Chapter B7. Random Numbers

One might think that good random number generators, including those in Volume 1, should last forever. The world of computing changes very rapidly, however:

- When Volume 1 was published, it was unusual, except on the fastest supercomputers, to “exhaust” a 32-bit random number generator, that is, to call for all 2^{32} sequential random values in its periodic sequence. Now, this is feasible, and not uncommon, on fast desktop workstations. A useful generator today must have a minimum of 64 bits of state space, and generally somewhat more.

- Before Fortran 90, the Fortran language had no standardized calling sequence for random numbers. Now, although there is still no standard algorithm defined by the language (rightly, we think), there is at least a standard calling sequence, exemplified in the intrinsics `random number` and `random seed`.

- The rise of parallel computing places new algorithmic demands on random generators. The classic algorithms, which compute each random value from the previous one, evidently need generalization to a parallel environment.

- New algorithms and techniques have been discovered, in some cases significantly faster than their predecessors.

These are the reasons that we have decided to implement, in Fortran 90, different uniform random number generators from those in Volume 1’s Fortran 77 implementations. We hasten to add that there is nothing wrong with any of the generators in Volume 1. That volume’s `ran0` and `ran1` routines are, to our knowledge, completely adequate as 32-bit generators; `ran2` has a 64-bit state space, and our previous offer of $1000 for any demonstrated failure in the algorithm has never yet been claimed (see [1]).

Before we launch into the discussion of parallelizable generators with Fortran 90 calling conventions, we want to attend to the continuing needs of longtime “x=ran(idum)” users with purely serial machines. If you are a satisfied user of Volume 1’s `ran0`, `ran1`, or `ran2` Fortran 77 versions, you are in this group. The following routine, `ran`, preserves those routines’ calling conventions, is considerably faster than `ran2`, and does not suffer from the old `ran0` or `ran1’s 32-bit period exhaustion limitation. It is completely portable to all Fortran 90 environments. We recommend `ran` as the plug-compatible replacement for the old `ran0`, `ran1`, and `ran2`, and we happily offer exactly the same $1000 reward terms as were (and are still) offered on the old `ran2`.
FUNCTION ran(idum)
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
INTEGER(K4B), INTENT(INOUT) :: idum
REAL :: ran

"Minimal" random number generator of Park and Miller combined with a Marsaglia shift sequence. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This fully portable, scalar generator has the "traditional" (not Fortran 90) calling sequence with a random deviate as the returned function value: call with idum a negative integer to initialize; thereafter, do not alter idum except to reinitialize. The period of this generator is about 3.1×10^{18}.

INTEGER(K4B), PARAMETER :: IA=16807, IM=2147483647, IQ=127773, IR=2836
REAL, SAVE :: am
INTEGER(K4B), SAVE :: ix=-1, iy=-1, k

if (idum <= 0 .or. iy < 0) then
 Initialize.
 am=nearest(1.0,-1.0)/IM
 iy=ior(ieor(888889999,abs(idum)),1)
 ix=ieor(777755555,abs(idum))
 idum=abs(idum)+1
 Set idum positive.
end if

ix=ieor(ix,ishft(ix,13)) \ Marsaglia shift sequence with period $2^{32} - 1$.
iy=ia*(iy-k*IQ)-IR*k \ Park-Miller sequence by Schrage's method, period $2^{31} - 2$.
ifiy < 0 iy=iy+IM
ran=am*ior(iand(IM,ieor(ix,iy)),1) \ Combine the two generators with masking to ensure nonzero value.
END FUNCTION ran

This is a good place to discuss a new bit of algorithmics that has crept into ran, above, and even more strongly affects all of our new random number generators, below. Consider:

\[
\text{ix=ieor(ix,ishft(ix,13))}
\]
\[
\text{ix=ieor(ix,ishft(ix,-17))}
\]
\[
\text{ix=ieor(ix,ishft(ix,5))}
\]

These lines update a 32-bit integer \(\text{ix} \), which cycles pseudo-randomly through a full period of $2^{32} - 1$ values (excluding zero) before repeating. Generators of this type have been extensively explored by Marsaglia (see [2]), who has kindly communicated some additional results to us in advance of publication. For convenience, we will refer to generators of this sort as "Marsaglia shift registers."

Useful properties of Marsaglia shift registers are (i) they are very fast on most machines, since they use only fast logical operations, and (ii) the bit-mixing that they induce is quite different in character from that induced by arithmetic operations such as are used in linear congruential generators (see Volume 1) or lagged Fibonacci generators (see below). Thus, the combination of a Marsaglia shift register with another, algorithmically quite different generator is a powerful way to suppress any residual correlations or other weaknesses in the other generator. Indeed, Marsaglia finds (and we concur) that the above generator (with constants 13, -17, 5, as shown) is by itself about as good as any 32-bit random generator.

Here is a very brief outline of the theory behind these generators: Consider the 32 bits of the integer as components in a vector of length 32, in a linear space where addition and multiplication are done modulo 2. Noting that exclusive-or (\text{ieor}) is the same as addition, each of the three lines in the updating can be written as the action of a 32×32 matrix on a vector, where the matrix is all zeros except for
Chapter B7. Random Numbers

1143

ones on the diagonal, and on exactly one super- or subdiagonal (corresponding to positive or negative second arguments in \texttt{ishft}). Denote this matrix as S_k, where k is the shift argument. Then, one full step of updating (three lines of code, above) corresponds to multiplication by the matrix $T \equiv S_k S_k S_k$.

One next needs to find triples of integers (k_1, k_2, k_3), for example $(13, -17, 5)$, that give the full $M \equiv 2^{32} - 1$ period. Necessary and sufficient conditions are that $T^M = I$ (the identity matrix), and that $T^N \neq I$ for these five values of N: $N = 3 \times 5 \times 17 \times 257$, $N = 3 \times 5 \times 17 \times 65537$, $N = 3 \times 5 \times 257 \times 65537$, $N = 3 \times 17 \times 257 \times 65537$, $N = 5 \times 17 \times 257 \times 65537$. (Note that each of the five prime factors of M is omitted one at a time to get the five values of N.) The required large powers of T are readily computed by successive squarings, requiring only on the order of $32^3 \log M$ operations. With this machinery, one can find full-period triples (k_1, k_2, k_3) by exhaustive search, at reasonable cost.

