

modeling by starting with the Navier-Stokes fluid-dynamics equations for an incon--

pressible fluid-that is, a fluid of constant density and viscosity everywhere and for all

time. One of our fundamental assumptions is that these familiar and deceptively simple

equations describe everything wc need to understand about the turbulence of such a

fluid, including every “microscopic” detail in every fluctuating part of the turbulent

flow.

The Navier-Stokes equations describe the variations of’ pressure and velocity in

the fluid. Using Cartesian index notation with The summation convention, we can write

the first equation. which is an expression of’ The conservation of mass, as

and the second, which is an expression of the conservation of momentum. as

Rate of Advection Driving Diffusion

Change F o r c e

(10)
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MOMENTUM TRANSPORT

Fig. 10. The diffusion, driving-force, and ad-

vection terms of the Navier-Stokes momen-

tum equation represent the ways in which

momentum is locally added to or taken away

from a region in the fluid.

Transport In and Out Sources and Diffusion
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APPROACHES TO

TURBULENCE MODELING

Fig. 11. Typically, modeling of turbulence

makes two simplifying assumptions with re-

spect to the full Navier-Stokes equations:
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Experiment 4

tax even the most powerful of our modem computers. If these calculations could be
accomplished, however, the advantage of a direct calculation of turbulence would be
that no approximations or empirical postulates are required.

Ensemble Averages. Largely for the reasons given above, almost all theoretical ap-
proaches to turbulence modeling use some type of averaging--either temporal, spatial,
or ensemble. With the proper statistical treatment, the solution of turbulent flow prob-
lems need not resolve the full spectrum of eddies, initial and boundary conditions need
not be specified in minute detail, and a flow whose mean velocity is one-dimensional
can be numerically calculated in one dimension even though the resolved turbulence is
three-dimensional. However, with these advantages for turbulence transport modeling
come the disadvantages of assumptions and approximations needed to obtain a set of
solvable equations.

What is meant by the average of any flow variable in a turbulent flow? Time
averages are easy to understand. We say that fluid flow is statistically steady if the time
average of many fluctuations at some point in space is independent of the averaging
period chosen. Spatial averages, likewise, are easy to visualize but are relevant only
when the structural scale of the turbulence is very small compared with that of the
mean-flow fluctuations-a relatively rare condition. Here we will focus on ensemble
averaging, which is the most general type of averaging with the fewest restrictions.

We can intuitively sense what an ensemble average is if we imagine a very large
number of experiments, all with the same macroscopic initial and boundary conditions,
but each with its own particular realization of the turbulent part of the flow (Fig 12).
The ensemble average of some flow parameter at any given point and time is then the

ENSEMBLE AVERAGING

Fig. 12. Consider a series of experiments,

each conducted with the same initial and

boundary conditions. For each, we deter-

mine the pressure p at a particular point in

space as a function of time. An average

of all these experiments would represent an

ensemble average.
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Reynolds-Stress Transport Equation. One of these fluctuational products, the
Reynolds stress tensor, is especially important; it is defined by

and

Then we take the ensemble average of these equations (commuting averages and
derivatives where necessary and remembering that the average of a single fluctuating
variable is zero) and obtain the mean-flow equations:

and

(13)
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A single term involving the Reynolds stress has emerged, and we see that the only effect
of turbulence on the mean flow is through the addition of that term to the equations.
We note in passing that Eqs. 13 form the basis of point-functional turbulence models
(the middle branch in Fig. 11) and will return to this point shortly.

