
PROBABILITYand
NONLINEAR SYSTEMS by R. Daniel Mauldin

s tan Ulam, at sixty-five, was vig-
orous, handsome, full of ideas.
It was the spring of 1974, and he
had come to lecture at the Uni-

versity of Florida, where I was a young
assistant professor. I had known Stan by
reputation for several years. In fact, the
very first paper that I read as a part of my
German language requirement in gradu-
ate school was his landmark 1930 paper
on measurable cardinals, “Zur Masstheo-
rie in der allgemeinen Mengenlehre. ” But
listening to him in person was quite an
inspiration. He did not lecture in the
usual sense but presented snapshots of
mathematical ideas, a style reminiscent
of Steinhaus, one of Stan’s teachers in
Poland. Afterwards, several of us talked
with him for a remarkably long time. I
was immediately impressed with his abil-
ity to take up a mathematical topic and
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Part 1
An Introduction

breathe new life into the subject.
The following year Stan took a position

at Florida. His weekly seminar was simi-
lar to his book A Collection of Mathemat-
ical Problems. A topic would be brought
up for discussion, and if it appeared to in-
trigue someone, we would return to it at
a slightly deeper level. Stan soon became
a stimulating source of encouragement to
the younger mathematicians, and to me he
became a mentor. As always, he was very
generous in sharing his ideas. Through-
out his life Stan nourished mathematics
in that manner.

At first he would listen to us for a very
short time—and then expound his own
ideas. Eventually, however, our conver-

sations became a witty (on his part) and
very productive exchange. Like a master
of reflecting boundaries, he would bounce
ideas back to us from an endless variety
of angles, especially humorous ones. The
amplification of an idea could occur in a
time span varying from a coffee conver-
sation to a number of years. Although
we would repeatedly go over the same
topics, it wasn’t exactly like working the
beads on a rosary. Every so often an idea
would undergo some adjustment or trans-
formation, and something new, perhaps
unexpected, would emerge. I don’t know
whether it was always his way to have
short, quick discussions of some central
idea, but that is certainly the impression
one gets from perusing his comments and
problems in The Scottish Book. (This fa-
mous notebook of problems was jotted
down at the Scottish Cafe in Lwow during
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the 1930s and first published in this coun-
try in 1957. See “Excerpts from The Scot-
tish Book.”)

Ulam’s incredible feel for mathematics
was due to a rare combination of intu-
itions, a common feature of almost all
great mathematicians. He had a very
good sense of combinatorics and orders
of magnitude, which included the ability
to make quick, crude, but in-the-ballpark
estimates. Those talents, combined with
the more ordinary abilities to analyze a
problem by means of logic, geometry, or
probability theory, already made him very
unusual. Besides, he had a good intuition
for physical phenomena, which motivated
many of his ideas.

Ulam’s intuition, as exhibited in nu-
merous problems formulated over a span
of more than fifty years, covered an enor-
mous range of subjects. The problems on
computing, physical systems, evolution,
and biology were stimulated by new de-
velopments in those fields. Many others
seemed to spring from his head. He usu-
ally had some prime examples in mind
that motivated his choice of mathemati-
cal model or method. In this regard one
of his favorite quotes, from Shakespeare’s
Henry VIII, was

Things done without example
in their issue

Are to be feared.

In approaching a complicated problem
Stan first searched for simplicity. He
had no patience for complicated theories
about simple objects, much less complex
objects. That philosophical dictum hap-
pened to match his personality. He could
not hold still for the time it would take
to learn, let’s say. modern abstract alge-
braic geometry, nor could he put up with
the generalities of category theory. Also,
he was familiar with, and early in his ca-
reer obtained fundamental results in, mea-
sure and probability theories. That back-
ground led him to approach many prob-
lems by placing them in a probabilistic

framework. Instead of considering just
one possible outcome of a process, one
can consider an infinite number of possi-
ble outcomes at once by randomizing the
process. Then one can apply the power-
ful tools of probability, such as the laws
of large numbers, to determine the like-
lihood of a given outcome. The famous
Monte Carlo method is a perfect exam-
ple of that approach. In fact, one of
the favorite sayings of Erdos and Ulam,
both of whom worked in combinatorics
(in which the number of outcomes is fi-
nite) and probability, was

The infinite we do right away;
the finite takes a little longer.