Not all such triples are equally good as generators of random integers, however. Marsaglia subjects candidate values to a battery of tests for randomness, and we have ourselves applied various tests. This stage of winnowing is as much art as science, because all 32-bit generators can be made to exhibit signs of failure due to period exhaustion (if for no other reason). “Good” triples, in order of our preference, are $(13, -17, 5)$, $(5, -13, 6)$, $(5, -9, 7)$, $(13, -17, 15)$, $(16, -7, 11)$. When a full-period triple is good, its reverse is also full-period, and also generally good. A good quadruple due to Marsaglia (generalizing the above in the obvious way) is $(-4, 8, -1, 5)$. We would not recommend relying on any single Marsaglia shift generator (nor on any other simple generator) by itself. Two or more generators, of quite different types, should be combined [1].

* * *

Let us now discuss explicitly the needs of parallel random number generators. The general scheme, from the user’s perspective, is that of Fortran 90’s intrinsic \texttt{random number}: A statement like \texttt{call ran1(harvest)} (where \texttt{ran1} will be one of our parallel replacements for the compiler-dependent \texttt{random number}) should fill the real array \texttt{harvest} with pseudo-random real values in the range $(0, 1)$. Of course, we want the underlying machinery to be completely parallel, that is, no do-loops of order $N \equiv \text{size(harvest)}$.

A first design decision is whether to replicate the state-space across the parallel dimension N, i.e., whether to reserve storage for essentially N scalar generators. Although there are various schemes that avoid doing this (e.g., mapping a single, smaller, state space into N different output values on each call), we think that it is a memory cost well worth paying in return for achieving a less exotic (and thus better tested) algorithm. However, this choice dictates that we must keep the state space per component quite small. We have settled on five or fewer 32-bit words of state per component as a reasonable limit. Some otherwise interesting and well tested methods (such as Knuth’s subtractive generator, implemented in Volume 1 as \texttt{ran3}) are ruled out by this constraint.

A second design decision is how to initialize the parallel state space, so that different parallel components produce different sequences, and so that there is an acceptable degree of randomness across the parallel dimension, as well as between successive calls of the generator. Each component starts its life with one and only one unique identifier, its component index n in the range $1 \ldots N$. One is
tempted simply to hash the values \(n \) into the corresponding components of initial state space. “Random” hashing is a bad idea, however, because different \(n \)'s will produce identical 32-bit hash results by chance when \(N \) is no larger than \(\sim 2^{16} \). We therefore prefer to use a kind of reversible pseudo-encryption (similar to the routine \texttt{psdes} in Volume 1 and below) which guarantees causally that different \(n \)'s produce different state space initializations.

The machinery for allocating, deallocating, and initializing the state space, including provision of a user interface for getting or putting the contents of the state space (as in the intrinsic \texttt{random_seed}) is fairly complicated. Rather than duplicate it in each different random generator that we provide, we have consolidated it in a single module, \texttt{ran_state}, whose contents we will now discuss. Such a discussion is necessarily technical, if not arcane; on first reading, you may wish to skip ahead to the actual new routines \texttt{ran0}, \texttt{ran1}, and \texttt{ran2}. If you do so, you will need to know only that \texttt{ran_state} provides each vector random routine with five 32-bit vectors of state information, denoted \texttt{iran}, \texttt{jran}, \texttt{kran}, \texttt{mran}, \texttt{nran}. (The overloaded scalar generators have five corresponding 32-bit scalars, denoted \texttt{iran0}, etc.)

\begin{verbatim}
MODULE ran_state
This module supports the random number routines \texttt{ran0}, \texttt{ran1}, \texttt{ran2}, and \texttt{ran3}. It provides each generator with five integers (for vector versions, five vectors of integers), for use as internal state space. The first three integers (\texttt{iran}, \texttt{jran}, \texttt{kran}) are maintained as nonnegative values, while the last two (\texttt{mran}, \texttt{nran}) have 32-bit nonzero values. Also provided by this module is support for initializing or reinitializing the state space to a desired standard sequence number, hashing the initial values to random values, and allocating and deallocating the internal workspace.

USE nrtype
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
Independent of the usual integer kind \texttt{I4B}, we need a kind value for (ideally) 32-bit integers. INTEGER(K4B), PARAMETER :: hg=huge(1_K4B), hgm=-hg, hgng=hgm-1
INTEGER(K4B), SAVE :: lenran=0, seq=0
INTEGER(K4B), SAVE :: iran0,jran0,kran0,mran0,nran0,ranseeds
INTEGER(K4B), DIMENSION(:,,:), POINTER, SAVE :: ranv
REAL(SP), SAVE :: amm
INTERFACE ran_hash
Scalar and vector versions of the hashing procedure.
MODULE PROCEDURE ran_hash_s, ran_hash_v
END INTERFACE

(We here intersperse discussion with the listing of the module.) The module defines \texttt{K4B} as an integer \texttt{KIND} that is intended to be 32 bits. If your machine doesn’t have 32-bit integers (hard to believe!) this will be caught later, and an error message generated. The definition of the parameters \texttt{hg}, \texttt{hgm}, and \texttt{hgng} makes an assumption about 32-bit integers that goes beyond the strict Fortran 90 integer model, that the magnitude of the most negative representable integer is greater by one than that of the most positive representable integer. This is a property of the two's complement arithmetic that is used on virtually all modern machines (see, e.g., [3]).

The global variables \texttt{rans} (for scalar) and \texttt{ranv} (for vector) are used by all of our routines to store the \texttt{integer} value associated with the most recently returned call. You can access these (with a “USE \texttt{ran_state}” statement) if you want integer, rather than real, random deviates.
\end{verbatim}
The first routine, \texttt{ran_init}, is called by routines later in the chapter to initialize their state space. It is not intended to be called from a user's program.

```
SUBROUTINE ran_init(length)
USE nrtype; USE nrutil, ONLY : arth,nrerror,reallocate
IMPLICIT NONE
INTEGER(K4B), INTENT(IN) :: length

Initialize or reinitialize the random generator state space to vectors of size \textit{length}. The saved variable \texttt{seq} is hashed (via calls to the module routine \texttt{ran\_hash}) to create unique starting seeds, different for each vector component.

```
Bit of dirty laundry here! We are testing whether the most positive integer \(h_g \) wraps around to the most negative integer \(h_g \text{ng} \) when 1 is added to it. We can't just write \(h_g + 1 \), since some compilers will evaluate this at compile time and return an overflow error message. If your compiler sees through the charade of the temporary variable \(h_g \), you'll have to find another way to trick it.

Logically, \(\text{amm} \) should be a parameter; but the \textit{nearest} intrinsic is trouble-prone in the initialization expression for a parameter (named constant), so we compute this at run time. We then check that \(\text{amm} \), when multiplied by the largest possible negative integer, does not equal or exceed unity. (Our random deviates are guaranteed never to equal zero or unity exactly.)

