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Lattice-Boltzmann
a versatile tool for multiphase

Fluid Dynamics
and other complicated flows
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Long-term research efforts at the
Laboratory often produce results
that prove highly valuable to

U.S. industry.  The example described
here is a new approach to modeling the
flow of multiphase fluid mixtures, such
as oil and water, through very compli-
cated geometries.  This new modeling
technique, called the lattice-Boltzmann
method, evolved out of ideas that have
been intensely investigated since 1985,
when Laboratory scientists and others
discovered that very simple models of
discrete particles confined to a lattice
can be used to solve very complicated
flow problems.

This lattice method can be regarded
as one of the simplest microscopic, or
particle, approaches to modeling macro-
scopic dynamics.  It is based on the
Boltzmann transport equation for the
time rate of change of the particle dis-
tribution function in a particular state.
The Boltzmann equation simply says
that the rate of change is the number of
particles scattered into that state minus
the number scattered out of that state.

The method is fully parallel (the
same calculations are performed at
every lattice site) and local (only near-
by particles interact with each other).
It is therefore easily programmed and
runs efficiently on parallel machines.
Complex boundary conditions are in-
corporated in a straightforward way and
cause the calculational speed to de-
crease by only a few percent.  The

method yields a good approximation to
the standard equations of fluid flow, the
Navier-Stokes equations, in the limit of
long wavelengths and low frequencies.
Also, recent generalizations of the
method have extended its applicability
to multiphase flows, chemically react-
ing flows, diffusion and thermohydro-
dynamics.

United States oil companies have
expressed considerable interest in the
lattice-Boltzmann method for address-
ing problems in oil recovery.  For ex-
ample, we are collaborating with the
Mobil Exploration and Producing Tech-
nical Center on using the lattice-Boltz-
mann method to simulate the flow of
oil and water through oil-bearing sand-
stone at a scale and an accuracy never
before possible.  Mobil provided Los
Alamos with 5-micron-resolution sand-
stone geometries for use in the simula-
tions.  (Typical pore diameters are tens
of microns.)  The goal of the work is to
simulate, at the scale of individual
pores in the rock, what happens when
water is pumped though the rock to
force out oil.  Viscosities, surface ten-
sions, contact angles, and surfactant ef-
fects can be varied to determine how
well this method of oil recovery can be
made to work in specific circumstances.
The collaboration is described by Mobil
and Los Alamos scientists in the com-
panion article, “Toward Improved Pre-
diction of Reservoir Flow Perfor-
mance—Simulating Oil and Water
Flows at the Pore Scale.”  The work
has included the development of soft-
ware to calculate relative permeabilities
of oil and water in complex geometries.
The software received an R&D-100
award for 1993.

The lattice-Boltzmann work is a su-
perb example of applying the extraordi-
nary computer power and expertise in
computational physics available at Los
Alamos to problems in petroleum pro-
duction.  The Laboratory’s success at

projects of this type helped motivate
the oil companies to ask that Congress
substantially increase DOE support for
oil and gas research and make those
funds available for significant new col-
laborations between the oil and gas in-
dustry and the National Laboratories.
The result is ACTI—the Advanced
Computational Technology Initiative—
an initiative that will receive $30–50
million in funding in 1995

 

.
In this article we will first sketch the

basic ideas of the lattice-Boltzmann
method and its general applicability.
We will then explain how the lattice-
gas and lattice-Boltzmann methods are
adapted to describe the dynamics at the
interfaces between two immiscible flu-
ids such as oil and water and present
some simulations of phase separation.
Finally, we will mention a few of the
new directions into which lattice-Boltz-
mann research is moving.  Specific ap-
plications to the flows in oil reservoirs
are discussed in the companion article.  

Lattice Methods for Modeling
Continuum Dynamics

Lattice methods, including the lat-
tice-gas method and its derivative, the
lattice-Boltzmann method, present pow-
erful alternatives to the standard “top-
down” and “bottom-up” approaches to
modeling the behavior of physical sys-
tems.  The “top-down” approach begins
with a continuum description of macro-
scopic phenomena provided by partial
differential equations.  The Navier-
Stokes equations for incompressible
fluid flows are an example.  Numerical
techniques, such as finite-difference and
finite-element methods, are then used to
transform the continuum description
into a discrete one in order to solve the
equations numerically on a computer.