Stan’s interest in probability dates back
to the early 1930s, when he and Lomnicki
proved several theorems concerning its
foundations. In particular, they showed
how to construct consistent probability
measures for systems involving infinite
(as opposed to finite) sequences of inde-
pendent random variables and, more gen-
erally, for Markov processes. (In Markov
processes probabilities governing the fu-
ture depend only on the present and are
independent of the past.) At about the
same time Kolmogorov, independently,
proved his consistency theorem, which
includes the Ulam and Lomnicki results
as well as many more. Those results
guarantee the existence of a probability
measure on classes of objects generated
by various random processes. The objects
might be infinite sequences of numbers
or more general geometrical or topologi-
cal objects. such as the homeomorphisms
(one-to-one, onto maps) discussed in de-
tail later in this article. Stan’s interest in
probability continued after World War II,
when he and Everett wrote fundamental
papers on “multiplicative” processes (bet-
ter known as branching processes). Those
papers were stimulated by the need to
calculate neutron multiplication in fission
and fusion devices. (David Hawkins. in
“The Spirit of Play,” discusses some of

the earliest work that Stan and he did on
branching processes.)

Stan’s background in probability made
him a leader among the outstanding group
of intellects who, during the late 1940s
and early 1950s, recognized the potential
value of the computer for doing experi-
mental mathematics. They realized that
the computer was an ideal tool for an-
alyzing stochastic, or random, processes.
While formal theorems gave rules on how
to determine a probability measure on a
space of objects, the computer opened up
the possibility of generating those objects
at random. Simply stated constructions
that yield complicated objects could be
implemented on the computer, and if one
was lucky, demonstrable guesses could
be made about their asymptotic, or long-
term, behavior. That was the approach
Stan took in studying deterministic as
well as random recursions. In addition
he invented cellular automata (lattices of
cells and rules for evolution at each cell)
and used them to simulate growth patterns
on the computer.

The experimental approach to mathe-
matics has since become very popular and
has tremendously enhanced our vision of
complex physical, chemical, and biologi-
cal systems. Without the fortuitous con-
junction of the computer and probabil-
ity theory, it is very unlikely that we
would have reached today’s understand-
ing of those nonlinear systems. Such sys-
tems present a challenge analogous to that
Newton would have faced if the earth
were part of a close binary or tertiary
star system. (One can speculate whether
Newton could have ever unraveled the
law of gravitation from the complicated
motions of such a system.) At present
researchers are trying to formulate limit-
ing laws governing the long-term dynam-
ics of nonlinear systems that are analo-
gous to the major limiting theorems in
classical probability theory. The attempt
to construct appropriate probability mea-
sures for such systems is one of the topics
I will discuss in more depth.
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Other interests that Ulam maintained
throughout his life were logic and set the-
ory. I remember a conference’ on large
cardinal numbers in New York a few
years ago. Stan was the honored partic-
ipant. More than fifty years earlier he
had shown that if a nontrivial probability
measure can be defined on all subsets of
the real numbers, then the cardinal num-
ber, or “size,” of the set of all the subsets
exceeded the wildest dreams of the time.
(See “Learning from Ulam: Measurable
Cardinals, Ergodicity, and Biomathemat-
ics.”) But that large cardinal of his is
minuscule compared with the cardinals of
today. After listening to some of the con-
ference talks, Stan said that he felt like
Woody Allen in Sleeper when he woke up
after a nap of many years and was con-
fronted with an unbelievably large num-
ber on a McDonald’s hamburger sign.

There is a serious aspect to that re-
mark. Stan felt that a split between math-
ematics and physics had developed during
this century. One factor was the trauma
that shook the foundations of mathemat-
ics when Cantor’s set theory was found
to lead to paradoxes. That caused mathe-
matics to enter a very introspective phase,
which continues to this day. A tremen-
dous effort was devoted to axiomatiz-
ing mathematics and raising the level of
rigor. Physics, on the other hand, expe-
rienced an outward expansion and devel-
opment. (The situation is somewhat re-
versed today, as internal issues concer-
ning the foundations of physics receive at-
tention.) As a result, university instruc-
tion of mathematicians has become so rig-
orous and demanding that the mathemat-
ical training of scientists has been taken
over by other departments. Consequently,
instruction in “applied” mathematics, or
mathematical methods, is often at a fairly
low level of rigor, and, even worse, some
of the important mathematical techniques
developed during this century have not
made their way into the bag of tools of
many physical scientists. Stan was very
interested in remedying the situation and

believed the Center for Nonlinear Studies
at Los Alamos could play a significant
role.

Stan was associated, either directly or
through inspiration, with the three re-
search problems described in Part 111 of
this article. Each is an example of how a
probabilistic approach and computer sim-
ulation can be combined to illuminate fea-
tures of nonlinear systems. Since some
background in modern probability theory
is needed to follow the solutions to the
problems, Part II provides a tutorial on
that subject, which starts with a bit of his-
tory and concludes with several profound
and useful theorems. Fortunately Mark
Kac and Stan Ulam gave a very insightful
summary of the development of probabil-
ity theory in their book Mathematics and
Logic: Retrospect and Prospects. I have
adapted and extended their discussion to
meet the needs of this presentation but
have retained their broad perspective on
the history of mathematics and, in some
cases, their actual words.