You might wonder why \(\text{amm} \) is negative, and why we multiply it by negative integers to get positive random deviates. The answer, which will become manifest in the random generators given below, is that we want to use the fast \texttt{not} operation on integers to convert them to nonzero values of all one sign. This is possible if the conversion is to negative values, since \texttt{not}(1) is negative for all nonnegative \(i \). If the conversion were to positive values, we would have problems both with zero (its sign bit is already positive) and \(h_g \text{ng} \) (since \texttt{not}(\(h_g \text{ng} \)) is generally zero).

The initial state information is stored in \texttt{ranseeds}, a two-dimensional array whose column (second) index ranges from 1 to 5 over the state variables. \texttt{ranseeds}(1,:) is reserved for scalar random generators, while \texttt{ranseeds}(2,:) is for vector-parallel generators. The \texttt{ranseeds} array is made available to vector generators through the pointers \texttt{iran}, \texttt{jran}, \texttt{kran}, \texttt{mran}, and \texttt{nran}. The corresponding scalar values, \texttt{iran0}, \texttt{jran0}, \texttt{kran0}, \texttt{mran0}, and \texttt{nran0} are simply global variables, not pointers, because the overhead of addressing a scalar through a pointer is often too great. (We will have to copy these scalar values back into \texttt{ranseeds} when it, rarely, needs to be addressed as an array.)

Unique, and random, initial state information is obtained by putting a user-settable "sequence number" into \texttt{iran}, a component number into \texttt{jran}, and hashing this pair. Then \texttt{jran} and \texttt{kran} are hashed, \texttt{kran} and \texttt{mran} are hashed, and so forth.

The above routine is supplied as a user interface for deallocating all the state space storage.
SUBROUTINE ran_seed(sequence, size, put, get)
IMPLICIT NONE
INTEGER, OPTIONAL, INTENT(IN) :: sequence
INTEGER, OPTIONAL, INTENT(OUT) :: size
INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: put
INTEGER, DIMENSION(:), OPTIONAL, INTENT(OUT) :: get
User interface for seeding the random number routines. Syntax is exactly like Fortran 90's random_seed routine, with one additional argument keyword: sequence, set to any integer value, causes an immediate new initialization, seeded by that integer.
if (present(size)) then
 size=5*lenran
else if (present(put)) then
 if (lenran => 0) RETURN
 ranseeds=reshape(put,shape(ranseeds))
 where (ranseeds(:,1:3) < 0) ranseeds(:,1:3)=not(ranseeds(:,1:3))
 Enforce nonnegativity and nonzero conditions on any user-supplied seeds.
 where (ranseeds(:,4:5) == 0) ranseeds(:,4:5)=1
 iran0=ranseeds(1,1)
 jran0=ranseeds(1,2)
 kran0=ranseeds(1,3)
 mran0=ranseeds(1,4)
 nran0=ranseeds(1,5)
else if (present(get)) then
 if (lenran => 0) RETURN
 ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
 get=reshape(ranseeds,shape(get))
else if (present(sequence)) then
 call ran_deallocate
 seq=sequence
end if
END SUBROUTINE ran_seed

Fortran 90's convention is that random state space is a one-dimensional array, so we map to this on both the get and put keywords.

\begin{verbatim}
iran0=...jran0=...kran0=...
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
\end{verbatim}

It's much more convenient to set a vector from a bunch of scalars then the other way around.

SUBROUTINE ran_hash_s(il, ir)
IMPLICIT NONE
INTEGER(K4B), INTENT(INOUT) :: il, ir
DES-like hashing of two 32-bit integers, using shifts, xor's, and adds to make the internal nonlinear function.
INTEGER(K4B) :: is,j
do j=1,4
 is=ir
 ir=ieor(ir,ishft(ir,5))+1422217823
 The various constants are chosen to give good bit mixing and should not be changed.
 ir=ieor(ir,ishft(ir,-16))+1842055030
 ir=ieor(ir,ishft(ir,9))+80567781
 ir=ieor(il,ir)
 il=is
end do
END SUBROUTINE ran_hash_s
SUBROUTINE ran_hash_v(il, ir)
IMPLICIT NONE
INTEGER(K4B), DIMENSION(:), INTENT(INOUT) :: il, ir
Vector version of ran_hash.
INTEGER(K4B), DIMENSION(size(il)) :: is
INTEGER(K4B) :: j
do j=1, 4
 is=ir
 ir=irxor(is, isll(5))+1422217823
 ir=irxor(is, isll(-16))+1842055030
 ir=irxor(is, isll(9))+80567781
 ir=irxor(il, ir)
 il=is
end do
END SUBROUTINE ran_hash_v

The lines
ir=irxor(is, isll(5))+1422217823
ir=irxor(is, isll(-16))+1842055030
ir=irxor(is, isll(9))+80567781
are not a Marsaglia shift sequence, though they resemble one. Instead, they implement a fast, nonlinear function on ir that we use as the “S-box” in a DES-like hashing algorithm. (See Volume 1, §7.5.) The triplet (5, −16, 9) is not chosen to give a full period Marsaglia sequence — it doesn’t. Instead it is chosen as being particularly good at separating in Hamming distance (i.e., number of nonidentical bits) two initially close values of ir (e.g., differing by only one bit). The large integer constants are chosen by a similar criterion. Note that the wrap-around of addition without generating an overflow error condition, which was tested in ran_init, is relied upon here.

SUBROUTINE ran0_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, iran0, jran0, kran0, nran0, rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Lagged Fibonacci generator combined with a Marsaglia shift sequence. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This generator has the same calling and initialization conventions as Fortran 90’s random number routine. Use ran_seed to initialize or reinitialize to a particular sequence. The period of this generator is about $2^{31} \times 10^{29}$, and it fully vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1)
rans=iran0-kran0
if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=iror(nran0, isll(nran0, 13))
nran0=iror(nran0, isll(nran0, −17))
nran0=iror(nran0, isll(nran0, 5))
rans=iror(nran0, rans)
harvest=amm*merge(rans, not(rans), rans<0)
END SUBROUTINE ran0_s

Initialization routine in ran_state. Update Fibonacci generator, which has period $p^2 + p + 1$, $p = 2^{31} - 69$.

Update Marsaglia shift sequence with period $2^{32} − 1$.

Combine the generators.

Make the result positive definite (note that amm is negative).
SUBROUTINE ran0_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran,jran,kran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=ieor(ranv(1:n),ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran0_v

This is the simplest, and fastest, of the generators provided. It combines a subtractive Fibonacci generator (Number 6 in ref. [1], and one of the generators in Marsaglia and Zaman’s mzran) with a Marsaglia shift sequence. On typical machines it is only 20% or so faster than ran1, however; so we recommend the latter preferentially. While we know of no weakness in ran0, we are not offering a prize for finding a weakness. ran0 does have the feature, useful if you have a machine with nonstandard arithmetic, that it does not go beyond Fortran 90’s assumed integer model.