The “bottom-up” approach is based
on the microscopic, particle description
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Illustration on previous spread:  A lattice-Boltz-
mann simulation of flow past a slab shows the
complicated flow patterns that can be modeled
with this technique.  The lattice is 1024

 

3 256
sites; the thickness of the slab is 32 sites, which
gives the flow a Reynolds number of 960.  Wind-
tunnel boundary conditions are used—the flow
velocity at the entrance (left), the top, and the
bottom boundaries is fixed.  The top image shows
contours of equal vorticity; the bottom image
shows the pressure distribution of the flow.  The
simulation was done using the Connection Ma-
chine 2 at the Advanced Computing Laboratory.



provided by the equations of molecular
dynamics; here the position and veloci-
ty of each atom or molecule in the sys-
tem are closely followed by solving
Newton’s equations of motion.  This
microscopic description is straightfor-
ward to program on a computer but
simulations using the largest computers
presently available are limited to very
small systems (ten million particles)
and very short times (a few picosec-
onds).  Therefore molecular dynamics
simulations are more suitable for under-
standing the fundamental interactions
that underlie macroscopic material
properties than for modeling macro-
scopic dynamics.

Intermediate between the two
schemes are the lattice-Boltzmann and
lattice-gas methods, which might be
considered mesoscopic approaches.
The lattice methods begin from a parti-
cle description of matter:  A gas of par-
ticles exists on a set of discrete points
that are spaced at regular intervals to
form a lattice.  Time is also divided
into discrete timesteps, and during each
timestep particles jump to the next lat-
tice site and then scatter according to
simple kinetic rules that conserve mass,
momentum, and energy.  This simpli-
fied molecular dynamics is very care-
fully crafted to include the essentials of
the real microscopic processes.  Conse-
quently the macroscopic, or averaged,
properties of lattice simulations obey,
to a good approximation, the desired
continuum equations.  Despite their ori-
gin in a particle description, lattice
methods are essentially numerical
schemes for studying averaged macro-
scopic behavior.  They nevertheless re-
tain the advantages of a particle descrip-
tion, including clear physical insight,
easy implementation of boundary condi-
tions, and fully parallel algorithms.

Because lattice methods are entirely
local, they are extremely fast.  A simu-
lation of a simple lattice-gas model can

attain a speed of 20 gigaflops on a 512-
processor CM-5 Connection Machine.
Typical simulations of flow through
porous media include 100 million lat-
tice sites and run for 5000 timesteps
and therefore require only a few hours
on that machine.  When applied to peri-
odic geometries, the three-dimensional
lattice-Boltzmann model is able to
achieve the same spatial resolution as
conventional methods in half the time.
Also, because boundary conditions—
even complex ones—are imposed local-
ly, lattice methods simulate flows in
both simple and complex geometries
with almost the same speed and effi-
ciency.  They are therefore suitable for
simulating flows in the extremely com-
plex geometries of porous media
whereas conventional methods are not.
Finally, developing code for lattice
methods is considerably faster and easi-
er than for traditional schemes.

General lattice models already exist
for solving the equations of fluid flow,
the wave equation, and the diffusion
equation.  Special versions of these
models have been developed for simulat-
ing flow through porous media, turbulent
flows, phase transitions, multiphase
flows, chemically reacting flows, ther-

mohydrodynamics, magnetohydrody-
namics, the dynamics of liquid crystals
and the design of semiconductors.
These models are validated by precise
comparisons with other numerical algo-
rithms, analytic results, and experiments.

The Lattice-Boltzmann Method

In the lattice-Boltzmann method,
space is divided into a regular lattice
(for example, a simple cubic lattice)
and real numbers at each lattice site
represent the single-particle distribution
function at that site, which is equal to
the expected number of identical parti-
cles in each of the available particle
states i.  In the simplest model, each
particle state i is defined by a particle
velocity, which is limited to a discrete
set of allowed velocities.  During each
discrete timestep of the simulation, par-
ticles move, or hop, to the nearest lat-
tice site along their direction of motion,
where they “collide” with other parti-
cles that arrive at the same site.  The
outcome of the collision is determined
by solving the kinetic (Boltzmann)
equation for the new particle-distribu-
tion function at that site and the particle
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Figure 1.  Allowed Velocities at a Lattice Site
The arrows indicate the magnitudes and directions of the allowed velocities ei at a lat-

tice site in a three-dimensional lattice-Boltzmann simulation.  The lattice has a cubic

structure.  Six arrows point to nearest-neighbor sites.  Eight arrows point along body

diagonals.  The sphere at the lattice site represents zero velocity, e0

 

5 0.  Lattice-Boltz-

mann simulations based on a proper equilibrium particle distribution and this minimum

set of velocities preserve the desired isotropy of fluid properties.



distribution function is updated.
More specifically, the single-particle

distribution function at a single site in a
simple cubic lattice is represented by a
set of real numbers, fi(x,t),the expected
number of particles at lattice site x and
time t moving along the lattice vector
ei, where each value of the index i
specifies one of the allowed directions
of motion.  Figure 1 shows these direc-
tions.  Six lattice vectors point to the
six nearest-neighbor sites.  Eight lattice
vectors point along the body diagonals
to the next sites along those diagonals.
Thus particles can travel in fourteen di-
rections from each lattice site.  The ball
in the center denotes the vector
e0,which is equal to 0 and represents
particles that are not moving.  In total,
fifteen real numbers describe the parti-
cle distribution function at a site.