Excerpts from the

SCOTTISH
BOOK

These excerpts from The Scottish Book:
Mathematics from the Scottish Cafe are
reprinted with permission of Birkhauser
Boston. That 1981 edition of problems
from “the book” kept at the Scottish Cafe
was edited by R. Daniel Mauldin. The
two earlier English-1anguage editions of
the problems were edited by Stan Ulam,

sion of Ulam’s own translation into En-
glish from the languages originally in-
scribed in “the book.”

Problems 18 and 19 are still unsolved,
and the work stimulated by Problem 43
has played a major role in understanding
the consequences of the axiom of choice.
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43
MAZUR

PRIZE: One bottle
of wine, S. ULAM

Definition of a certain game. Given is a set E of real numbers. A game between
two players A and B is defined as follows: A selects an arbitrary interval d l; B
then selects an arbitrary segment (interval) dz contained in d l; then A in his turn se-
lects an arbitrary segment d3 contained in d2 and so on. A wins if the intersection
d l, d2, . . . . d. . . . contains a point of the set E: otherwise, he loses. If E is a comple-
ment of a set of first category, there exists a method through which A can win; if E
is a set of first category, there exists a method through which B will win.
Problem. It is true that there exists a method of winning for the player A only for
those sets E whose complement is, in a certain interval, of first category; similarly,
does a method of win exist for B if E is a set of first category?
Addendum. Mazur’s conjecture is true. S. Banach, August 4, 1935

Modifications of Mazur’s Game
(1) There is given a set of real numbers E. Players A and B give in turn the digits
O or 1. E wins if the number formed by these digits in a given order (in the binary
system) belongs to E. For which E does there exist a method of win for player A
(player B)’?

U1am
(2) There is given a set of real numbers E. The two players A and B in turn give
real numbers which are positive and such that a player always gives a number
smaller than the last one given. Player A wins if the sum of the given series of num-
bers is an element of the set E. The same question as for (l).

Banach
Commentary. The first published paper on genera] finite games with perfect infor-
mation is Zermelo’s . . . . Here, in Problem 43, we have the first interesting definition
of an infinite one. . . .
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Part II
PROBABILITY and NONLINEAR SYSTEMS

A TUTORIAL
on PROBABILITY.

MEASURE, and the laws of

*The material quoted in this tutorial from Mathe-
matics and Logic has been reprinted with permis-
sion from Encyclopedia Britannica, Inc.
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LARGE NUMBERS

A s mentioned in the introduction, Stan Ulam contributed to the measure-theoretic
foundations that allow one to define a probability when the number of possible
outcomes is infinite rather than finite. Here I will explain why this extension

is so necessary and so powerful and then use it to introduce the laws of large numbers.
Those laws are used routinely in probability and its applications (several times, for
example, during solution of the problems discussed in Part III). Following the logic of
Kac and Ulam I begin at the beginning.*

Early Probability Theory

Probability theory has its logical and historical origins in simple problems of
counting. Consider games of chance, such as tossing a coin, rolling a die, or drawing
a card from a well-shuffled deck. No specific outcome is predictable with certainty,
but all possible outcomes can usually be listed or described. In many instances the
number of possible outcomes is finite (though perhaps exceedingly large). Suppose we
are interested in some subset of the outcomes (say, drawing an ace from a deck of
cards) and wish to assign a number to the likelihood that a given outcome belongs to
that subset. Our intuitive notion of probability suggests that that number should equal
the ratio of the number of outcomes yielding the event (4, in the case of drawing an
ace) to the number of all possible events (52, for a full deck of cards).

This is exactly the notion that Laplace used to formalize the definition of probability
in the early nineteenth century. Let A be a subset of the set f) of all possible outcomes,
and let P(A) be the probability that a given outcome is in A. For situations such that
0 is a finite set and all outcomes in f are equally probable, Laplace defined P(A) as
the ratio of the number u(A) of elements in A to the total number v(Q) of elements of
f; that is,

u(A)
P(A) = —.

u(f))

However, the second condition makes the definition circular, for the concept of proba-
bility then is dependent upon the concept of equiprobability. As will be described later,
the more modem definition of probability does not have this difficulty.