Note that ran0_s and ran0_v are overloaded by the module nr onto the single name ran0 (and similarly for the routines below).

SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Lagged Fibonacci generator combined with two Marsaglia shift sequences. On output, returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This generator has the same calling and initialization conventions as Fortran 90’s random-number routine. Use ran_seed to initialize or reinitialize to a particular sequence.
The period of this generator is about 8.5×10^{37}, and it fully vectorizes. Validity of the integer model assumed by this generator is tested at initialization.
if (lenran < 1) call ran_init(1)
iran0-kran0
if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13))
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
Once only per cycle, advance sequence by 1, shortening its period to $2^{32} - 2$.
if (nran0 == 1) nran0=270369_k4b
mran0=ieor(mran0,ishft(mran0,6))
mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,5))
Update Marsaglia shift sequence.
Update Marsaglia shift sequence with period $2^{32} - 1$.

Chapter B7. Random Numbers
rans = ieor(nran0, rans) + mran0
Combine the generators. The above statement has wrap-around addition.

harvest = amm * merge(rans, not(rans), rans < 0)
Make the result positive definite (note that amm is negative).

SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, & iran, jran, kran, nran, mran, ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n = size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n) = ieor(ranv(1:n), kran(1:n))
where (ranv(1:n) < 0) ranv(1:n) = ranv(1:n) + 2147483579_k4b
iran(1:n) = jran(1:n)
jran(1:n) = kran(1:n)
kran(1:n) = ranv(1:n)
nran(1:n) = ieor(nran(1:n), ishft(nran(1:n), 13))
nran(1:n) = ieor(nran(1:n), ishft(nran(1:n), -17))
where (nran(1:n) == 1) nran(1:n) = 270369_k4b
mran(1:n) = ieor(mran(1:n), ishft(mran(1:n), 5))
mran(1:n) = ieor(mran(1:n), ishft(mran(1:n), -13))
mran(1:n) = ieor(mran(1:n), ishft(mran(1:n), 6))
ranv(1:n) = ieor(nran(1:n), ranv(1:n)) * mran(1:n)
harvest = amm * merge(ranv(1:n), not(ranv(1:n)), ranv(1:n) < 0)
END SUBROUTINE ran1_s

The routine ran1 combines three fast generators: the two used in ran0, plus an additional (different) Marsaglia shift sequence. The last generator is combined via an addition that can wrap-around.

We think that, within the limits of its floating-point precision, ran1 provides perfect random numbers. We will pay $1000 to the first reader who convinces us otherwise (by exhibiting a statistical test that ran1 fails in a nontrivial way, excluding the ordinary limitations of a floating-point representation).

** **

SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, & iran0, jran0, kran0, nran0, mran0, rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Lagged Fibonacci generator combined with a Marsaglia shift sequence and a linear congruential generator. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This generator has the same calling and initialization conventions as Fortran 90’s random_number routine. Use ran_seed to initialize or reinitialize to a particular sequence. The period of this generator is about 8.5×10^{37}, and it fully vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1)
rans = ieor(iran0, kran0)
if (rans < 0) rans = rans + 2147483579_k4b
iran0 = jran0
jran0 = kran0
kran0 = rans

Initialization routine in ran_state. Update Fibonacci generator, which has period $p^2 + p + 1$, $p = 2^{31} - 69$.

Sample page from NUMERICAL RECIPES IN FORTRAN 90: The Art of Parallel Scientific Computing (ISBN 0-521-57439-0) Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission granted for internet use to make one paper copy for your personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
Chapter B7. Random Numbers

Update the sequence \(m \) with

\[
\begin{align*}
nran &= \text{ieor}(nran0, \text{ishft}(nran0, 13)) \\
nran &= \text{ieor}(nran0, \text{ishft}(nran0, -17)) \\
nran &= \text{ieor}(nran0, \text{ishft}(nran0, 5)) \\
rans &= \text{land}(mran0, 65535)
\end{align*}
\]

Wrap-around addition (tested at initialization) is used.

\[
\begin{align*}
mran0 &= \text{ishft}(3533 \times \text{ishft}(mran0, -16) + rans, 16) + 3533 \times rans + 820265819_k4b \\
rans &= \text{ieor}(nran0, kran0) + mran0
\end{align*}
\]

Combine the generators.

\[
\begin{align*}
\text{harvest} &= \text{amm} \times \text{merge}(\text{rans}, \text{not}(\text{rans}), \text{rans} < 0) \\
\text{ranv}(1:n) &= \text{ieor}(\text{nran}(1:n), \text{kran}(1:n)) + \text{mran}(1:n)
\end{align*}
\]

We use the fact that \(\text{ran1} \) never returns exactly 0 or 1.

\[
\begin{align*}
\text{harvest} &= \text{amm} \times \text{merge}(\text{rans}, \text{not}(\text{rans}), \text{rans} < 0) \\
\text{ranv}(1:n) &= \text{ieor}(\text{nran}(1:n), \text{kran}(1:n)) + \text{mran}(1:n)
\end{align*}
\]

ran2, for use by readers whose caution is extreme, also combines three generators. The difference from ran1 is that each generator is based on a completely different method from the other two. The third generator, in this case, is a linear congruential generator modulo \(2^{32} \). This generator relies extensively on wrap-around addition (which is automatically tested at initialization). On machines with fast arithmetic, ran2 is on the order of only 20% slower than ran1. We offer a $1000 bounty on ran2, with the same terms as for ran1, above.

\[
\begin{align*}
\text{ran2} \text{v(harvest)}
\end{align*}
\]

\[
\begin{align*}
\text{SUBROUTINE expdev_s(harvest)}
\end{align*}
\]
SUBROUTINE expdev_v(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: dum
call ran1(dum)
harvest=-log(dum)
END SUBROUTINE expdev_v

The only noteworthy thing about this line is its simplicity: Once all the machinery is in place, the random number generators are self-initializing (to the sequence defined by $\text{seq} = 0$), and (via overloading) usable with both scalar and vector arguments.