The first operation in each timestep
Dt of the calculation is to advance the

particles to the next lattice site along
their directions of motion.  Since speed
equals the distance traveled divided by
Dt, this model has only three speeds,
zero for particles at rest, c for particles
moving to nearest-neighbor sites and

 

Ï3wc for particles moving to the next
sites along body diagonals.  Usually the
units are chosen such that the distance
to nearest neighbors and Dt are unity,
so that c 5 1 and the lattice vector ei is
numerically equal to the velocity of the
particles moving in direction i.  If we
also set the mass of each particle equal
to unity, the momentum in direction i at
site x and time t is just fi(x,t) ei.  Figure
2 illustrates sample momentum distribu-
tions in two dimensions.

The second operation is to simulate
particle collisions, which cause the par-
ticles at each lattice site to scatter into
different directions .  The collision
rules are chosen to leave the sum of the

fi’s unchanged.  (No particles are lost.)
The rules are also selected to conserve
the total energy and momentum at each
lattice site.  To ensure that the particles
have zero average velocity at bound-
aries (both perpendicular and parallel to
the walls), one normally imposes
“bounce-back” boundary conditions:
Any flux of particles that hits a bound-
ary simply reverses its velocity so that
the average velocity at the boundary is
automatically zero, as observed experi-
mentally.

The outcome of collisions is very
simply approximated by assuming that
the momenta of the interacting particles
will be redistributed at some constant
rate toward an equilibrium distribution
fi

eq.  This simplification is called the
single-time-relaxation approximation.
In mathematical terms, the time evolu-
tion of the single-particle distribution is
given by

fi(x 1 ei, t 1 1) 5

fi(x,t)

 

− ,

where i = 0, 1,…, 14.  The second term
on the right-hand side is the simplified
collision operator Vi. The rate of
change toward equilibrium is 1/t, the
inverse of the relaxation time, and is
chosen to produce the desired value of
the fluid viscosity.

Figure 3 illustrates the single-time-
relaxation approximation in two dimen-
sions.  The net momentum of the in-
coming state is zero.  In that case, if no
external forces exist, the equilibrium
distribution consists simply of equal
amounts of particle momentum in each
of the allowed directions of motion.
The collision rules will therefore force
the larger fi’s at the site to decrease and
the smaller fi’s to increase so that the
particle distribution is closer to the
equilibrium distribution after the colli-
sion than before.  External forces (grav-

fi(x,t) 2 fi
eq(x,t)

}}
t
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Figure 2.  Momentum Distributions in Two Dimensions
The single-particle distribution function at each lattice site, fi ( x,t), equals the expected

number of identical particles in each of the available particle states i. Particle veloci-

ties ei are limited to a discrete set defined by the geometry of the lattice, and the mo-

mentum distribution at a lattice site is equal to  fi (x,t)ei.  On a two-dimensional square

lattice, eight directions of motion are possible, so i 5 0, 1,…, 8.  Each arrow indicates

the momentum in one of the allowed directions of motion.  The circles represent the

rest particles.  The figure shows several examples of momentum distributions in two

dimensions.  The distribution at site B has a net momentum in direction 3.  The net

momentum is equal to zero at sites A and C.



ity or electromagnetic forces) can be
added to the model and make the fi’s
grow in the direction of the net force
and shrink in the opposite direction.

Although lattice models consist of a
very simple set of rules, those rules
lead to very complicated flow patterns.
The opening pages of this article show
a snapshot from a two-dimensional lat-
tice-Boltzmann simulation performed
by Lishi Luo here at the Laboratory.
The simulation models the flow of air

past a rectangular plate.  Periodic
boundary conditions are imposed per-
pendicular to the plate; wind-tunnel
boundary conditions (air flowing in
from the left at higher pressure and out
at the right at lower pressure) are im-
posed in the flow direction.  Attached
vortices and vortex shedding are evi-
dent, showing the complicated flow pat-
terns that can be modeled with lattice-
Boltzmann methods.  Detailed,
quantitative comparisons with other

methods and with experiment have ver-
ified the accuracy of this method.  In
general, lattice-Boltzmann simulations
agree with exact solutions to the
Navier-Stokes equations to second
order in the lattice spacing and the
timestep.

The lattice-Boltzmann method is an
outgrowth of lattice-gas models, provid-
ing something akin to an ensemble av-
erage of many realizations of a lattice
gas but without the unphysical effects.