The mean-flow equations (Eqs. 13) can be subtracted from the full equations
(Eqs. 12) to show that the fluctuating parts of the variables obey the equations

(14a)

Rate of
Change

Advection Mean-Flow Source Triple
and Rotation Correlation

Driving Force

in which

Diffusion Decay

(16)

a function of the mean-flow variables themselves. As a result, such theories are called
“point-functional” because the description of the turbulence at some point in the flow
depends only on the current value of the mean-flow variables. Point-functional theories
have the advantage of being as easy to solve as the original Navier-Stokes equations but
have the shortcoming that the theories are largely empirical and have limited regions
of applicability.
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TURBULENCE TRANSPORT

Fig. 13. Just as Fig. 10 illustrates the vari-

ous terms of the Navier-Stokes momentum

equation, this figure illustrates the various

terms of the Reynolds-stress transport e-

quation. The driving force and the diffusion

terms appear twice because each can be de-

composed into a contribution to the trans-

port of turbulence and a contribution to the

generation or diffusion of turbulence.

ADVECTION:
Turbulence Carried
by Mean Flow

Transport In and Out
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in which the mean flow moves turbulence from one place to another by translation,
rotation, and stretching or contraction of the fluid.

(17)

Decomposing the variables into mean and fluctuating parts and taking the ensemble
average (as we did before with Eqs. 12 and 13), we find that

(18)

The proportionality constant is a function of the turbulence intensity; indeed, more
detailed considerations indicate that

in which s is the length scale of the turbulence. It follows that

(20)

(21)

In this manner, we see what is meant by closure modeling, that is, the elimination
of any residual reference to details of the turbulence. For our purposes we need not
delve any deeper into this aspect of turbulence modeling; the example is sufficient to
indicate some of the heuristic and empirical procedures we inevitably have been forced
to employ.

Driving Force. The pressure-velocity correlation terms (the first two terms on the right
side of Eq. 15) are especially important to the transport modeling of turbulence. They
describe one of the principal driving forces by which mean-flow energy finds its way
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(22)

Diffusion and Decay. Of the last two terms in Eq. 15, the first is usually negligible
and represents diffusion of turbulence by molecular viscosity, which requires no further
modeling. The second involves the tensor D i,, for which the usual procedure has
been to derive a horrendously complicated transport equation and attempt to solve this
simultaneously with the Reynolds transport equation. Such a procedure introduces a
host of additional correlation terms to be modeled, and much appeal to “intuition” is
invoked in the process.

Bypassing the fascinating but tedious discussion of these derivations, we can
nevertheless describe several interesting properties of this second term. First, its
contraction

(23)
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the eddies, which decay first by cascading to smaller eddies before converting to thermal
energy (Fig. 9). Thus, an alternative to the usual modeling of the behavior of D ij has
recently emerged. We can get the same results by treating the decay of the large-scale
eddies as the energy source of the small-scale eddies. For this purpose the large-
scale eddies are momentarily thought of as being “mean flow.” In some complicating
circumstances, such as interpenetration of particles, this alternative modeling technique
has proven so far to be the only tractable approach.

Simpler Transport Models and Examples of Their Application

Some problems do not warrant the degree of complexity and closure approximation
required to numerically solve the full Reynolds-stress transport equation. A more con-
ventional and practical approach uses the following approximation (called Boussinesq’s
approximation) for turbulence stresses in an incompressible fluid:

(24)

in
to
is

(25)

(26)
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Reynolds Number
Revisited

(1)
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THREE SIMPLIFIED

TURBULENCE CALCULATIONS

Fig. 14. The evolution in time (from top to

bottom) of the turbulence in the slip-plane

problem of Fig. 6, as determined by three

different types of simplified calculations. In

(a), a large-scale sinusoidal perturbation in

the vertical direction is calculated with full

equations without modeling the unresolved

turbulence. The marker-particle plot (cor-

responding to mean-flow streaklines) in the

third panel shows that a slip-plane instabil-

ity is a strong source of perturbation in the

velocity field. In (b), the perturbational en-

ergy of (a) has been increased 10 per cent

with the addition of small-scale fluctuations.

These fluctuations are accounted for with a

turbulence kinetic energy K and its trans-

port equation, and the panels show contour

plots of K. This more realistic approach

reveals a faster growth in the turbulence.