SUBROUTINE gasdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Returns in harvest a normally distributed deviate with zero mean and unit variance, using ran1 as the source of uniform deviates.
REAL(SP) :: rsq, v1, v2
REAL(SP), SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then
harvest=g
gaus_stored=.false.
else
do
call ran1(v1)
call ran1(v2)
v1=2.0_sp*v1-1.0_sp
v2=2.0_sp*v2-1.0_sp
rsq=v1**2+v2**2
if (rsq > 0.0 .and. rsq < 1.0) exit
end do
rsq=sqrt(-2.0_sp*log(rsq)/rsq)
harvest=v1*rsq
gaus_stored=.true.
end if
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype; USE nrutil, ONLY : array_copy
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: rsq, v1, v2
REAL(SP), ALLOCATABLE, DIMENSION(:), SAVE :: g
INTEGER(I4B) :: n, ng, nn, m
INTEGER(I4B), SAVE :: last_allocated=0
LOGICAL, SAVE :: gaus_stored=.false.
LOGICAL, DIMENSION(size(harvest)) :: mask
n=size(harvest)
if (n /= last_allocated) then
if (last_allocated /= 0) deallocate(g)
allocate(g(n))
last_allocated=n
gaus_stored=.false.
end if
if (gaus_stored) then
harvest=g
gaus_stored=.false.
else
ng=1
do
if (ng > n) exit
call ran1(v1(ng:n))
call ran1(v2(ng:n))
v1(ng:n)=2.0*sp*v1(ng:n)-1.0_sp
v2(ng:n)=2.0*sp*v2(ng:n)-1.0_sp
rsq(ng:n)=v1(ng:n)**2+v2(ng:n)**2
mask(ng:n)=(rsq(ng:n)>0.0 .and. rsq(ng:n)<1.0)
call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)
v2(ng:n)=pack(v2(ng:n),mask(ng:n))
ng=ng+nn
end do
rsq=sqrt(-2.0*sp*log(rsq)/rsq)
harvest=v1*rsq
g=v2*rsq
gaus_stored=.true.
end if
END SUBROUTINE gasdev_v

if (n /= last_allocated) ... We make the assumption that, in most cases, the size of harvest will not change between successive calls. Therefore, if it *does* change, we don’t try to save the previously generated deviates that, half the time, will be around. If your use has rapidly varying sizes (or, even worse, calls alternating between two different sizes), you should remedy this inefficiency in the obvious way.

call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m) This is a variant of the pack-unpack method (see note to factrl, p. 1087). Different here is that we don’t care which random deviates end up in which component. Thus, we can simply keep packing successful returns into v1 and v2 until they are full.

Note also the use of array_copy, since we don’t know in advance the length of the array returned by pack.

* * *

FUNCTION gamdev(ia)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev
Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting time to the ia-th event in a Poisson process of unit mean, using ran1 as the source of uniform deviates.
REAL(SP) :: am,e,s,x,y,v(2),arr(5)
call assert(ia >= 1, 'gamdev arg')
if (ia < 6) then
Use direct method, adding waiting times.
Why take the log of the product instead of
the sum of the logs? Because \(\log \) is assumed to be slower than multiply.

We don’t have vector versions of the less commonly used deviate
generators, \texttt{gamdev}, \texttt{poidev}, and \texttt{bnldev}.

\begin{verbatim}
FUNCTION poidev(xm)
 USE nr, ONLY : gammln, ran1
 IMPLICIT NONE
 REAL(SP), INTENT(IN) :: xm
 REAL(SP) :: poidev

 Returns as a floating-point number an integer value that is a random deviate drawn from a
 Poisson distribution of mean \(\text{xm} \), using \texttt{ran1} as a source of uniform random deviates.

 REAL(SP) :: em, harvest, t, y
 REAL(SP), SAVE :: alxm, g, oldm=-1.0_sp, sqoldm is a flag for whether \(\text{xm} \) has changed since last call.
 if (xm < 12.0) then
 Use direct method.
 if (xm /= oldm) then
 oldm=xm
 g=exp(-xm)
 end if
 em=-1
 t=1.0
 do
 em=em+1.0_sp
 call ran1(harvest)
 t=t*harvest
 if (t <= g) exit
 end do
 else
 if (xm /= oldm) then
 oldm=xm
 sq=sqrt(2.0_sp*xm)
 alxm=log(xm)
 g=xm+alxm-gammln(xm+1.0_sp)
 end if
 do
\end{verbatim}
do
 call ran1(harvest)
 y=tan(PI*harvest)
 em=sq*y+xm
 if (em > 0.0) exit
end do

em=int(em)
The trick for integer-valued distributions.
t=0.9_sp*(1.0_sp*y**2)*exp(em+alxm-gammln(em+1.0_sp)-g)
The ratio of the desired distribution to the comparison function; we accept or reject
by comparing it to another uniform deviate. The factor 0.9 is chosen so that t never
exceeds 1.
call ran1(harvest)
if (harvest <= t) exit
end do
end if

poidev=em
END FUNCTION poidev

FUNCTION bnldev(pp,n)
USE nrtype
USE nr, ONLY : gammln, ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: bnldev

Returns as a floating-point number an integer value that is a random deviate drawn from ainomial distribution of n trials each of probability pp, using ran1 as a source of uniform
random deviates.
INTEGER(I4B) :: j
INTEGER(I4B), SAVE :: nold=-1
REAL(SP) :: am,em,g,h,p,sq,t,y,arr(24)
REAL(SP), SAVE :: pc,plog,pclog,en,oldg,pold=-1.0
Arguments from previous calls.
p=merge(pp,1.0_sp-pp,pp <= 0.5_sp)
The binomial distribution is invariant under changing pp to 1.-pp, if we also change the
answer to n minus itself; we’ll remember to do this below.
am=n*p
if (n < 25) then
 call ran1(arr(1:n))
 bnldev=count(arr(1:n)<p)
else if (am < 1.0) then
 g=exp(-am)
t=1.0
 do j=0,n
 call ran1(h)
t=t*h
 if (t < g) exit
 end do
 bnldev=merge(j,n, j <= n)
else
 if (n /= nold) then
 en=n
 oldg=gammln(en+1.0_sp)
nold=n
 end if
 if (p /= pold) then
 pc=1.0_sp-p
 plog=log(p)
pclog=log(pc)
pold=p
 end if
 Use the rejection method.
 If n has changed, then compute useful quantities.
 If p has changed, then compute useful quantities.
The following code should by now seem familiar: rejection method with a Lorentzian comparison function.

```
  do
    call ran1(h)
    y=tan(PI*h)
    em=sq*y+am
    if (em < 0.0 .or. em >= en+1.0_sp) cycle  Reject.
    em=int(em)
    Trick for integer-valued distribution.
    t=1.2_sp*sq*(1.0_sp+y**2)*exp(oldg-gammln(em+1.0_sp)-&
      gammln(en-em+1.0_sp)+em*plog+(en-em)*pclog)
    call ran1(h)
    if (h <= t) exit  Reject. This happens about 1.5 times per deviate, on average.
  end do

bnldev=em
end if
if (p /= pp) bnldev=n-bnldev  Remember to undo the symmetry transformation.

END FUNCTION bnldev
```

The routines \texttt{psdes} and \texttt{psdes_safe} both perform \emph{exactly} the same hashing as was done by the Fortran 77 routine \texttt{psdes}. The difference is that \texttt{psdes} makes assumptions about arithmetic that go beyond the strict Fortran 90 model, while \texttt{psdes_safe} makes no such assumptions. The disadvantage of \texttt{psdes_safe} is that it is significantly slower, performing most of its arithmetic in double-precision reals that are then converted to integers with Fortran 90's modulo intrinsic.