Lattice-Boltzmann Fluid Dynamics

Number 22  1994  Los Alamos Science  103

Particle momenta that
will collide at site A

lattice3.adb
7/26/94

τ = 1

τ = 2

A A A

A A

Incoming momentum
distribution

Outgoing momentum
distribution

Equilibrium distribution

Halfway between incoming
and equilibrium distributions

Step 1—Hopping Step 2—Collision
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Figure 3.  The Single-Time-Relaxation Process
In the single-time-relaxation approximation, the momentum distribution at each lattice site is forced toward the equilibrium distribu-

tion at each timestep.  In the absence of external forces, the equilibrium distribution of a state with zero net momentum is just equal

amounts of momentum in each direction.  The figure illustrates the two calculational steps that occur during each timestep.  First

the incoming momentum distribution assembles at a lattice site as particles at the neighboring sites hop along their directions of

motion to that site.  Second, the incoming distribution changes, according to the single-time-relaxation collision rule, to an outgoing

distribution that is closer to the equilibrium distribution.  When t 5 1, the incoming momentum distribution changes to the equilibri-

um distribution in one time step; when t 5 2, the outgoing momentum distribution is halfway between the incoming and the equilibri-

um distributions.



Lattice-gas models differ from lattice-
Boltzmann models in that the former
follow the motion of actual particles
whereas the latter utilize the expected
values of the particle-distribution func-
tion.  The gas is composed of identical
particles that obey an exclusion princi-
ple:  At most one particle can occupy a
given particle state at a given time.
Since Ni ( x,t), the number of particles
that occupy state i at a lattice site, is ei-
ther 0 or 1, only single-digit binary
arithmetic is required to update the par-
ticle numbers following each collision.
Consequently lattice-gas calculations
are extremely fast.  Collision rules
specify the possible outcomes of two-
particle and three-particle collisions and
the explicit choice at each site is imple-
mented by random sampling.  The lat-
tice gas is therefore very noisy, and
spatial and temporal averaging are re-
quired to obtain macroscopic quantities.
Also the method has several major
drawbacks, including restriction to low
Reynolds number, lack of Galilean in-
variance (convective flow velocities
don’t add properly unless the system is
at nearly constant density), and an un-
physical equation of state in which the
pressure depends on the local velocity
in addition to the usual dependence on
the local density.

In contrast, the lattice-Boltzmann
method uses real (continuous) numbers
to describe a particle distribution at
each site; in this sense it approaches a
continuum description.  Although one
pays a penalty in that floating-point
arithmetic operations are now required
to carry out the simulations, the contin-
uum feature eliminates most of the
noise associated with lattice-gas simula-
tions.  In addition, the local equilibrium
particle distribution fi

eq that appears in
the collision operator can be chosen to
eliminate the unphysical features of the
lattice gas while including dependence
on the local fluid variables only and

leading to the appropriate macroscopic
equations.  In other words, although lat-
tice-Boltzmann simulations ignore par-
ticle-particle correlations and use sim-
plified collision rules, the collision rules
can be tailored to reproduce the correct
evolution of the macroscopic behavior
of a system in a wide variety of cir-
cumstances.  The relevant equations are
presented in the sidebar, “Equations of
the Lattice-Boltzmann Method.”

Strategies for Modeling the
Flow of Two Fluid Phases

Modeling the flow of two immisci-
ble fluids, such as oil and water, pre-
sents the difficulty of how to treat the
dynamics at the interfaces between the
two.  These dynamics control phenome-
na such as the flow of oil and water
through porous media, the development
of viscous fingering, which occurs
when water pushes oil, and dendrite
formation (such as the growth of
snowflakes).  Traditional finite-differ-
ence and finite-element schemes can be
used to model two-phase flow in simple
flow geometries, but they are difficult
to apply in the complicated geometries
of porous media.  Here we describe lat-
tice methods for complex two-phase
phenomena; these methods are being
successfully applied to problems in oil
recovery.

To extend lattice methods to the
flow of two immiscible fluids (say red
and blue fluids), one must double the
information at each lattice site.  In the
lattice-Boltzmann approach this is done
by postulating a single-particle distribu-
tion for each of the fluids.  It is also
necessary to create new scattering rules
that will cause the two fluids to sepa-
rate at an interface and to emulate the
effects of surface tension.  The essential
idea is to compute a force at each lat-
tice site that depends on, say, the red-

fluid density at the neighboring sites
and that pushes the red fluid in the di-
rection of increasing red-fluid density.
The effect of the force must be added
to the collision operator in such a way
that it does not change the total mo-
mentum of the two fluids.  The size of
the force must be chosen to produce the
desired surface tension between the two
fluids.  Under these rules, an initially
random mixture of the red and blue flu-
ids should unmix and form an equilibri-
um distribution in which a spherical in-
terface separates the two fluids, as
expected physically in mixtures of oil
and water.