For now let us illustrate how Laplace’s definition reduces the calculation of
probabilities to counting. Suppose we toss a fair coin (one for which heads and tails
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are equally probable) n times and want to know the probability that we will obtain
exactly m heads, where 1 < m < n. Each outcome of n tosses can be represented
as a sequence, of length n, of H‘s and T‘s (HTHH . THH, for example), where H
stands for heads and T for tails. The set L? of all possible outcomes of n tosses is
then the set of all possible sequences of length n containing only H‘s and T’s, The
total number of such sequences, v(Q), is 2’7. How many of these contain H exactly
m times? This is a relatively simple problem in counting. The first H can occur in n
positions, the second in n – 1 positions, ... , and the mth in (n – m + 1 ) positions. So
if the H‘s were an ordered sample (Hl i H2, . . ., H~), the number of sequences with n7

H‘s would equal n(n – 1 )(n – 2).. (n – m + I). But since all the H‘s are the same,
we have overcounted by a factor of m ! (the number of ways of ordering the H ‘s). So
the number of sequences of length n containing m H‘s is

in the expansion of (x + y)”). Since the number of

by Laplace’s definition that the probability P (m, n ) of obtaining m heads in n tosses
of a fair coin is

head in one toss
probability of m

(a) STANDARD NORMAL
DISTRIBUTION FUNCTION

(b) STANDARD NORMAL DENSITY



Probability and Nonlinear Systems

BERTRAND’S PARADOX

What is the probability P that a
randomly chosen chord of a circle is
longer than the side of the
equilateral triangle inscribed within
the circle?

This question cannot be answered by us-

ing Laplace’s definition of probability, since

the set of all possible chords is infinite, as

is the set of desired chords (those longer

than the side of the inscribed equilateral tri-

angle). However, the question might be ap-

proached in the two ways depicted here and

described in the text. Although both ap-

proaches seem reasonable, each leads to a

different answer!

(a)

P .

(b)

P = 1/4

58

Bertrand’s Paradox

The awkwardness and logical inadequacy of Laplace’s definition of probability
made mathematicians suspicious of the whole subject. To make matters worse, attempts
to extend Laplace’s definition to situations in which the number of possible outcomes is
infinite resulted in seemingly even greater difficulties. That was dramatized by Bertrand,
who considered the problem of finding the probability that a chord of a circle chosen
“at random” be longer than the side of an equilateral triangle inscribed in the circle.

If we fix one end of the chord at a vertex of the equilateral triangle (Fig. 2a), we
can think of the circumference of the circle as being the set Q of all possible outcomes
and the arc between the other two vertices as the set A of “favorable outcomes” (that
is, those resulting in chords longer than the side of the triangle). It thus seems proper
to take 1/3, the ratio of the length of the arc to the length of the circumference, as the
desired probability.

On the other hand we can think of the chord as determined by its midpoint and
thus consider the interior of the circle as being the set Q of all possible outcomes. The
set A of favorable outcomes is now the shaded circle in Fig. 2b, whose radius is one-
half that of the original. It now seems equally proper to take 1/4 for our probability,
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the ratio of the area of the smaller circle to that of the original circle.
That two seemingly appropriate ways of solving the problem led to different

answers was so striking that the example became known as “Bertrand’s paradox.”
It is not, of course, a logical paradox but simply a warning against uncritical use of
the expression “at random.” One must specify exactly how something is to be done at
random.

Coming as it did on top of other ambiguities and uncertainties, Bertrand’s paradox
greatly strengthened the negative attitude toward anything having to do with chance
and probability. As a result, probability theory all but disappeared as a mathematical
discipline until its spectacular successes in physics (in statistical mechanics, for ex-
ample) revived interest in it early in the twentieth century. In retrospect, the logical
difficulties of Laplace’s theory proved to be minor, but clarification of the foundations
of probability theory had a distinctly beneficial effect on the subject.

Why these axioms? What is usually required of axioms is that they should
codify intuitive assumptions and that they be directly verifiable in a variety of simple
situations. The axioms above clearly hold in all situations to which Laplace’s definition
is unambiguously applicable; they are also in accord with almost every intuition one
has about probabilities, except possibly those involved in quantum mechanics (Feynman
1951).

I As we will see in the section on measure theory, the axioms of additivity and
complementarily have an impressive mathematical content. Nevertheless they are too
general and all-embracing to stand alone as a foundation for a theory so rich and fruitful
as probability theory. An additional axiom of “countable additivity” is required. That
axiom is the basis for the limiting theorems presented below and their application

AXIOM OF ADDITIVITY

AXIOM OF COMPLEMENTARITY
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through approximating forms. Finally, at the heart of the subject is the selection
of elementary events and the decision on what probabilities to assign them. Here
nonmathematical considerations come into play, and we must rely upon the empirical
world to guide us toward promising areas of exploration. These considerations also
lead to a central idea in modern probability theory—independence.

The Definition of Independence

Let us return to the experiment of tossing a coin n times. in attempting to construct
any realistic and useful theory of coin tossing, we must first consider two entirely
different questions: ( 1 ) What kind of coin is being tossed? (2) What is the tossing
mechanism? The simplest assumptions are that the coin is fair and the tosses are
“independent.” Since the notion of independence is central to probability theory, we
must discuss it in some detail.

Events E and F are independent in the ordinary sense of the word if the occurrence
of one has no influence on the occurrence of the other. Technically, the two events
(or, for that matter, any finite number of events) are said to be independent if the rule
of multiplication of probabilities is applicable; that is, if the probability of the joint
occurrence of E and F is equal to the product of their individual probabilities,

Kac and Ulam justified this definition of independence as follows:
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(Here we have applied the axiom of additivity). We have arrived at this formula, first
developed almost two centuries ago, by using the modern concept of independence
rather than Laplace’s concept of equiprobability.

Probability and Measure Theory

Los Alamos Science Special Issue 1987
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This result hinges on one very crucial proviso: that we can extend the axiom of
additivity to an infinite number of disjoint events. This proviso is the third axiom of
modern probability theory.

B

Measure Theory. The most familiar examples of measures are areas in a plane or
volumes in three-dimensional Euclidean space. These measures were first developed
by the Greeks and greatly extended by the calculus of Newton and Leibnitz. As
mathematics continued to develop, a need arose to assign measures to sets less “tame”
than smooth curves, areas, and volumes. Studies of convergence and divergence of

t’s for which the series converges? (Cantor’s set theory, which ultimately became the
cornerstone of all of modern mathematics, originated in his interest in trigonometric
series and their sets of convergence. ) For another example, how does one assign a
measure to an uncountable set, such as Cantor’s middle-third set? (See “Cantor’s
Middle-Third Set”.) Answers to such questions led to the development of measure
theory.

The concept of measure can be formulated quite simply, One wants to be able to
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I

Two additional properties are assumed for measures on sets in a Euclidean space.

Property 4: If two measurable sets are congruent (that is, a rigid motion maps one
onto the other), their measures are equal.

When dealing with sets of points on a line, in a plane, or in space, one chooses E to be
an interval, a square, and a cube, respectively. These choices are dictated by a desire to
have the measures assigned to tame sets agree with those assigned to them previously
in geometry or calculus.

Can one significantly enlarge the class of sets to which measures can be assigned
in accordance with the above properties? The answer is a resounding yes, provided
(and it is a crucial proviso) that in property 1 we allow infinitely many A’s. When we
do, the class of measurable sets includes all (well, almost all—perhaps there may be
some exceptions . .) the sets considered in both classical and modern mathematics.

Although the concept of countable additivity had been used previously by Poincare,
the explicit introduction and development of countably additive measures early in this
century by Emile Borel and Henri Lebesgue originated a most vigorous and fruitful
line of inquiry in mathematics. The Lebesgue measure is defined on sets that are
closed under countably infinite unions, intersections, and complementations. (Such a
collection of sets is called a c-r-f ield.) Lebesgue’s measure satisfies all four properties
listed above. Lebesgue’s measure on the real line is equivalent to our ordinary notion
of length.

But how general is the Lebesgue measure? Can one assign it to every set on the
line? Vitali first showed that even the Lebesgue measure has its limitations, that there are
sets on the line for which it cannot be defined. The construction of such nonmeasurable
sets involves the use of the celebrated axiom of choice. Given a collection of disjoint
sets, one can choose a single element from each and combine the selected elements
to form a new set. This innocent-sounding axiom has many consequences that may
seem strange or paradoxical. Indeed, in the landmark paper on measurable cardinals
mentioned at the beginning of this article, Ulam showed (with the aid of the axiom of
choice) that if a nontrivial measure satisfying properties 1 through 3 can be defined on
all subsets of the real line, then the cardinality of the real numbers is larger than anyone
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CANTOR’S
MIDDLE-
THIRD SET

D uring the last quarter of the nineteenth century, Georg Cantor introduced a
series of concepts that now form the cornerstone of all modem mathematics—
set theory. Those concepts arose from Cantor’s attempt to depict the sets

of convergence or divergence of, say, trigonometric series. Many such sets have
pathological properties that are illustrated by his famous construction, the “middle-
third” set. This set is described by the following recursion. Consider the closed unit
interval [0, 1]. First remove the middle-third open interval, obtaining two intervals

Consider the closed unit interval [0. 1]

●

✎

✎

64
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We close this section on measure theory with a few comments from Kac and Ulam.

BANACH-TARSKI PARADOX

complementarily.
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MAPPING ELEMENTARY EVENTS
ONTO THE UNIT INTERVAL
Let each elementary event be one of the sets

of all infinite binary sequences with the first

two digits fixed Then there are four elementary
events,

the outcome of an infinite number of independent tosses of a fair coin). Take as an
elementary event a set E consisting of all sequences whose first m letters are specified
(m = 1,2,.. .). Since there are 2“’ such elementary events, we use the axiom of finite
additivity to assign a probability P of 1 /2’” to each such event. Can this function
F’, which has been defined on the elementary events, be extended to a countably
additive measure defined on the o-field generated by the elementary events? Ulam
and Lomnicki proved such an extension exists for any infinite sequence of independent
trials. Kolmogorov obtained the ultimate consistency results by giving necessary and
sufficient conditions under which an extension can be made from a finitely additive

show that the measure defined by these choices is equivalent to Lebesgue’s measure on
the unit interval [0,1 ] and is therefore a well-defined countably additive measure. First
associate the digit 1 with a head and the digit O with a tail and encode each outcome
of an infinite number of tosses as an infinite sequence of 1‘s and 0’s (101 10. .., for

[0,1] and infinite two-letter sequences; the correspondence can be made one-to-one
by agreeing once and for all on which of the two infinite binary expansions to take
when the choice presents itself. (For instance, we must decide between .01000 . . . and
.00111 . . . as the binary representation of 1/4.)

The use of the binary system is dictated not only by considerations of simplicity.
As one can easily check, the crucial feature is that each elementary event maps into an
interval whose length is equal to the corresponding probability of the event. In fact,

measure on the interval [0,1 ] and is therefore equivalent to it.
The space of all infinite sequences of O’s and 1‘s is infinite-dimensional in the

sense that it takes infinitely many “coordinates” to describe each “point” of the space.
What we did was to construct a certain countably additive measure in the space that
was “natural” from the point of view of independent tosses of a fair coin
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Dear Ulam,
Many thanks for your kind letter—both

Mariette and I are delighted to see you
soon in Princeton again. Oct. 10-or any
other date thereabouts which suits you—
will be very convenient to us—and we
expect that you will stay with us, and stay
as long as possible.—

1 agree wholeheartedly with your plans
to write an up-to-date presentation of
measure-theory. Caratheodorys exposi-
tion, which is perhaps the relatively  best
one existing, is hopelessly obsolete. A
thoroughly modem one as much combi-
natorial and as little topological] as pos-
sible, making extensive use of finite and
infinite direct products, and—above all—
interpreting measure much more as prob-
ability and much less as volume, would
really be a very good thing. At least I of-
ten felt how badly such a thing is lacking
in the present literature. What would be
the style of your treatise, and its length?
I will be very glad if you can let me
see any part of your mscr. In the lec-
tures I gave here on “linear operations”
in 1933/34 and 34/35, I tried to deal with
measure somewhat in the above spirit, but
I was badly handicapped by the fact that
measure was not my primary topic there.

I [am] looking forward, too, with great
interest for your mscr. on the general
product operation.

I am expecting to discuss several math-
ematical questions, when you come here,
those you mentioned, and a few oth-
ers. By then I will have unearthed my
two last year’s mscr’s, too, which you
mentioned—w e are unpacking now, so the
excavations do not proceed very quickly.

Expecting to see you soon again, and
with the very best greetings from Mariette,
too, I am yours as ever John von Neumann

Note: With the he[p of J. D, Bernstein,
Ulam started a book on measure theory
while he was at Wisconsin, That collabo-
ration was interrupted by Stan’s war years
at Los Alamos and was never resumed. The
idea of presenting measure theory from the
combinatorial probabilistic perspective is
now a common practice. A good example is
P. Billingsley’s Probability and Measure.
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This approach immediately suggests extensions to more general infinite-dimension-
al spaces in which each coordinate, instead of just being O or 1, can be an element of
a more general set and need not even be a number. Such extensions, called product
measures, were introduced by Lomnicki and Ulam in 1934. (Stan’s idea of writing a
book on measure theory emphasizing the probabilistic interpretation of measure is the
subject of the accompanying letter from von Neumann to Ulam. ) Measures for sets
of curves have also been developed. The best known and most interesting of these
was introduced by Norbert Wiener in the early 1920s and motivated by the theory of
Brownian motion. Mathematicians have since found new and unexpected applications
of the Wiener measure in seemingly unrelated parts of mathematics. For example, it
turns out that the Wiener measure of the set of curves emanating from a point p in
space and hitting a three-dimensional region R is equal to the electrostatic potential at
p generated by a charge distribution that makes the boundary of the “conductor” R an
equipotential surface on which the potential is equal to unity. Since the calculation of
such a potential can be reduced by classical methods to solving a specific differential
equation, we establish in this way a significant link between classical analysis and
measure theory.

Random Variables and Distribution Functions

68

The expected value of a random variable X is most easily determined by knowing
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its distribution function F. This function, which contains all the information we need
to know about a random variable, is defined as follows:

less than t.

The Laws of Large Numbers

I
F(t)
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(a) NORMAL DISTRIBUTION
FUNCTION

F(t) =
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and

By Chebyshev’s inequality we have
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Central Limit Theorem

Thus the normal distribution is the universal behavior in the domain of independent
trials under renormalization. Its appearance in so many areas of science has led to
many debates as to whether it is a “law of nature” or a mathematical theorem.

Thanks to the developments in modern probability theory, we begin our investi-
gations with many powerful tools at our disposal. Those tools were forged during a
period of tremendous upheavals and turmoil, a time when very careful analysis carried
the day. At the heart of that analysis lay the concept of countable additivity. Stan
Ulam played a seminal role in developing these tools and presenting them to us.
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PROBABILISTIC
APPROACHES

to NONLINEAR
PROBLEMS

Problem 1. Energy Redistribution:
An Exact Solution to a Nonlinear, Many-Particle ystem ■

Obviously, following the evolution of a system of N interacting particles in
space and time is a very complex task. It was Stan’s idea to simplify the situation
by neglecting the spatial setting and redistributing the energy in an abstract random
manner. What insights can one gain from such a simplification? One can hope for
new perspectives on the original problem as well as on the standard results of statistical
mechanics. Also, even if the simplification is unrealistic, one can hope to develop some
techniques of analysis that can be applied to more realistic models. In this case David
Blackwell and I were able to give an exact analysis of an abstract, highly nonlinear
system by using a combination of the machinery of probability theory and higher order
recursions (Blackwell and Mauldin 1985). We hope that the technique will be useful
in other contexts.

Let us state the problem more clearly and define what we mean by redistributing
energy in an “abstract random manner.” Assume we have a vast number of indistin-
guishable particles with some initial distribution of energy, and that the average energy
per particle is normalized to unity. Further, let us assume the particles interact only
in pairs as follows: At each step in the evolution of the system, pair all the particles
at random and let the total energy of each pair be redistributed between the members
of the pair according to some fixed “law of redistribution” that is independent of the
pairs. Iterate this procedure. Does the system have a limiting energy distribution and,
if so, how does it depend on the redistribution law?

Part 111
PROBABILITY and NONLINEAR SYSTEMS

The Simplest Redistribution Law. To begin we will consider the simplest redistri-
bution law: each particle in a random pair gets one-half the total energy of the pair, If
the number of particles in the system is finite, it is intuitively clear that under iteration
the total energy of the system will tend to become evenly distributed—all the particles
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SIMPLEST LAW FOR ENERGY
REDISTRIBUTION

LIMITING ENERGY DISTRIBUTION

76

where E (Xl) is the expected value of the initial distribution Thus, after n iterations of
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RANDOM LAW FOR ENERGY
REDISTRIBUTION

Fig. 6. Consider a system identical to the
one described in Fig. 5 except that the total
energy of an interacting pair is redistributed

77
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and by energy conservation

and
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Problem 2. Geometry, Invariant Measures, and Dynamical Systems

Poincare’s proof of this theorem (see “The Essence of Poincare’s Proof of the Re-
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80

currence Theorem”) is a shining jewel that made clear to the mathematical world the

importance of countable additivity in the development of measure.

But what measure did Poincare have in mind here? Af’ter all, there is an entire

grab bag of measures on the subsets of S. In the case of the N -body problem, since

the system is a Hamiltonian system, the geometry of the phase space clearly indicates
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function” whose graph is shown in Fig. 7. This transformation can also be written in

Hausdorff Measure and Dimension. If we think of T as an analog of a dynamical
system whose motion in phase space is restricted to a Cantor set we might like to
find a natural measure on this set. Our problem is: Which one of the many possible
invariant measures is useful? One clue for determining the appropriate measure for
the N-body problem was the fact that the phase space is a manifold and we therefore
know the dimension of the space. We could then use the corresponding volume in the
Euclidean space of that dimension to guide us to the correct measure. But what do we
do with the Cantor set of our example? What is its dimension? In the early part of
this century Felix Hausdorff developed an approach for determining the dimension of
a general metric space (a space with a notion of a metric, or distance, between points)
in terms of measures associated with the metric. It is perhaps surprising at first that the
dimension of a space may not be an integer. Such spaces have been christened fractals
by Mandelbrot, and he has provided many examples of their occurrence in physical
phenomena. The idea behind Hausdorff’s generalization of dimension is very simple
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Fig. 8. An invariant set for the transfor-

x
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the golden mean.

B - A

A little calculus shows that

A problem left for the reader: Why should the golden mean (Fig. 9) arise as the
dimension of these randomly constructed Cantor sets?

Problem 3. Computer Experiments and Random Homomorphisms
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Second, set

corresponding elementary event.

tion.
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morphisms as a class.
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Multiplying both sides by n we have, with probability 1.

n n n

Exponentiating we get

which is what we wanted to show.
We have also shown that, with probability 1, a random homeomorphism has a

derivative of O almost everywhere, that is, everywhere except for a subset of [0,1] with
Lebesgue measure O. Consequently, with probability 1, a random homomorphism is
not smooth. Therefore this approach will not yield answers to questions concerning the
transition from smooth to turbulent, or chaotic, behavior. As often happened with Stan’s
problems, the original question, which was motivated by physics, would eventually
become a purely mathematical problem.

By the way, our original studies on an Apple computer illustrate the pitfalls of
working with numerical results. From looking at the graphs we guessed that the set
of fixed points for these homeomorphisms is a Cantor set. When we were unable to
prove this conjecture, Tony Warnock conducted more highly resolved computer studies
on a Cray, The results suggested not that the fixed points are a Cantor set but rather
that a high proportion of the random homomorphisms have an odd number of fixed
points (see the accompanying table). This time we guessed that, with probability 1, a
random homeomorphism has a finite odd number of fixed points. Indeed we were able
to prove this; however, the proof is too complicated to outline here.

A few closing comments on this problem. First, the procedure for generating a
random homeomorphism can also be viewed as a procedure for generating a distribution
function at random. Thus, we have a probability measure on the space of probability
measures! This viewpoint was thought of and developed earlier by Dubins and Freed-
man. Second, Stan and I did consider the generation of random homeomorphisms on
other spaces. For example, the algorithm for generating homeomorphisms of the circle
reads almost exactly like that for generating homomorphisms of the interval. (How-
ever, in that case we don’t know whether there is a positive probability of generating
homomorphisms with no periodic points. This is an interesting possibility.) Third,
it is possible to bootstrap oneself up from generating homomorphisms of the interval
to generating homeomorphisms of the square, the cube, and so on. These possibilities
are described in Graf, Williams, and Mauldin 1986. Finally Stan had some wild ideas
about “crossing” random homomorphisms with something like Brownian motion to
produce flows at random.

That wildness was the joy of being with Stan Ulam. His boundless imagination
opened up one’s mind to the endless possibilities of creating. It was my good fortune
to have known Stan for some ten years as a deep personal friend, a most stimulating
collaborator, and an endless source of inspiration. ■

FIXED POINTS OF RANDOM
HOMEOMORPHISMS

Listed here are computer-generated sets of

data on the number of fixed points pos-

sessed by each of (a) 5000 and (b) 10,000

of the random homeomorphisms (h’s) de-

fined in the text. Note the predominance

of homeomorphisms with odd numbers of

fixed points. That observation led us to con-

jecture, and to prove, that, with probability

1, any such random homeomorphism has a

finite odd number of fixed points.

Number k of

Fixed Points

o
1
2

3

4

5

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Number of h’s

with k Fixed Points

(a)

185
1332
196
876
179
605
143
410
114
259
75

187
52

114
32
61
20
48
23
38
9
6
7

19
3
1
2
2
0
0

(b)

510

544

1835

418

1138

283
751
174
464
136
276
95

190
50
80
25
59
13
25
9

21
5

12
3
2
1
1
1
2
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Further Reading

The first five works  are general; the remainder are those cited in reference to specific topics.

A. I. Khinchirr,  1949. Marlretrrafi(u/  I’oarrdafiotzs  of  ,ffari,vica[  Mwhani( ,s. New York: Dove[
Inc.

Publications,

Mark Kac.  1959. Probcrbi[ity  and Related Topics  in Ph),si(a/  ,Scien(es.  New York: Interscience  Publishers,
Inc.

Mark Kac and Stanislaw M. Ulam. 1968.  Mcuhemafics and Logic  Retrospect and Prospeer.r,  New York:
Frederick A. Praeger.  Inc. Also in Volume 1 of Llrifannica  Perspe<tite.s.  Chicago: Encyclopedia Britannica,
Inc.

R. Daniel Mauldin, editor. 1981. The .Scotfi.~h  Book: Maf/~enzufic.$f)otn  the .S(o([ish  CajZ. Boston: Birkhiiuser
Boston.

R. D, Mauldin and S. M. Ulam. 1987. Problems and games in mathematics. Ad)arrce.s in App/ied Maf/wnafi(s
8: 281–344,

Richard P. Feynman.  1951. The concept of probability in quantum mechanics. In Proceedin,qs  of’the  Se(ond
Brrke/ey  Symposium on Muthevrutica/ Sfatisti(,s and Prohabi/i[>,  edited by Jerzy Neyman, Berkeley and Los
Angeles: University of California Press,

David Blackwcll and R. Daniel Mauldin. 1985. Utam’s redistribution of energy prohlcm, Le[ter,~ in
Mafhemafica/  Ph}sic.s  60: 149. (This entire issue is devoted to Stan L-lam. )

S, Ulam.  1980.  On the operations of pair production, transmutations, and generalized random w,alk, Ac/tan[es
it! App/ied  Marherrlafics  I: 7–21,

R. D. Mauldin and S, C. Williams. 19X6. Random recursiw constructions. Transa(fion.s  of the Ameri(an
Mu[hematical .Ywiety 295: 325–346.

S. Graf, R. Daniel Mauldin, and S, C, Williams. 1986. Random homeomorphisms. Adwncc,s  in ,Mafherr~uri(s
60: 239
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