In fact the nonsafe version, \texttt{psdes}, works fine on almost all machines and compilers that we have tried. There is a reason for this: Our assumed integer model is the same as the C language unsigned \texttt{int}, and virtually all modern computers and compilers have a lot of C hidden inside. If \texttt{psdes} and \texttt{psdes_safe} produce identical output on your system for any hundred or so different input values, you can be quite confident about using the faster version exclusively.

At the other end of things, note that in the very unlikely case that your system fails on the \texttt{ran_hash} routine in the \texttt{ran_state} module (you will have learned this from error messages generated by \texttt{ran_init}), you can substitute \texttt{psdes_safe} for \texttt{ran_hash}: They are plug-compatible.

```fortran
SUBROUTINE psdes_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
"Pseudo-DES" hashing of the 64-bit word (lword,irword). Both 32-bit arguments are returned hashed on all bits. Note that this version of the routine assumes properties of integer arithmetic that go beyond the Fortran 90 model, though they are compatible with unsigned integers in C.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B) :: i,ia,ib,iswap,itmph,itmpl
! Do i=1,NITER  Perform niter iterations of DES logic, using a simpler (noncryptographic) nonlinear function instead of DES's.
  iswap=rword
  ia=ior(rword,C1(i))  The bit-rich constants C1 and (below) C2 guarantee lots of nonlinear mixing.
  itmpl=land(ia,65535)
  itmph=land(ishft(ia,-16),65535)
```
SUBROUTINE psdes_s(lword,rword)
USE nrtype, USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(:,), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'S5A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B), DIMENSION(4) :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'S5A7CA46'/
INTEGER(I4B), DIMENSION(4) :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'S5A7CA46'/
integer(i4b), dimension(size(lword)) :: ia,ib,iswap
integer(i4b) :: i

i=assert_eq(size(lword),size(rword),'psdes_s')
do i=1,NITER
 iswap=rword
 ia=ieor(rword,C1(i))
 itmph=land(ishft(ib,-16),65535)
 itmpl=ishft(ib,16)
 ib=itmpl**2+not(itmph**2)
 ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
 rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
 lword=iswap
end do
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(:,), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'S5A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B), DIMENSION(4) :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'S5A7CA46'/
INTEGER(I4B), DIMENSION(4) :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'S5A7CA46'/
integer(i4b), dimension(size(lword)) :: ia,ib,iswap
integer(i4b) :: i

i=assert_eq(size(lword),size(rword),'psdes_v')
do i=1,NITER
 iswap=rword
 ia=ieor(rword,C1(i))
 itmph=land(ishft(ib,-16),65535)
 itmpl=ishft(ib,16)
 ib=itmpl**2+not(itmph**2)
 ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
 rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
 lword=iswap
end do
END SUBROUTINE psdes_v

SUBROUTINE psdes_safe_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
Pseudo-DES' hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. This is a slower version of the routine that makes no assumptions
outside of the Fortran 90 integer model.

INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
REAL(DP) :: alo,ahi
REAL(DP) :: a
REAL(DP) :: x
FUNCTION modint(x)
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
CONTAINS
REAL(DP) :: x
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
if (a > big) a = a - base
modint = nint(a, kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_s

SUBROUTINE psdes_safe_v(lword, rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(INOUT) :: lword, rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), SAVE :: C1(4), C2(4)
DATA C1 /'BAA96887','1E17D32C','03BCDC3C','0F33D1B2'/
DATA C2 /'4B0F3B58','E874F0C3','6955C5A6','55A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia, ib, iswap
REAL(DP), DIMENSION(size(lword)) :: alo, ahi
INTEGER(I4B) :: i
i = assert_eq(size(lword), size(rword), 'psdes_safe_v')
do i=1, NITER
 iswap = rword
 ia = ieor(rword, C1(i))
 alo = real(iand(ia, 65535), dp)
 ahi = real(iand(ishft(ia, -16), 65535), dp)
 ib = modint(alo * alo + real(not(modint(ahi * ahi)), dp))
 ia = ior(ishft(ib, 16), iand(ishft(ib, -16), 65535))
 rword = ieor(lword, modint(real(ieor(C2(i), ia), dp) + alo * ahi))
lword = iswap
end do
CONTAINS
FUNCTION modint(x)
REAL(DP), DIMENSION(:,), INTENT(IN) :: x
INTEGER(I4B), DIMENSION(size(x)) :: modint
REAL(DP), PARAMETER :: big = huge(modint), base = big + big + 2.0_dp
a = modulo(x, base)
where (a > big) a = a - base
modint = nint(a, kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_v

FUNCTION modint(x)
This embedded routine takes a double-precision real argument, and returns it as an integer mod 2^{32} (correctly wrapping it to negative to take into account that Fortran 90 has no unsigned integers).

SUBROUTINE ran3_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, ran_hash, mran0, nran0, rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Random number generation by DES-like hashing of two 32-bit words, using the algorithm ran_hash. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values).
INTEGER(K4B) :: temp
if (lenran < 1) call ran_init(1)
nran0 = ieor(nran0, ishift(nran0, 15))
nran0 = ieor(nran0, ishift(nran0, -17))
nran0 = ieor(nran0, ishift(nran0, 5))
if (nran0 == 1) nran0 = 270369_k4b
Initialize.
Two Marsaglia shift sequences are maintained as input to the hashing. The period of the combined generator is about 1.8×10^{19}.
As given, ran3 uses the ran_hash function in the module ran_state as its DES surrogate. That function is sufficiently fast to make ran3 only about a factor of 2 slower than our baseline recommended generator ran1. The slower routine psdes and (even slower) pdes_safe are plug-compatible with ran_hash, and could be substituted for it in this routine.