Lattice-gas simulations of immisci-
ble fluids.  The extension of lattice
methods to two immiscible fluids was
done originally in the context of lattice
gases.  Our particular method imple-
ments the effects of surface tension in a
purely local manner—through the intro-
duction of two species of colored holes.
A hole acts like a massless “ghost” par-
ticle that moves freely on the lattice but
carries no momentum.  A hole of one
color is created at a lattice site when an
incoming particle of that color is scat-
tered into a new direction; the new hole
moves in the incoming direction of the
scattered particle and thereby carries a
memory of that particle.  The hole is
annihilated, or disappears, when it
meets a particle of the same color trav-
eling in the same direction.

To create surface tension, a new col-
lision rule is added to the usual ones
that causes the colored particles at a
site to respond to the presence of col-
ored holes by moving in the opposite
direction.  The overall effect is like that
of a short-range attractive potential
among particles of the same color.  Al-
though the “color potential” has a range
of more than one lattice spacing, only
local information is needed to compute
the results of collision at each lattice
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site; consequently the colored-hole
scheme is much faster for modeling the
effects of surface tension than methods
requiring the calculation of nearest-
neighbor color gradients.

The colored-hole scheme has been
used successfully to simulate phase sep-
aration, surface tension between phases,
and contact angles between fluids and
solid walls.  Figure 4 shows the results
of a lattice-gas simulation of red and
blue fluids:  Red drops have formed in
blue fluid starting from a random initial
configuration in which the density of
red particles was equal to one-fifth the
density of blue particles.  Figure 5
demonstrates that the results shown in
Figure 4 obey the Laplace formula for
surface tension.  That is, the pressure
drop Dp across the boundary of each
drop is given by

Dp 5 pred 2 pblue 5 ,

where pred is the pressure of red parti-
cles inside the drop, pblue is the pres-
sure of blue particles outside the drop,
s is the surface-tension coefficient, and
R is the radius of the drop.  Figure 5a
shows the pressure versus the distance r
from the center of a drop; the pressure
change at the red-blue interface demon-
strates the existence of surface tension.
Figure 5b shows Dp, the pressure
change across the interface of the drop
for drops of different radii R.  As re-
quired by the Laplace formula, the
pressure change is directly proportional
to 1/R.

In addition to surface tension at
fluid-fluid interfaces, the two-fluid lat-
tice-gas model must also simulate inter-
actions between the fluids and the
walls.  Typically, when the interface
between two fluids intersects a solid
wall, the angle of intersection is fixed.
Figure 6 illustrates the two contact an-

gles, one for each fluid, formed at the
point of intersection.  By definition, the
sum of the two contact angles is equal
to 1808.

The contact angle of a fluid decreas-
es as the affinity, or preference, of the
wall for that fluid increases.  That pref-
erence is called wettability.  On a
strongly water-wet surface, water
droplets in a background of oil will
tend to spread out on the surface and
the contact angle of water will be close
to 08.  On a strongly oil-wet surface,
those water droplets will bead up and
the contact angle will be close to 1808.
In our lattice-gas simulations, wettabili-
ty is controlled by a special rule for
collisions of colored holes with the
wall:  With a certain probability P, a
hole of either color bounces back and
becomes, say, a red hole.  This rule can
produce contact angles for the red fluid
of between 208 and 1808.

Figure 7 shows the results of colored-
hole two-fluid simulations in which dif-
ferent values of the probability P for
the upper and lower surfaces of a wall
(white) have led to marked differences
in the contact angles of the red fluid.
The results shown were obtained by av-
eraging 12 realizations of the lattice
gas.

Lattice-Boltzmann model for two
fluids.  Lattice-gas simulations produce
realistic surface phenomena for immis-
cible fluids, but they do so only when
temporal and spatial averaging are used
to eliminate the noise induced by parti-
cle fluctuations.  A more convenient ap-
proach is to extend the lattice-Boltz-
mann method to colored fluids and use
color gradients, or nearest-neighbor in-
teractions, for modeling interfacial dy-
namics.  In this approach, each colored
fluid is described by a single-particle
distribution function, and each is as-
signed a number density as well as a
characteristic relaxation time, which

s
}
R
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Figure 4.  Droplet Formation in
Two-Phase Lattice-Gas Mixtures
The figure shows the results of a lattice-

gas simulation in which the dynamics of

the interface between red and blue phas-

es was modeled by using the colored-

hole scheme summarized in the text.  The

simulation produced this distribution of

red droplets in a blue background after

17,200 time steps, starting from a random

initial distribution of red and blue parti-

cles on 512 3 512 lattice sites.  The total

particle density is 0.4 and the ratio of red

to blue particles is 1/5.  Because the lat-

tice gas is very noisy, the droplets have

very rough surfaces, in contrast to the

smooth surfaces expected at fluid-fluid

interfaces.  Consequently the results of

the lattice-gas simulations must be aver-

aged spatially and temporally to be com-

pared with the macroscopic description

of immiscible fluids (see Figure 5).  This

figure should also be compared with 

Figure 8, which shows that the lattice-

Boltzmann method produces smoother,

more realistic droplets.



determines its viscosity.  The collision
operator now has two parts.  The first
part of Vi induces single-time relax-
ation to equilibrium, as was done for
the single phase.  Again each fluid
tends to relax to a local equilibrium dis-
tribution that depends on the local den-
sity and velocity and is analogous to
the single-phase equilibrium distribu-
tion presented in the sidebar.  The mass
of each fluid is conserved and the total
momentum of the system is conserved.

The second part of the collision op-
erator Vi depends on the red and blue
densities at nearest neighbors and deter-

mines the dynamics at the fluid-fluid in-
terfaces.  It is given by

F3 2 1/24,

where k denotes red or blue, Ak is a
free parameter that controls the surface
tension, and F is the local color gradi-
ent, defined as

F(x) 5
î

ei [rr(x 1 ei) 2rb(x 1 ei)].

(ei?F)2

}
F2

Ak
}
2
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Figure 5.  Verification of the Laplace
Formula for Surface Tension in
Two-Phase Lattice-Gas Simulations  
For real droplets in a mixture of immisci-

ble fluids, a pressure difference across

the interface balances the surface tension

created by the mutual attraction of parti-

cles of like kind.  The relation is given by

the Laplace formula, Dp 5 s/R where s is

the surface-tension coefficient and R is

the radius of the droplet.  To compare the

lattice-gas results of Figure 4 with that

macroscopic description, the pressure is

calculated from the local particle-number

density, p 5 n/3, and the results are aver-

aged temporally over 1000 timesteps and

spatially in the circumferential direction

around the center of each droplet.

(a) That average pressure is plotted as a

function of the distance r from the center

of a droplet.  The pressure difference be-

tween the red phase and the blue phase

demonstrates the existence of surface

tension in these two-phase simulations.

(b) The pressure difference across the

droplet surface is plotted as a function of

1/R, where R is the radius of the droplet.

The linear relation shows that the surface

tension coefficient s is a constant, as re-

quired by the Laplace formula.  Thus the

averaged results of the colored-hole, two-

phase lattice-gas simulations reproduce

the correct macroscopic interfacial dy-

namics.



In the incompressible limit, the density
in a single-phase region is uniform and
therefore the local color gradient is
zero.  Thus this second part of the colli-
sion operator does not contribute.  In a
mixed-phase region, this part of the col-
lision operator maintains the interfaces
between fluids by forcing the momen-
tum of the red fluid, jr 5 Si fi

rei, to
align with the direction of the local
color gradient.  In other words, the red
density at an interface is redistributed
to maximize the quantity 2( j?F ).  The
blue-particle distribution can then be
obtained by applying mass conservation
along each direction:  fi

b 5 fi 2 fi
r.

Using a scaling and expansion pro-
cedure similar to that used to derive the
macroscopic behavior of a single phase
(see sidebar), one can rigorously prove
that each fluid will obey the Navier-
Stokes equations and that the pressure
difference across fluid-fluid interfaces
will obey the Laplace formula.  Results
of two-phase lattice-Boltzmann simula-
tions have also demonstrated that the
surface-tension coefficient s is a con-
stant independent of the radius of a
drop.

Over the past three years, several
Los Alamos scientists and several sci-
entists from Mobil Oil Company have
developed a collaboration, applying the
two-phase model to study flows through
porous media.  The results of simula-
tions in two and three dimensions are
shown in the companion article.  The
goal of the collaboration is to develop a
greater understanding of the fundamen-
tal physics related to enhanced oil re-
covery, and to predict relative perme-
abilities and other bulk properties of
porous media from basic properties of
the fluid-fluid and fluid-rock interac-
tions.  So far, lattice-Boltzmann simula-
tions look promising:  Initial results
compare well with experimental mea-
surements of flow patterns and relative
permeabilities.
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Figure 6 . The Definition of Contact Angle
The contact angle is defined as the angle between a two-fluid interface and a solid sur-

face.  As shown in the figure, each fluid has its own contact angle and the sum of the

two must equal 1808.  The wetting fluid (the fluid that tends to wet the surface) has a

contact angle of less than 908, and the nonwetting fluid (the fluid that has less affinity

for the solid surface) has a contact angle of greater than 908.

