
The Boltzmann equation for any lattice model is an equation for the time
evolution of fi (x,t), the single-particle distribution at lattice site x:

fi (x 1 ei, t 1 Dt) 5 fi (x,t) 1 Vi( f(x,t)),

where Vi 5 Vi( f(x,t)) is the local collision operator at that site, i 5 0,1,…,14, and
Dt is assigned a value of unity.  Since the usual aim of lattice methods is to model
macroscopic dynamics, the “exact” collision operator is unnecessarily complex and
therefore numerically inefficient.  Two groups (see Chen et al. and Qian et al. in
the Further Reading) nearly simultaneously suggested that the collision operator be
approximated by a single-time-relaxation process in which relaxation to some ap-
propriately chosen equilibrium distribution occurs at some constant rate.  In particu-
lar the collision term, V( f ), is replaced by the single-time-relaxation approximation,

Vi( f(x,t)) 5 2 .

The appropriately chosen equilibrium distribution, denoted by f eq, depends on the
local fluid variables, and 1/t is the rate of approach to this equilibrium.  The rela-
tions Si Vi

5 0 and Si
e

i
V

i
5 0 must be true to conserve mass and momentum, re-

spectively.  In order for the fluid to have Galilean-invariant convection and a pres-
sure that does not depend on velocity, an appropriate equilibrium distribution, fi

eq,
must be assumed.  For a two-dimensional hexagonal lattice, the formula is:

fi
eq 5 1 ei?v 1 (ei?v)2 2 v2

and

f0
eq 5 ar 2 rv2.

(The corresponding formulas for the cubic lattice appear in the article by Alexan-
der, Chen, and Grunau listed in the Further Reading.)  In these equations the den-
sity r (x,t) 5 mn(x,t) (where m is the mass of each particle), the number density
n(x,t) 5 Si fi(x,t), and a is a free parameter related to the sound speed as shown
below.  For the lattice-Boltzmann method, the particle distribution does not have
an upper bound.  The only requirement is that fi $ 0.

To derive the macroscopic equations obeyed by this model, one performs a Taylor
expansion in time and space and takes the long-wavelength and low-frequency
limit of the lattice-Boltzmann equation for the single-particle distribution.  The re-
sult is a continuum form of the Boltzmann equation correct to second order in the
lattice spacing and the timestep.  A scaling expansion argument, the assumption of
single-time relaxation, and the neglect of higher-order terms lead to the following
final form of the macroscopic equations obeyed by the simulated system
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1 5 0, the equation of mass continuity;

the equation of momentum conservation; and

p 5 r.

the equation of state.

In the above equations, vb is the component of the velocity in the b-direction; p is
the pressure; and the sound speed, cs, is Ï(1w 2w jw)/w2w, where j is a free parameter.
The shear viscosity, m, and the bulk viscosity, l, are given by

m 5 r

and

l 5 r.

The above equations converge to the exact incompressible Navier-Stokes equa-
tions only when the derivatives of the number density in the second viscosity term
on the right-hand side of the equation are small.  Since the gradients of the density
are O(v2), the unphysical terms in the momentum-conservation equation are cor-
rect to order (v3). Thus, although the physics of the lattice-Boltzmann method con-
tains compressibility effects, one may come arbitrarily close to solving the incom-
pressible Navier-Stokes equations by reducing the Mach number (through the
choice of a) and thereby reducing the simulated flow to very low speed.  (Never-
theless the compressibility effects in the lattice-Boltzmann approach are physical
and the method can also be used to simulate compressible fluids.)

Traditional methods for solving incompressible flows, such as finite-difference or
finite-element, require solution of a Poisson equation for the pressure term, which
is induced by the mass-continuity equation and the momentum-conservation equa-
tion.  In the lattice-Boltzmann approach, this time-consuming step is avoided be-
cause the incompressibility requirement has been relaxed and the effects of pres-
sure changes are controlled by an equation of state rather than a Poisson equation.
It can be argued that the conventional methods most closely related to the lattice-
Boltzmann method are the pseudocompressible algorithms for solving incompress-
ible fluid flows.
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