* * *
FUNCTION irbit2(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which is modified for the next call).
INTEGER(I4B), PARAMETER :: IB1=1,IB2=2,IB5=16,MASK=IB1+IB2+IB5
if (btest(iseed,17)) then
 Change all masked bits, shift, and put 1 into bit 1.
 iseed=ibset(ishift(ieor(iseed,MASK),1),0)
 irbit2=1
else
 Shift and put 0 into bit 1.
 iseed=ibclr(ishift(iseed,1),0)
 irbit2=0
end if
END FUNCTION irbit2

SUBROUTINE sobseq(x,init)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
INTEGER(I4B), PARAMETER :: MAXBIT=30,MAXDIM=6
When the optional integer init is present, internally initializes a set of MAXBIT direction numbers for each of MAXDIM different Sobol' sequences. Otherwise returns as the vector x of length N the next values from N of these sequences. (N must not be changed between initializations.)
REAL(SP), SAVE :: fac
INTEGER(I4B) :: i,im,ipp,j,k,l
INTEGER(I4B), DIMENSION(:,,:), ALLOCATABLE:: iu
INTEGER(I4B), SAVE :: in
INTEGER(I4B), DIMENSION(MAXDIM), SAVE :: ip,ix,mdeg
INTEGER(I4B), DIMENSION(MAXDIM*MAXBIT), SAVE :: iv
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,1,1,5,7,3,3,5,15,11,5,15,13,9,156*0/
if (present(init)) then
 Initialize, don't return a vector.
 ix=0
 in=0
 if (iv(1) /= 1) RETURN
 fac=1.0_sp/2.0_sp**MAXBIT
 allocate(iu(MAXDIM,MAXBIT))
 iu=reshape(iv,shape(iu))
 To allow both 1D and 2D addressing.
 do k=1,MAXDIM
 do j=1,mdeg(k)
 Stored values require only normalization.
 iu(k,j)=iu(k,j)*2**(MAXBIT-j)
 end do
 do j=mdeg(k)+1,MAXBIT
 Use the recurrence to get other values.
 ipp=ip(k)
 i=iu(k,j-mdeg(k))
 i=ieor(i,i/2**mdeg(k))
 do l=mdeg(k)-1,-1,-1
 if (btest(ipp,0)) i=ieor(i,iu(k,l-1))
 ipp=ipp/2
 end do
 iu(k,j)=i
 end do
 end do
 iv=reshape(iu,shape(iv))
 deallocate(iu)
end if
else

 im=in
 do j=1,MAXBIT
 if (.not. btest(im,0)) exit
 im=im/2
 end do
 if (j > MAXBIT) call nrerror(‘MAXBIT too small in sobseq’)
 im=(j-1)*MAXDIM
 j=min(size(x),MAXDIM)
 ix(1:j)=xor(ix(1:j),iv(1+im:j+im))
 x(1:j)=ix(1:j)*fac
 in=in+1
end if

END SUBROUTINE sobseq

if (present(init)) then ... allocate(iu(...) ...) iu=reshape(...)

Wanting to avoid the deprecated EQUIVALENCE statement, we must
reshape iv into a two-dimensional array, then un-reshape it after we
are done. This is done only once, at initialization time, so there is no serious
inefficiency introduced.

⋆⋆⋆

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE
 FUNCTION func(pt,wgt)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func
END INTERFACE
REAL(SP), PARAMETER :: ALPH=1.5_sp,TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MXDIM=10,NDMX=50

Performs Monte Carlo integration of a user-supplied \(d\)-dimensional function \(func\) over a
rectangular volume specified by \(region\), a vector of length \(2d\) consisting of \(d\) "lower left"
coordinates of the region followed by \(d\) "upper right" coordinates. The integration consists of
\(itmx\) iterations, each with approximately \(ncall\) calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag \(init\)
signals whether this call is a new start, or a subsequent call for additional iterations (see
comments below). The input flag \(nprn\) (normally \(0\)) controls the amount of diagnostic
output. Returned answers are \(tgral\) (the best estimate of the integral), \(sd\) (its standard
deviation), and \(chi2a\) (\(\chi^2\) per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER(I4B), SAVE :: i,it,j,k,mds,nd,ndim,ndo,npg
Best make everything static.
INTEGER(I4B), DIMENSION(MXDIM), SAVE :: ia,kg
allowing restarts.
REAL(SP), SAVE :: calls,dv2g,dxg,f,f2,f2b,fb,rc,tsi,wgt,xjac,xn,xnd,xo,harvest
REAL(SP), DIMENSION(NDMX,MXDIM), SAVE :: d,d1,d2
REAL(SP), DIMENSION(MXDIM), SAVE :: dt,dx,x
REAL(SP), DIMENSION(NDMX), SAVE :: r,xin
REAL(DP), SAVE :: schi,si,swgt
ndim = size(region) / 2
if (init <= 0) then
 mds = 1
 ndo = 1
 xi(1:nd) = 1.0
end if
if (init <= 1) then
 si = 0.0
 swgt = 0.0
 schi = 0.0
end if
if (init <= 2) then
 Enter here to inherit the previous grid and its answers.
end if

k = ng * ndim
npg = max(ncall / k, 2)
calls = real(npg, sp) * real(k, sp)
dxg = 1.0 / ng
dv2g = real((calls * dxg ** ndim) / (npg / (npg - 1.0)), sp)
xjac = 1.0 / calls * prod(dx(1:ndim))

if (jmx /= ndo) then
 Do binning if necessary.
 r(1:max(nd, ndo)) = 1.0
 do j = 1, ndim
 call rebin(npg, nd, r, xi(:, j))
 end do
 nd = ndo
end if

Main iteration loop. Can enter here (init >= 3) to do an additional itmx iterations
with all other parameters unchanged.
end if
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd
end do
f=wgt*func(x(1:ndim),wgt)
f2=f+f
fb=fb+f2
f2b=f2b+f2
do j=1,ndim
di(ia(j),j)=di(ia(j),j)+f
if (mds >= 0) d(ia(j),j)=d(ia(j),j)+f2
end do
do f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)
if (f2b <= 0.0) f2b=TINY
endif
k=ndim,1,-1
kg(k)=mod(kg(k),ng)+1
if (kg(k) /= 1) cycle iterate
end do
exit iterate
do iterate
end do iterate
end do
Refine the grid. Consult references to understand the subtlety of this procedure. The refinement is damped, to avoid rapid, destabilizing changes, and also compressed in range by the exponent ALPH.

where (d(1:nd,:) < TINY) d(1:nd,:)=TINY

do j=1,ndim
x0=d(1,j)
xn=d(2,j)
d1,j=(x0+xn)/2.0_sp
dt(j)=d1,j
do i=2,nd-1
rc=x0+xn
xi=xn
di,j=(rc+xn)/3.0_sp
dt(j)=dt(j)+d1,j
di,j=dt(j)+d1,j
di,j=(rc+xn)/2.0_sp
dt(j)=dt(j)+d1,j
di,j=(rc+xn)/2.0_sp
end do
where (d1:nd,:) < TINY) d1:nd,:)=TINY

r(1:nd)=((1.0_sp-d(1:nd,j)/dt(j))/(log(dt(j))-log(d(1:nd,j))))**ALPH
rc=sum(r(1:nd))
call rebin(rc/xnd,nd,r,xin,xi(:,j))
end do
end do