Figure 7.  Contact Angles in Two-Phase Lattice-Gas Simulations  
This simulation demonstrates the ability of lattice-gas simulations to model different

contact angles, or different wettability conditions, as required in studies of porous-

media flow.  The simulation conditions are identical to those described in Figure 4 ex-

cept that a solid horizontal wall (white) divides the computational box into an upper

and a lower region.  The upper surface of the wall has a greater affinity for the blue

fluid than for the red fluid, whereas the opposite is true of the lower surface of the

wall.  The affinity, or preference, of the wall for one fluid over the other is modeled by

a special rule for collisions between a hole and the wall that controls the color of the

hole flux at the walls.  The rule specifies that when a hole of either color collides with

a wall, there is a probability P that it will bounce back and become a red hole.  In the

simulation shown the upper surface has P = 0.2; that choice produces a surface that is

strongly blue-wet, and the contact angle of the red fluid is greater than 908.  The lower

surface has P = 0.8, which results in a strongly red-wet surface and a contact angle for

the red fluid of close to 08.



Applications and Extensions

Lattice multiphase models have been
used for investigating the details of in-
terface dynamics, including the well-
known phenomena Rayleigh-Taylor in-
stability, Saffman-Taylor instability,
and domain growth in the separation of
two immiscible fluids (see Figure 8).
The two-phase lattice-Boltzmann model
has been extended to three and four
phases to study critical and off-critical
quenches and phase transitions.

Features of interest in biological
problems have also been added to lat-
tice-Boltzmann models.  For example,
the addition of a surfactant fluid to two-
phase flows is being used to study the
formation of lipid bilayers.  If one end
of the surfactant prefers the red fluid
and the other end of the surfactant
prefers the blue fluid, the fluids are

forced to have a much more extensive
interface.  This approach is being used
for studying the self-assembly of bio-
logical membranes, surfactant effects in
two- and three-dimensional multiphase
models, the formation of membranes,
and self-assembly of amphiphilic struc-
tures at aqueous organic interfaces.

Simple reaction-diffusion systems are
also being modeled with lattice-Boltz-
mann methods.  Recent work has shown
that these simple systems can exhibit
extremely complicated and unexpected
behavior.  For example, solutions have
been found that behave like biological
cells; that is, concentrations of chemical
densities within well-defined regions of
the solution divide as cells divide.

The lattice-Boltzmann method, like
any new method, is going through an
exploratory  stage to determine its limi-
tations and optimal areas of application.

Recently, stability analyses have been
completed, and the conditions under
which the method becomes unstable (as
do all finite-difference schemes) have
been determined.  When the allowed
number of speeds is increased from
three to many, a thermohydrodynamic
version of the lattice-Boltzmann method
emerges.  Such a model has been devel-
oped and tested by several scientists.
The current lattice models for reacting
systems are based on simple isothermal
models, but they can easily be extended
to include temperature effects and to
model phase transitions in which the re-
action rate depends on local temperature.

Clearly, the lattice-Boltzmann
method is still in the developmental
stages.  Because it is relatively straight-
forward to introduce new physics into
the model, we expect it will be applied
to many additional physical phenomena.
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Figure 8.  Lattice-Boltzmann Simulations of Phase Separation
Each of the three figures is a snapshot of a lattice-Boltzmann simulation after 6000 timesteps, starting from an initial random distrib-

ution of the phases present.  (a) The red and blue densities are 0.4 and 0.6, respectively.  Since the density of the red fluid is lower

than that of the blue, red drops form in a blue background.  At each site the lattice-Boltzmann simulation produces, in essence, an

ensemble average of lattice-gas simulations, so the boundaries between the red and blue fluids are much smoother in this simula-

tion than in the corresponding lattice-gas simulation shown in Figure 4.  (b) The densities of the red and blue fluids are 0.5 and 0.5.

Phase separation again takes place readily but produces a different pattern than in (a) because the densities of the two phases are

equal.  (c) The model for immiscible fluids can be applied to any number of phases.  Here there are three phases, red, blue, and

green, and each has a density equal to 0.33.  Again the three phases separate from an initial random distribution.
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The Boltzmann equation for any lattice model is an equation for the time
evolution of fi (x,t), the single-particle distribution at lattice site x:

fi (x 1 ei, t 1 Dt) 5 fi (x,t) 1 Vi( f(x,t)),

where Vi 5 Vi( f(x,t)) is the local collision operator at that site, i 5 0,1,…,14, and
Dt is assigned a value of unity.  Since the usual aim of lattice methods is to model
macroscopic dynamics, the “exact” collision operator is unnecessarily complex and
therefore numerically inefficient.  Two groups (see Chen et al. and Qian et al. in
the Further Reading) nearly simultaneously suggested that the collision operator be
approximated by a single-time-relaxation process in which relaxation to some ap-
propriately chosen equilibrium distribution occurs at some constant rate.  In particu-
lar the collision term, V( f ), is replaced by the single-time-relaxation approximation,

Vi( f(x,t)) 5 2 .

The appropriately chosen equilibrium distribution, denoted by f eq, depends on the
local fluid variables, and 1/t is the rate of approach to this equilibrium.  The rela-
tions Si Vi

5 0 and Si
e

i
V

i
5 0 must be true to conserve mass and momentum, re-

spectively.  In order for the fluid to have Galilean-invariant convection and a pres-
sure that does not depend on velocity, an appropriate equilibrium distribution, fi

eq,
must be assumed.  For a two-dimensional hexagonal lattice, the formula is:

fi
eq 5 1 ei?v 1 (ei?v)2 2 v2

and

f0
eq 5 ar 2 rv2.

(The corresponding formulas for the cubic lattice appear in the article by Alexan-
der, Chen, and Grunau listed in the Further Reading.)  In these equations the den-
sity r (x,t) 5 mn(x,t) (where m is the mass of each particle), the number density
n(x,t) 5 Si fi(x,t), and a is a free parameter related to the sound speed as shown
below.  For the lattice-Boltzmann method, the particle distribution does not have
an upper bound.  The only requirement is that fi $ 0.

To derive the macroscopic equations obeyed by this model, one performs a Taylor
expansion in time and space and takes the long-wavelength and low-frequency
limit of the lattice-Boltzmann equation for the single-particle distribution.  The re-
sult is a continuum form of the Boltzmann equation correct to second order in the
lattice spacing and the timestep.  A scaling expansion argument, the assumption of
single-time relaxation, and the neglect of higher-order terms lead to the following
final form of the macroscopic equations obeyed by the simulated system

r
}
6

2r
}
3

r
}
3

r(1 2 a)
}

6

fi(x,t) 2 fi
eq(x,t)

}}
t
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1 5 0, the equation of mass continuity;

the equation of momentum conservation; and

p 5 r.

the equation of state.

In the above equations, vb is the component of the velocity in the b-direction; p is
the pressure; and the sound speed, cs, is Ï(1w 2w jw)/w2w, where j is a free parameter.
The shear viscosity, m, and the bulk viscosity, l, are given by

m 5 r

and

l 5 r.

The above equations converge to the exact incompressible Navier-Stokes equa-
tions only when the derivatives of the number density in the second viscosity term
on the right-hand side of the equation are small.  Since the gradients of the density
are O(v2), the unphysical terms in the momentum-conservation equation are cor-
rect to order (v3). Thus, although the physics of the lattice-Boltzmann method con-
tains compressibility effects, one may come arbitrarily close to solving the incom-
pressible Navier-Stokes equations by reducing the Mach number (through the
choice of a) and thereby reducing the simulated flow to very low speed.  (Never-
theless the compressibility effects in the lattice-Boltzmann approach are physical
and the method can also be used to simulate compressible fluids.)

Traditional methods for solving incompressible flows, such as finite-difference or
finite-element, require solution of a Poisson equation for the pressure term, which
is induced by the mass-continuity equation and the momentum-conservation equa-
tion.  In the lattice-Boltzmann approach, this time-consuming step is avoided be-
cause the incompressibility requirement has been relaxed and the effects of pres-
sure changes are controlled by an equation of state rather than a Poisson equation.
It can be argued that the conventional methods most closely related to the lattice-
Boltzmann method are the pseudocompressible algorithms for solving incompress-
ible fluid flows.

(t 2 1/2)(2j2 1)
}}

4

2t 2 1
}

8

1 2 j
}

2

∂(rvb)
}

∂xb

∂r
}
∂t

Equations of the Lattice-Boltzmann Method

Number 22  1994  Los Alamos Science  111

1 rvb 5 2 1 3 1 d ab1 va 1 vb 24 1 3m1 1 24,
∂va
}
∂xb

∂vb
}
∂xa

∂
}
∂xb

∂r
}
∂xa

∂r
}
∂xb

∂rvg
}
∂xg

l
}
r

∂
}
∂xb

∂p
}
∂xa

∂va
}
∂xb

r∂va
}

∂t


	Lattice Methods for Modeling Continuum Dynamics
	The Lattice-Boltzmann Method
	Strategies for Modeling the Flow of Two Fluid Phases
	Applications and Extensions
	Acknowledgements
	Further Reading
	Sidebar: Equations of the Lattice-Boltzmann Method