Finally, in (c), all the perturbational energy

(both small- and large-scale motion in the

vertical direction) is accounted for as turbu-

lence kinetic energy. From this perspective,

mean flow can only be horizontal and thus
varies in only one (vertical) direction. The

contour plots of turbulence kinetic energy

show the same growth rate as in (b) for mix-

ing between the layers of undisturbed flow.
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(a)

The results of our calculations are shown in the left column of Fig. 14 as marker-
particle plots in which the lines correspond to mean-flow streaklines (representing what
you would see if you had introduced a stream of smoke). As time progresses (from
top to bottom in the figure), we see that the width of the mixing layer spreads and
displays wave-like structures characteristic of the Kelvin-Helmholtz instability. Thus,
our calculations show that a slip-layer instability is indeed a strong source of turbulent
mixing.

A more interesting and realistic approach incorporates simplified transport of
turbulence in the calculations. Consider the same flow, only with additional small-
scale sinusoidal perturbations superimposed on the initial large-scale perturbation. If
we were to use the first method and treat these minute fluctuations as part of the
resolved flow, we would need a much finer computational grid to resolve the details
of the velocity field. Rather than do this, we account for the microscopic perturbations
through a turbulence kinetic energy K and its corresponding transport equation, then
plot the results of our calculations as contour plots of K. This model is more realistic
because the kinetic-energy variable incorporates all length scales of turbulence, as well
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Current Research

So far we have concentrated on turbulence in a single incompressible fluid with
density perfectly constant in position and time (the downward branches of Fig. 11).
Recently, our research has included additional features that are of interest to many of
the new scientific and engineering directions at Los Alamos and other laboratories.
These features are

. Two-phase flow interactions: the sources, sinks, and effects of turbulence in a fluid

containing particles, droplets, or bubbles of another material.
● Density gradients: turbulence in an incompressible fluid for which variations of

temperature or the presence of some dissolved substance cause large variations in
density.

● Supersonic turbulence: the effects of high-speed processes on turbulence.
In all cases, we continue to use the basic philosophy of transport modeling, which,
despite some obvious difficulties, seems at present to be by far the most promising
approach for the solution of practical problems.

Two-Phase Flow. Particles, drops, or bubbles suspended in a fluid-whether that fluid
is a liquid or a gas-can significantly alter the turbulence and its effects. Intuitively,
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TWO-PHASE INTERPENETRATION

Fig. 15. Our transport modeling techniques

are able to handle both ordered interpene-

tration of two phases, such as occurs in the

laminar-flow transport of blood cells, and

disordered interpenetration, such as occurs

in a rapidly moving gas that contains sus-

pended particles.

we expect that when distinct entities interpenetrate a surrounding fluid the creation of
turbulence is enhanced; on the other hand, we also expect the inertial properties of
heavy entities to dampen turbulent fluctuations. How can we describe these effects
quantitatively?

From considerations similar to those for incompressible flow of a single fluid, we
know that extra turbulence is generated by pressure gradients producing differences in
the accelerations of the particles and of the surrounding fluid. Such differential acceler-
ation induces distortions of the fluid around the particles, thereby creating disturbances
in the velocity field that would be absent if there were no particles.

For example, consider the flow field of a shock wave moving horizontally and
passing a rigid particle suspended in the fluid. If no particle was present, the flow
would remain completely horizontal. However, as the shock wave passes the particle,
local velocity fluctuations appear, including changes in the horizontal velocity and
the generation of vertical velocity. As soon as there is a velocity difference between
the velocity fields of the particle and the fluid, viscous drag forces, competing with
differential acceleration, begin to diminish any velocity perturbations.

In a manner analogous to that for single-phase flow, the relative contributions of
acceleration and viscous drag can be compared through a particle Reynolds number

transport as if each were expanding into a vacuum.
In addition, our model handles both ordered and disordered interpenetration of two

phases as illustrated in Fig. 15. Other technical accomplishments include the resolution
of mathematical ill-posedness of the multiphase flow equations, the emergence of a new
closure principle (based on the constraint, with generalized Reynolds-stress expressions,
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of exactly neutral stability for the mean-flow equations), and the development of
practical modeling equations.

The modeling of turbulent flow with dispersed particles, droplets, or bubbles is
of interest to a wide variety of scientific projects at the Laboratory. For example, to

model the transport of dust and debris by volcanic eruptions, one must concentrate
on the interactions between particulate and hot-gas flows. To improve the design of
internal combustion engines, one needs an accurate prediction of both the combustion
efficiency and the spatial distribution of heat generation, which, in turn, requires
knowing the details of the mixing of fuel droplets and air. Although flow within
the body’s circulatory system is normally not turbulent, the transport of blood cells
can be analyzed by using the equations for ordered two-field interpenetration. Other
applications include modeling of the flow within nuclear reactors and the analysis of
shock-wave motion in a gas that contains suspended particles.

Density Gradients. The second area we are currently striving to understand with
transport modeling is turbulent mixing generated by strong density gradients that are
sustained by large variations in thermal or material composition. Coupled with pressure
gradients, such density gradients can lead to strongly contorted flow with intense
vorticity near the steepest density variations. Again, the proper basis for deriving a
generalized Reynolds stress lies in decomposing the momentum rather than the velocity.

Among the most important configurations to be studied are those for which adjacent
materials—initially quiescent and of very different densities—are rapidly accelerated
by a strong pressure gradient or heated by a sudden influx of radiation. The ensuing
fluid instability (Richtmyer-Meshkov if the shock is going from heavy to light material,
Rayleigh-Taylor for the opposite case (Fig. 7)) can act as a strong source for the
turbulent mixing of the two materials.

For example, consider an experiment in which a plane shock wave progresses
down a closed cylindrical tube divided into two sections by a permeable membrane
with air in the first section and helium in the second. As the shock passes from the
dense to the less-dense gas, the air-helium interface is accelerated. Later, the interface
is repeatedly decelerated by reflections from the rigid wall at the end of the tube.
Interface instabilities lead to turbulent mixing of the two gases, and the initially sharp
plane separating the gases becomes smeared and indistinct. Our work allows prediction
of the average concentration across any strip of fluid taken normal to the nominal
streaming direction and calculation of velocity and density profiles within the turbulent
mixing zone.

Instabilities driven by density gradients are important to the study of the implosion
dynamics of pellets used in inertial confinement fusion (Fig. 16). Radiation from a high-
power laser initiates the implosion of an outer spherical capsule, creating a strong shock

wave. This shock passes over the interface between the inner surface of the capsule
and the enclosed gas, is reflected from the core, and returns to the interface where it
induces Rayleigh-Taylor instability. The resultant mixing of gas and capsule in the
central region of the pellet can, in many cases, reduce neutron yield.

Another area of interest is the dynamics of fire plumes in the postulated circum-
stances of “nuclear winter.” Extreme heating of the ambient atmosphere produces up
to four-fold expansions, resulting in a powerful updraft with intense turbulence.
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CURRENT APPLICATIONS

Fig. 16. We are currently incorporating addi-

tional features in transport modeling so that

more complex phenomena can be described

adequately. An example is implosion of an

inertial-confinement fusion capsule, during

which two-phase turbulent interactions be-

tween the capsule and the hot fuel gases

decrease the efficiency of the implosion. We

also are investigating the density-driven tur-

bulence that enhances mixing in fire plumes.

ICF Capsule Implosions

Nuclear Winter Fire Plumes
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Supersonic Turbulence. Mach-number effects often can be ignored, but, in some
cases (such as the high-Mach-number mitigation of a Kelvin-Helmholtz instability),
such effects are significant. Thus, a third feature of our recent work has been to in-
clude the principal phenomena resulting from supersonic flow speeds. These effects
arise across shock waves, in the shear layers behind Mach-reflection triple-shock inter-
sections, and in the shear layers behind shock waves normal to a deformable wall.

An unexpected result of our work is the discovery that laminar instability theory
(as sketched out in the section entitled “Turbulence Energy: Sources and Sinks”) is
applicable to the study of supersonic turbulence. Despite the seeming inconsistency,
this theory is providing highly relevant guidance to our early modeling efforts.

Concluding Remarks

A pertinent question is: What good is all this? Not only has our discussion
illustrated several ways in which turbulence transport theory is heuristic or empirical,
but the current large inventory of undetermined “universal” dimensionless parameters
in its formulation is disturbing. Moreover, full expression of the theory is long and
complicated, involving numerous coupled nonlinear partial differential equations. As a
result, a transport calculation requires either costly numerical solutions or questionable
approximations, or both.

What are the alternatives? There is no way to resolve turbulence in sufficient
detail for numerical calculations based on turbulence transport theory to represent
the effects of any but the simplest circumstances. Mixing-length theories and other
point-functional approaches are hopelessly limited in their applicability. Fundamental
approaches purporting to describe turbulence without empiricism are, in general, also
restricted to highly idealized circumstances. Yet we are faced with the task of solving
an endless variety of fluid-flow problems, a large fraction of which include significant
turbulence effects. We need to supply answers to old questions and guidance for new
developments in a meaningful way. At present, there seems to be no better approach
to these challenging analytical tasks than that provided by turbulence transport theory.

Despite the shadows cast by these comments, the situation is actually far from
gloomy. Turbulence transport theory seems to be functioning far better than we have
any right to expect. There are at least four reasons for this good performance.

First, complex processes of nature often display a near universality in the collective
effects that are of most interest. Just as gas molecules almost always have a nearly
Maxwell-Boltzmann velocity distribution, it appears that turbulence tends toward a
similar universality in its stochastic structure. The success of the few-variable (or
collective, or moment) approach to turbulence modeling relies strongly on the validity
of this contention. Although the extent to which universal behavior underlies most of the
random processes of nature is currently a matter of intense scientific and philosophical
discussion, much evidence supports the ubiquitous nature of this property. Perhaps,
eventually, such universalities will help to successfully model such diverse instances
as thoughts in a brain, activities of groups of organisms (such as mobs of people), and
the dynamics of galaxies.

Next, turbulence transport modeling pays close attention to the binding constraints
of real physics: conservation of mass, momentum, and energy, as well as rotational and
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translational invariance. Such modeling also accounts for history-dependent variations
lacking in many other turbulence theories.

We have also paid great care to physically meaningful closure modeling. Auxiliary
derivations (like those of laminar instability analysis) combine with new formulations
of mathematical restrictions (like that of precisely neutral mean-flow stability in the
presence of generalized Reynolds-stress terms) to constrain our modeling procedures
in the most physically meaningful manner possible at each stage of the development.

Finally, investigators throughout the world have made numerous comparisons
with experiments, leading to corrections, improvements, and ultimately to considerable
confidence in the broad applicability of the results.

Future research will concentrate on several significant aspects of the theory. Clo-
sure modeling, of course, continually needs strengthening, especially by first-principle
techniques that decrease our reliance on empiricism. The numerical techniques need
greater stability, accuracy, and efficiency for a host of larger and more complicated
problems.

But the most intriguing challenge is how to incorporate new and different physical
processes into our theories. For example, with dispersed-entity flow, we have scarcely
begun to understand the effects of a spectrum of entity sizes or the deformation of
individual entities (including their fragmentation and coalescence) or the modifications
that arise when the entities become close-packed (as they do, for example, during
deposition and scouring of river-bed sand). The dispersal of turbulence energy through
acoustic or electromagnetic radiation is another interesting topic that needs considerable
development. Deriving, testing, and applying the appropriate models will keep many
investigators busy for a long time. ■
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