200 format(/' input parameters for vegas: ndim=',i3,' ncall=',f8.0/
/28x,' it=',i5,' itmx=',i5&
/28x,' nprn=',i3,' alph=',f5.2/' x= ',g11.4,' xu(',i2,')= ',g11.4&
/(30x,'xl(',i2,')= ',g11.4,' xu(',i2,')= ',g11.4&
/28x,' chi**2/it''n = ',g9.2&
201 format(/' iteration no.',i3,': ','integral=',g14.7,' +/- ',g9.2,&
/' all iterations: integral =',g14.7,' +/- ',g9.2&
202 format(/' data for axis ',i2/' X delta i ',&
' x delta i ',', x delta i ',',
/(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4)
CONTAINS
SUBROUTINE rebin(rc,nd,r,xin,xi)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: rc
INTEGER(I4B), INTENT(IN) :: nd
REAL(SP), DIMENSION(:), INTENT(IN) :: r
REAL(SP), DIMENSION(:), INTENT(OUT) :: xin
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xi

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by a vector r.

INTEGER(I4B) :: i,k
REAL(SP) :: dr,xn,xo
k=0
xo=0.0
der=0.0
do i=1,nd-1
do
if (rc <= dr) exit
k=k+1
der=dr+r(k)
end do
if (k > 1) xo=x[i(k-1)]
xn=x[i(k)]
der=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)
end do
x[i:nd-1]=xin(i:nd-1)
x[i(nd)]=1.0
END SUBROUTINE rebin
END SUBROUTINE vegas

* *

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
END FUNCTION func
END INTERFACE
REAL(SP), DIMENSION(:,), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts
REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave, var
REAL(SP), PARAMETER :: PFAC=0.1_sp, TINY=1.0e-30_sp, BIG=1.0e30_sp
INTEGER(14B), PARAMETER :: MNPT=15, MNBS=60

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular volume specified by region, a 2×ndim vector consisting of ndim "lower-left" coordinates of the region followed by ndim "upper-right" coordinates. The function is sampled a total of npts times, at locations determined by the method of recursive stratified sampling. The mean value of the function in the region is returned as ave; an estimate of the statistical uncertainty of ave (square of standard deviation) is returned as var. The input parameter dith should normally be set to zero, but can be set to (e.g.) 0.1 if func's active region falls on the boundary of a power-of-2 subdivision of region.

Parameters: PFAC is the fraction of remaining function evaluations used at each stage to explore the variance of func. At least MNPT function evaluations are performed in any terminal subregion; a subregion is further bisected only if at least MNBS function evaluations are available.

REAL(SP), DIMENSION(:,), ALLOCATABLE :: regn_temp
INTEGER(14B) :: j, jb, n, ndum, npre, nptl, nptr
INTEGER(14B), SAVE :: iran=0
REAL(SP) :: avel, varl, frial, fval, rgl, rgm, rgr, &
 sigl, siglb, sigr, sigrb, sm, sm2, sumb, sumr
REAL(SP), DIMENSION(:,), ALLOCATABLE :: fmaxl, fmaxr, fminl, fminr, pt, rmid
ndum=assert_eq(size(regn),2*ndim,'miser')
allocate(pt(ndim))
allocate(rmid(ndim), fmaxl(ndim), fmaxr(ndim), fminl(ndim), fminr(ndim))

if (npts < MNBS) then
 Too few points to bisect; do straight Monte Carlo.
 sm=0.0
 sm2=0.0
 do n=1,npts
 call ranpt(pt,regn)
 fval=func(pt)
 sm=sm+fval
 sm2=sm2+fval**2
 end do
 ave=sm/npts
 var=max(TINY,(sm2-sm**2/npts)/npts**2)
else
 Do the preliminary (uniform) sampling.
 npre=max(int(npts*PFAC),MNPT)
 allocate(rmid(ndim), fmaxl(ndim), fmaxr(ndim), fminl(ndim), fminr(ndim))
 fminl(:)=BIG
 fmaxl(:)=BIG
 fminr(:)=BIG
 fmaxr(:)=BIG
 do j=1,ndim
 iran=mod(iran*2661+36979,175000)
 s=sign(dith,real(iran-87500,sp))
 rmid(j)=(0.5_sp+s)*regn(j)+(0.5_sp-s)*regn(ndim+j)
 end do
 do n=1,npre
 Loop over the points in the sample.
 call ranpt(pt,regn)
 fval=func(pt)
 where (pt <= rmid)
 fminl=min(fminl,fval)
 fmaxl=max(fmaxl,fval)
 elsewhere
 fminr=min(fminr,fval)
 fmaxr=max(fmaxr,fval)
 end where
 end do
 sumb=BIG
 jb=0
 siglb=1.0
 sigrb=1.0
 do j=1,ndim
 Choose which dimension jb to bisect.
 if (fmaxl(j) > fminl(j) .and. fmaxr(j) > fminr(j)) then
Chapter B7. Random Numbers

Equation (7.8.24); see text.

Equation (7.8.23).

\[\text{nptl} = (\text{MNPT} + (\text{npts} - \text{npre} - 2 \times \text{MNPT}) \times \text{fracl} \times \text{siglb} / \text{siglb} + (1.0 \times \text{varl}) / \text{sigrb}) \]

\[\text{nptr} = \text{npts} - \text{npre} - \text{nptl} \]

\[\text{regn_temp}(2 \times \text{ndim}) \]

\[\text{regn_temp}(\text{ndim} + \text{jb}) = \text{rmid}(\text{jb}) \]

\[\text{avn} = \text{fracl} \times \text{avell} + (1 - \text{fracl}) \times \text{varl} \]

\[\text{deallocate}(\text{regn_temp}) \]

\[\text{default}(\text{pt}) \]

\[\text{ranpt}(\text{pt}, \text{region}) \]

\[\text{USE} \; \text{nr}, \; \text{ONLY}: \; \text{ran1} \]

\[\text{REAL}(\text{SP}), \; \text{DIMENSION}(), \; \text{INTENT}(\text{OUT}) : : \text{pt} \]

\[\text{REAL}(\text{SP}), \; \text{DIMENSION}(), \; \text{INTENT}(\text{IN}) : : \text{region} \]

\[\text{INTEGER}(148) : : n \]

\[\text{n} = \text{size} (\text{pt}) \]

\[\text{pt}(1:n) = \text{region}(1:n) + (\text{region}(n+1:2*n) - \text{region}(1:n)) \times \text{pt}(1:n) \]

CITED REFERENCES AND FURTHER READING: