Chapter B7. Random Numbers

One might think that good random number generators, including those in Volume 1, should last forever. The world of computing changes very rapidly, however:

- When Volume 1 was published, it was unusual, except on the fastest supercomputers, to "exhaust" a 32-bit random number generator, that is, to call for all 2^{32} sequential random values in its periodic sequence. Now, this is feasible, and not uncommon, on fast desktop workstations. A useful generator today must have a minimum of 64 bits of state space, and generally somewhat more.
- Before Fortran 90, the Fortran language had no standardized calling sequence for random numbers. Now, although there is still no standard algorithm defined by the language (rightly, we think), there is at least a standard calling sequence, exemplified in the intrinsics random_number and random_seed.
- The rise of parallel computing places new algorithmic demands on random generators. The classic algorithms, which compute each random value from the previous one, evidently need generalization to a parallel environment.
- New algorithms and techniques have been discovered, in some cases significantly faster than their predecessors.

These are the reasons that we have decided to implement, in Fortran 90, different uniform random number generators from those in Volume 1's Fortran 77 implementations. We hasten to add that there is nothing wrong with any of the generators in Volume 1. That volume's ran0 and ran1 routines are, to our knowledge, completely adequate as 32 -bit generators; ran2 has a 64 -bit state space, and our previous offer of $\$ 1000$ for any demonstrated failure in the algorithm has never yet been claimed (see [1]).

Before we launch into the discussion of parallelizable generators with Fortran 90 calling conventions, we want to attend to the continuing needs of longtime " $\mathrm{x}=\mathrm{ran}$ (idum)" users with purely serial machines. If you are a satisfied user of Volume 1's ran0, ran1, or ran2 Fortran 77 versions, you are in this group. The following routine, ran, preserves those routines' calling conventions, is considerably faster than ran2, and does not suffer from the old ran0 or ran1's 32-bit period exhaustion limitation. It is completely portable to all Fortran 90 environments. We recommend ran as the plug-compatible replacement for the old ran0, ran1, and ran2, and we happily offer exactly the same $\$ 1000$ reward terms as were (and are still) offered on the old ran2.

```
FUNCTION ran(idum)
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
INTEGER(K4B), INTENT(INOUT) :: idum
REAL :: ran
    "Minimal" random number generator of Park and Miller combined with a Marsaglia shift
    sequence. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
    values). This fully portable, scalar generator has the "traditional" (not Fortran 90) calling
    sequence with a random deviate as the returned function value: call with idum a negative
    integer to initialize; thereafter, do not alter idum except to reinitialize. The period of this
    generator is about 3.1 }\times1\mp@subsup{0}{}{18}\mathrm{ .
INTEGER(K4B), PARAMETER :: IA=16807,IM=2147483647,IQ=127773,IR=2836
REAL, SAVE :: am
INTEGER(K4B), SAVE :: ix=-1,iy=-1,k
if (idum <= 0 .or. iy < 0) then Initialize.
    am=nearest(1.0,-1.0)/IM
    iy=ior(ieor(888889999,abs(idum)),1)
    ix=ieor(777755555,abs(idum))
    idum=abs(idum)+1 Set idum positive.
end if
ix=ieor(ix,ishft(ix,13)) Marsaglia shift sequence with period 2 2 - 1.
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))
k=iy/IQ Park-Miller sequence by Schrage's method,
iy=IA*(iy-k*IQ)-IR*k
    period 2 }\mp@subsup{2}{}{31}-2\mathrm{ .
if (iy < 0) iy=iy+IM
ran=am*ior(iand(IM,ieor(ix,iy)),1) Combine the two generators with masking to
END FUNCTION ran
    ensure nonzero value.
```

This is a good place to discuss a new bit of algorithmics that has crept into ran, above, and even more strongly affects all of our new random number generators, below. Consider:

```
ix=ieor(ix,ishft(ix,13))
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))
```

These lines update a 32-bit integer ix, which cycles pseudo-randomly through a full period of $2^{32}-1$ values (excluding zero) before repeating. Generators of this type have been extensively explored by Marsaglia (see [2]), who has kindly communicated some additional results to us in advance of publication. For convenience, we will refer to generators of this sort as "Marsaglia shift registers."

Useful properties of Marsaglia shift registers are (i) they are very fast on most machines, since they use only fast logical operations, and (ii) the bit-mixing that they induce is quite different in character from that induced by arithmetic operations such as are used in linear congruential generators (see Volume 1) or lagged Fibonacci generators (see below). Thus, the combination of a Marsaglia shift register with another, algorithmically quite different generator is a powerful way to suppress any residual correlations or other weaknesses in the other generator. Indeed, Marsaglia finds (and we concur) that the above generator (with constants $13,-17,5$, as shown) is by itself about as good as any 32-bit random generator.

Here is a very brief outline of the theory behind these generators: Consider the 32 bits of the integer as components in a vector of length 32, in a linear space where addition and multiplication are done modulo 2. Noting that exclusive-or (ieor) is the same as addition, each of the three lines in the updating can be written as the action of a 32×32 matrix on a vector, where the matrix is all zeros except for
ones on the diagonal, and on exactly one super- or subdiagonal (corresponding to positive or negative second arguments in ishft). Denote this matrix as \mathbf{S}_{k}, where k is the shift argument. Then, one full step of updating (three lines of code, above) corresponds to multiplication by the matrix $\mathbf{T} \equiv \mathbf{S}_{k_{3}} \mathbf{S}_{k_{2}} \mathbf{S}_{k_{1}}$.

One next needs to find triples of integers $\left(k_{1}, k_{2}, k_{3}\right)$, for example $(13,-17,5)$, that give the full $M \equiv 2^{32}-1$ period. Necessary and sufficient conditions are that $\mathbf{T}^{M}=\mathbf{1}$ (the identity matrix), and that $\mathbf{T}^{N} \neq \mathbf{1}$ for these five values of N : $N=3 \times 5 \times 17 \times 257, N=3 \times 5 \times 17 \times 65537, N=3 \times 5 \times 257 \times 65537$, $N=3 \times 17 \times 257 \times 65537, N=5 \times 17 \times 257 \times 65537$. (Note that each of the five prime factors of M is omitted one at a time to get the five values of N.) The required large powers of \mathbf{T} are readily computed by successive squarings, requiring only on the order of $32^{3} \log M$ operations. With this machinery, one can find full-period triples $\left(k_{1}, k_{2}, k_{3}\right)$ by exhaustive search, at reasonable cost.

Not all such triples are equally good as generators of random integers, however. Marsaglia subjects candidate values to a battery of tests for randomness, and we have ourselves applied various tests. This stage of winnowing is as much art as science, because all 32-bit generators can be made to exhibit signs of failure due to period exhaustion (if for no other reason). "Good" triples, in order of our preference, are $(13,-17,5),(5,-13,6),(5,-9,7),(13,-17,15),(16,-7,11)$. When a fullperiod triple is good, its reverse is also full-period, and also generally good. A good quadruple due to Marsaglia (generalizing the above in the obvious way) is $(-4,8,-1,5)$. We would not recommend relying on any single Marsaglia shift generator (nor on any other simple generator) by itself. Two or more generators, of quite different types, should be combined [1].

limLet us now discuss explicitly the needs of parallel random number generators. The general scheme, from the user's perspective, is that of Fortran 90's intrinsic random_number: A statement like call ran1 (harvest) (where ran1 will be one of our portable replacements for the compiler-dependent random_number) should fill the real array harvest with pseudo-random real values in the range $(0,1)$. Of course, we want the underlying machinery to be completely parallel, that is, no do-loops of order $N \equiv$ size(harvest).

A first design decision is whether to replicate the state-space across the parallel dimension N, i.e., whether to reserve storage for essentially N scalar generators. Although there are various schemes that avoid doing this (e.g., mapping a single, smaller, state space into N different output values on each call), we think that it is a memory cost well worth paying in return for achieving a less exotic (and thus better tested) algorithm. However, this choice dictates that we must keep the state space per component quite small. We have settled on five or fewer 32-bit words of state space per component as a reasonable limit. Some otherwise interesting and well tested methods (such as Knuth's subtractive generator, implemented in Volume 1 as (еэ! ran3) are ruled out by this constraint.

A second design decision is how to initialize the parallel state space, so that different parallel components produce different sequences, and so that there is an acceptable degree of randomness across the parallel dimension, as well as between successive calls of the generator. Each component starts its life with one and only one unique identifier, its component index n in the range $1 \ldots N$. One is
tempted simply to hash the values n into the corresponding components of initial state space. "Random" hashing is a bad idea, however, because different n 's will produce identical 32-bit hash results by chance when N is no larger than $\sim 2^{16}$. We therefore prefer to use a kind of reversible pseudo-encryption (similar to the routine psdes in Volume 1 and below) which guarantees causally that different n 's produce different state space initializations.

The machinery for allocating, deallocating, and initializing the state space, including provision of a user interface for getting or putting the contents of the state space (as in the intrinsic random_seed) is fairly complicated. Rather than duplicate it in each different random generator that we provide, we have consolidated it in a single module, ran_state, whose contents we will now discuss. Such a discussion is necessarily technical, if not arcane; on first reading, you may wish to skip ahead to the actual new routines ran0, ran1, and ran2. If you do so, you will need to know only that ran_state provides each vector random routine with five 32-bit vectors of state information, denoted iran, jran, kran, mran, nran. (The overloaded scalar generators have five corresponding 32-bit scalars, denoted iran0, etc.)

```
MODULE ran_state
    This module supports the random number routines ran0, ran1, ran2, and ran3. It pro-
    vides each generator with five integers (for vector versions, five vectors of integers), for
    use as internal state space. The first three integers (iran, jran, kran) are maintained
    as nonnegative values, while the last two (mran, nran) have 32-bit nonzero values. Also
    provided by this module is support for initializing or reinitializing the state space to a desired
    standard sequence number, hashing the initial values to random values, and allocating and
    deallocating the internal workspace.
USE nrtype
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
    Independent of the usual integer kind I4B, we need a kind value for (ideally) 32-bit integers.
INTEGER(K4B), PARAMETER :: hg=huge(1_K4B), hgm=-hg, hgng=hgm-1
INTEGER(K4B), SAVE :: lenran=0, seq=0
INTEGER(K4B), SAVE :: iran0,jran0,kran0,nran0,mran0,rans
INTEGER(K4B), DIMENSION(:,:), POINTER, SAVE :: ranseeds
INTEGER(K4B), DIMENSION(:), POINTER, SAVE :: iran,jran,kran, &
    nran,mran,ranv
REAL(SP), SAVE :: amm
INTERFACE ran hash
    Scalar and vector versions of the hashing procedure.
    MODULE PROCEDURE ran_hash_s, ran_hash_v
END INTERFACE
CONTAINS
```

(We here intersperse discussion with the listing of the module.) The module defines K4B as an integer KIND that is intended to be 32 bits. If your machine doesn't have 32-bit integers (hard to believe!) this will be caught later, and an error message generated. The definition of the parameters hg, hgm, and hgng makes an assumption about 32-bit integers that goes beyond the strict Fortran 90 integer model, that the magnitude of the most negative representable integer is greater by one than that of the most positive representable integer. This is a property of the two's complement arithmetic that is used on virtually all modern machines (see, e.g., [3]).

The global variables rans (for scalar) and ranv (for vector) are used by all of our routines to store the integer value associated with the most recently returned call. You can access these (with a "USE ran_state" statement) if you want integer, rather than real, random deviates.

The first routine, ran_init, is called by routines later in the chapter to initialize their state space. It is not intended to be called from a user's program.

end if
if (length > 1) then Point to vector seeds.
iran $\Rightarrow>$ ranseeds $(2:, 1)$
jran => ranseeds(2:,2)
kran $=>$ ranseeds (2: ,3)
mran => ranseeds (2: ,4)
nran $=>$ ranseeds (2:,5)
ranv = nran
end if
lenran=length
END SUBROUTINE ran_init

hgt=hg . . . if (hgt+1 /= hgng) Bit of dirty laundry here! We are testing whether the most positive integer hg wraps around to the most negative integer hgng when 1 is added to it. We can't just write hg+1, since some compilers will evaluate this at compile time and return an overflow error message. If your compiler sees through the charade of the temporary variable hgt, you'll have to find another way to trick it.
amm=nearest(1.0_sp,-1.0_sp)/hgng... Logically, amm should be a parameter; but the nearest intrinsic is trouble-prone in the initialization expression for a parameter (named constant), so we compute this at run time. We then check that amm, when multiplied by the largest possible negative integer, does not equal or exceed unity. (Our random deviates are guaranteed never to equal zero or unity exactly.)

You might wonder why amm is negative, and why we multiply it by negative integers to get positive random deviates. The answer, which will become manifest in the random generators given below, is that we want to use the fast not operation on integers to convert them to nonzero values of all one sign. This is possible if the conversion is to negative values, since not (i) is negative for all nonnegative i. If the conversion were to positive values, we would have problems both with zero (its sign bit is already positive) and hgng (since not (hgng) is generally zero).

```
iran0=ranseeds(1,1) ...
iran => ranseeds(2:,1)...
```

The initial state information is stored in ranseeds, a two-dimensional array whose column (second) index ranges from 1 to 5 over the state variables. ranseeds ($1,:$) is reserved for scalar random generators, while ranseeds ($2:,:$) is for vector-parallel generators. The ranseeds array is made available to vector generators through the pointers iran, jran, kran, mran, and nran. The corresponding scalar values, iran0,..., nran0 are simply global variables, not pointers, because the overhead of addressing a scalar through a pointer is often too great. (We will have to copy these scalar values back into ranseeds when it, rarely, needs to be addressed as an array.)
call ran_hash (...) Unique, and random, initial state information is obtained by putting a user-settable "sequence number" into iran, a component number into jran, and hashing this pair. Then jran and kran are hashed, kran and mran are hashed, and so forth.

```
SUBROUTINE ran_deallocate
    User interface to release the workspace used by the random number routines.
if (lenran > 0) then
    deallocate(ranseeds,ranv)
    nullify(ranseeds,ranv,iran,jran,kran,mran,nran)
    lenran = 0
end if
END SUBROUTINE ran_deallocate
```

The above routine is supplied as a user interface for deallocating all the state space storage.

```
SUBROUTINE ran_seed(sequence,size,put,get)
IMPLICIT NONE
INTEGER, OPTIONAL, INTENT(IN) : : sequence
INTEGER, OPTIONAL, INTENT(OUT) :: size
INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: put
INTEGER, DIMENSION(:), OPTIONAL, INTENT(OUT) :: get
    User interface for seeding the random number routines. Syntax is exactly like Fortran 90's
    random_seed routine, with one additional argument keyword: sequence, set to any inte-
    ger value, causes an immediate new initialization, seeded by that integer.
if (present(size)) then
    size=5*lenran
else if (present(put)) then
    if (lenran == 0) RETURN
    ranseeds=reshape(put,shape (ranseeds))
    where (ranseeds (:,1:3) < 0) ranseeds (:,1:3)=not(ranseeds(:,1:3))
            Enforce nonnegativity and nonzero conditions on any user-supplied seeds.
    where (ranseeds (:,4:5) == 0) ranseeds (:,4:5)=1
    iran0=ranseeds(1,1)
    jran0=ranseeds (1,2)
    kran0=ranseeds(1,3)
    mran0=ranseeds (1,4)
    nran0=ranseeds(1,5)
else if (present(get)) then
    if (lenran == 0) RETURN
    ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
    get=reshape(ranseeds, shape(get))
else if (present(sequence)) then
    call ran_deallocate
    seq=sequence
end if
END SUBROUTINE ran_seed
```


90

 ranseeds=reshape (put,shape (ranseeds)) ... get=reshape (ranseeds, shape (get))Fortran 90's convention is that random state space is a one-dimensional array, so we map to this on both the get and put keywords.

```
iran0=...jran0=...kran0=. . .
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
```

It's much more convenient to set a vector from a bunch of scalars then the other way around.

SUBROUTINE ran_hash_s(il,ir)
IMPLICIT NONE
INTEGER (K4B), INTENT(INOUT) : : il,ir
DES-like hashing of two 32-bit integers, using shifts, xor's, and adds to make the internal nonlinear function.
INTEGER (K4B) : : is, j
do $\mathrm{j}=1,4$
is=ir
ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor (ir,ishft(ir,-16))+1842055030
The various constants are chosen to give good bit mixing and should not be ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is
end do
END SUBROUTINE ran_hash_s

```
SUBROUTINE ran_hash_v(il,ir)
IMPLICIT NONE
INTEGER(K4B), DIMENSION(:), INTENT(INOUT) :: il,ir
    Vector version of ran_hash_s.
INTEGER(K4B), DIMENSION(size(il)) :: is
INTEGER(K4B) :: j
do j=1,4
    is=ir
    ir=ieor(ir,ishft(ir,5))+1422217823
    ir=ieor(ir,ishft(ir,-16))+1842055030
    ir=ieor(ir,ishft(ir,9))+80567781
    ir=ieor(il,ir)
    il=is
end do
END SUBROUTINE ran_hash_v
END MODULE ran_state
```

The lines

```
ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
```

are not a Marsaglia shift sequence, though they resemble one. Instead, they implement a fast, nonlinear function on ir that we use as the "S-box" in a DES-like hashing algorithm. (See Volume 1, §7.5.) The triplet $(5,-16,9)$ is not chosen to give a full period Marsaglia sequence - it doesn't. Instead it is chosen as being particularly good at separating in Hamming distance (i.e., number of nonidentical bits) two initially close values of ir (e.g., differing by only one bit). The large integer constants are chosen by a similar criterion. Note that the wrap-around of addition without generating an overflow error condition, which was tested in ran_init, is relied upon here.

```
SUBROUTINE ranO_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran0,jran0,kran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
    Lagged Fibonacci generator combined with a Marsaglia shift sequence. Returns as harvest
    a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This gen-
    erator has the same calling and initialization conventions as Fortran 90's random_number
    routine. Use ran_seed to initialize or reinitialize to a particular sequence. The period of
    this generator is about 2.0 }\times1\mp@subsup{0}{}{28}\mathrm{ , and it fully vectorizes. Validity of the integer model
    assumed by this generator is tested at initialization.
if (lenran < 1) call ran_init(1)
rans=iran0-kran0
if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13))
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
rans=ieor(nran0,rans)
harvest=amm*merge(rans,not(rans), rans<0 )
END SUBROUTINE ran0_s
Initialization routine in ran_state.
    Update Fibonacci generator, which
    has period p2 +p+1,p=231
    has period p}\mp@subsup{p}{}{2}+p+1,p=\mp@subsup{2}{}{31}
    69.
```

```
SUBROUTINE ran0_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran,jran,kran, nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=ieor(nran(1:n), ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ranO_v
```

This is the simplest, and fastest, of the generators provided. It combines a subtractive Fibonacci generator (Number 6 in ref. [1], and one of the generators in Marsaglia and Zaman's mzran) with a Marsaglia shift sequence. On typical machines it is only 20% or so faster than ran1, however; so we recommend the latter preferentially. While we know of no weakness in ran0, we are not offering a prize for finding a weakness. ran0 does have the feature, useful if you have a machine with nonstandard arithmetic, that it does not go beyond Fortran 90's assumed integer model.

Note that ran0_s and ran0_v are overloaded by the module nr onto the single name ran0 (and similarly for the routines below).

```
SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
    iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
    Lagged Fibonacci generator combined with two Marsaglia shift sequences. On output, re-
    turns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
    values). This generator has the same calling and initialization conventions as Fortran 90's
    random_number routine. Use ran_seed to initialize or reinitialize to a particular sequence.
    The period of this generator is about }8.5\times1\mp@subsup{0}{}{37}\mathrm{ , and it fully vectorizes. Validity of the integer
    model assumed by this generator is tested at initialization.
if (lenran < 1) call ran_init(1) Initialization routine in ran_state
rans=iran0-kran0
if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13))
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
    Once only per cycle, advance sequence by 1, shortening its period to 2}\mp@subsup{2}{}{32}-2\mathrm{ .
if (nran0 == 1) nran0=270369_k4b
mran0=ieor(mran0,ishft(mran0,5))
mran0=ieor(mran0,ishft(mran0,-13))
Update Marsaglia shift sequence with
    period 2 32-1.
```

$\operatorname{mran} 0=\operatorname{ieor}(\operatorname{mran} 0, i \operatorname{shft}(\operatorname{mran} 0,6))$
rans=ieor (nran0, rans) + mran0
Combine the generators. The above statement has wrap-around addition. harvest $=a m m *$ merge (rans, not (rans), rans<0) Make the result positive definite (note END SUBROUTINE ran1_s that amm is negative).

```
SUBROUTINE ran1_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
    iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv (1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n), not (ranv (1:n)), ranv(1:n)<0 )
END SUBROUTINE ran1_v
```

The routine ran1 combines three fast generators: the two used in ran0, plus an additional (different) Marsaglia shift sequence. The last generator is combined via an addition that can wrap-around.

We think that, within the limits of its floating-point precision, ran1 provides perfect random numbers. We will pay $\$ 1000$ to the first reader who convinces us otherwise (by exhibiting a statistical test that ran1 fails in a nontrivial way, excluding the ordinary limitations of a floating-point representation).

```
SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
    iran0, jran0, kran0, nran0, mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
    Lagged Fibonacci generator combined with a Marsaglia shift sequence and a linear con-
    gruential generator. Returns as harvest a uniform random deviate between 0.0 and 1.0
    (exclusive of the endpoint values). This generator has the same calling and initialization
    conventions as Fortran 90's random_number routine. Use ran_seed to initialize or reini-
    tialize to a particular sequence. The period of this generator is about }8.5\times1\mp@subsup{0}{}{37}\mathrm{ , and it fully
    vectorizes. Validity of the integer model assumed by this generator is tested at initialization.
if (lenran < 1) call ran_init(1) Initialization routine in ran_state.
rans=iran0-kran0
if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
```

jran0=kran0
kran0=rans

```
nran0=ieor(nran0,ishft(nran0,13))
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
rans=iand(mran0,65535)
    Update the sequence }m\leftarrow69069m+820265819 mod 2 32 using shifts instead of multiplies
    Wrap-around addition (tested at initialization) is used.
mran0=ishft(3533*ishft(mran0,-16)+rans,16)+ &
        3533*rans+820265819_k4b
rans=ieor(nran0,kran0)+mran0 Combine the generators.
END SUBROUTINE ran2_s
SUBROUTINE ran2_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
    iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=iand(mran(1:n),65535)
mran(1:n)=ishft(3533*ishft(mran(1:n),-16)+ranv(1:n),16)+ &
    3533*ranv(1:n)+820265819_k4b
ranv(1:n)=ieor(nran(1:n), kran(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n), not (ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran2_v
```

 that amm is negative)
 ran2, for use by readers whose caution is extreme, also combines three generators. The difference from ran1 is that each generator is based on a completely different method from the other two. The third generator, in this case, is a linear congruential generator, modulo 2^{32}. This generator relies extensively on wraparound addition (which is automatically tested at initialization). On machines with fast arithmetic, ran2 is on the order of only 20% slower than ran1. We offer a $\$ 1000$ bounty on ran2, with the same terms as for ran1, above.

```
SUBROUTINE expdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) : : harvest
Returns in harvest an exponentially distributed, positive, random deviate of unit mean, using ran1 as the source of uniform deviates.
REAL(SP) :: dum
call ran1(dum)
harvest=-log(dum) We use the fact that ran1 never returns exactly 0 or 1.
END SUBROUTINE expdev_s
```

```
SUBROUTINE expdev_v(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) : : harvest
REAL(SP), DIMENSION(size(harvest)) :: dum
call ran1(dum)
harvest=-log(dum)
END SUBROUTINE expdev_v
```

9call ran1 (dum) The only noteworthy thing about this line is its simplicity: Once all the machinery is in place, the random number generators are self-initializing (to the sequence defined by seq $=0$), and (via overloading) usable with both scalar and vector arguments.

```
SUBROUTINE gasdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
    Returns in harvest a normally distributed deviate with zero mean and unit variance, using
    ran1 as the source of uniform deviates.
REAL(SP) :: rsq,v1,v2
REAL(SP), SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then
    We have an extra deviate handy,
    harvest=g so return it,
    gaus_stored=.false. and unset the flag.
else
    do
        call ran1(v1) pick two uniform numbers in the square ex-
        call ran1(v2) tending from -1 to +1 in each direction,
        v1=2.0_sp*v1-1.0_sp
        v2=2.0_sp*v2-1.0_sp
        rsq=v1**2+v2**2 see if they are in the unit circle,
        if (rsq > 0.0 .and. rsq < 1.0) exit
    end do
    rsq=sqrt(-2.0_sp*log(rsq)/rsq)
    harvest=v1*rsq
    g=v2*rsq
    gaus_stored=.true.
end if
END SUBROUTINE gasdev_s
```

SUBROUTINE gasdev_v(harvest)
USE nrtype; USE nrutil, ONLY : array_copy
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: rsq, v1,v2
REAL(SP), ALLOCATABLE, DIMENSION(:), SAVE :: g
INTEGER (I4B) : : n, ng, nn,m
INTEGER(I4B), SAVE :: last_allocated=0
LOGICAL, SAVE : : gaus_stored=.false.
LOGICAL, DIMENSION(size(harvest)) : : mask
n=size(harvest)
if (n /= last_allocated) then

```
    if (last_allocated /= 0) deallocate(g)
    allocate(g(n))
    last_allocated=n
    gaus_stored=.false
end if
if (gaus_stored) then
    harvest=g
    gaus_stored=.false.
else
    ng=1
    do
        if (ng > n) exit
        call ran1(v1(ng:n))
        call ran1(v2(ng:n))
        v1(ng:n)=2.0_sp*v1(ng:n)-1.0_sp
        v2(ng:n)=2.0_sp*v2(ng:n)-1.0_sp
        rsq(ng:n)=v1(ng:n)**2+v2(ng:n)**2
        mask(ng:n)=(rsq(ng:n)>0.0 .and. rsq(ng:n)<1.0)
        call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)
        v2(ng:ng+nn-1)=pack(v2(ng:n),mask(ng:n))
        rsq(ng:ng+nn-1)=pack(rsq(ng:n),mask(ng:n))
        ng=ng+nn
    end do
    rsq=sqrt(-2.0_sp*log(rsq)/rsq)
    harvest=v1*rsq
    g=v2*rsq
    gaus_stored=.true.
end if
END SUBROUTINE gasdev_v
```

if (n /= last_allocated) ... We make the assumption that, in most cases, the size of harvest will not change between successive calls. Therefore, if it does change, we don't try to save the previously generated deviates that, half the time, will be around. If your use has rapidly varying sizes (or, even worse, calls alternating between two different sizes), you should remedy this inefficiency in the obvious way.
call array_copy $(\operatorname{pack}(\mathrm{v} 1(\mathrm{ng}: \mathrm{n}), \operatorname{mask}(\mathrm{ng}: \mathrm{n})), \mathrm{v} 1(\mathrm{ng}:), \mathrm{nn}, \mathrm{m}) \quad$ This is a variant of the pack-unpack method (see note to factrl, p. 1087). Different here is that we don't care which random deviates end up in which component. Thus, we can simply keep packing successful returns into v1 and v2 until they are full.

Note also the use of array_copy, since we don't know in advance the length of the array returned by pack.

```
FUNCTION gamdev(ia)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev
    Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
    time to the iath event in a Poisson process of unit mean, using ran1 as the source of
    uniform deviates.
REAL(SP) :: am,e,h,s,x,y,v(2),arr(5)
call assert(ia >= 1, 'gamdev arg')
if (ia < 6) then Use direct method, adding waiting times.
```

```
    call ran1(arr(1:ia))
    x=-log(product(arr(1:ia)))
else Use rejection method.
    do
        call ran1(v)
        v(2)=2.0_sp*v(2)-1.0_sp These three lines generate the tangent of a
        if (dot_product(v,v) > 1.0) cycle random angle, i.e., are equivalent to
        y=v(2)/v(1) y = tan(\piran(idum)).
        am=ia-1
        s=sqrt(2.0_sp*am+1.0_sp)
        x=s*y+am We decide whether to reject x:
        if ( }\textrm{x}<=0.0\mathrm{ ) cycle Reject in region of zero probability.
        e=(1.0_sp+y**2)*exp(am*log(x/am)-s*y) Ratio of probability function to
        call ran1(h) comparison function.
        if (h <= e) exit Reject on basis of a second uniform deviate.
    end do
end if
gamdev=x
END FUNCTION gamdev
```

$x=-\log (\operatorname{product}(\operatorname{arr}(1: i a))) \quad$ Why take the \log of the product instead of the sum of the logs? Because log is assumed to be slower than multiply.

We don't have vector versions of the less commonly used deviate generators, gamdev, poidev, and bnldev.

FUNCTION poidev(xm)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xm
REAL (SP) : : poidev
Returns as a floating-point number an integer value that is a random deviate drawn from a Poisson distribution of mean xm, using ran1 as a source of uniform random deviates.
REAL (SP) : : em,harvest, t, y
REAL(SP), SAVE :: alxm,g,oldm=-1.0_sp,sq
oldm is a flag for whether xm has changed since last call.
if ($x m<12.0$) then Use direct method.
if (xm /= oldm) then
oldm=xm
$\mathrm{g}=\exp (-\mathrm{xm}) \quad$ If xm is new, compute the exponential.
end if
em=-1
$t=1.0$
do
em=em+1.0_sp
call ran1 (harvest)
Instead of adding exponential deviates it is equivalent to multiply uniform deviates.
$\mathrm{t}=\mathrm{t} *$ harvest We never actually have to take the log; merely compare to the pre-computed exponential.
Use rejection method.
else
if (xm /= oldm) then
If $x m$ has changed since the last call, then precompute some functions that occur below.
oldm $=x m$
sq=sqrt
(2.0_sp*xm $)$
alxm=log (xm)
$g=x m * a l x m-\operatorname{gammln}\left(x m+1.0 _s p\right) \quad$ The function gammln is the natural log of the end if gamma function, as given in $\S 6.1$.
do
call ran1 (harvest) y is a deviate from a Lorentzian comparison $\mathrm{y}=\tan$ (PI*harvest) function.
em=sq*y+xm
em is y, shifted and scaled.
if (em >= 0.0) exit
Reject if in regime of zero probability.
end do
em=int (em) The trick for integer-valued distributions.
$\mathrm{t}=0.9 _\mathrm{sp} *\left(1.0_{\mathrm{s}} \mathrm{sp}+\mathrm{y} * * 2\right) * \exp \left(\mathrm{em} * \mathrm{alxm}-\mathrm{gamm} \ln \left(\mathrm{em}+1.0_{\mathrm{s}} \mathrm{sp}\right)-\mathrm{g}\right)$
The ratio of the desired distribution to the comparison function; we accept or reject by comparing it to another uniform deviate. The factor 0.9 is chosen so that t never exceeds 1.
call ran1 (harvest)
if (harvest <= t) exit
end do
end if
poidev=em
END FUNCTION poidev
FUNCTION bnldev(pp,n)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) : : bnldev
Returns as a floating-point number an integer value that is a random deviate drawn from a binomial distribution of n trials each of probability pp , using ran1 as a source of uniform random deviates.
INTEGER(I4B) : : j
INTEGER(I4B), SAVE : : nold=-1
REAL (SP) : : am,em,g,h,p,sq,t,y,arr(24)
REAL (SP), SAVE : : pc,plog,pclog,en,oldg,pold=-1.0 Arguments from previous calls
$\mathrm{p}=$ merge ($\mathrm{pp}, 1.0 _\mathrm{sp}-\mathrm{pp}, \mathrm{pp}$ <= 0.5 _sp)
The binomial distribution is invariant under changing pp to $1 .-\mathrm{pp}$, if we also change the answer to n minus itself; we'll remember to do this below.

am=n*p

if (n < 25) then
call $\operatorname{ran} 1(\operatorname{arr}(1: n))$
bnldev=count $(\operatorname{arr}(1: n)<p)$
else if (am < 1.0) then
$\mathrm{g}=\exp (-\mathrm{am})$
$\mathrm{t}=1.0$
do $j=0, n$ call ran1 (h)
$t=t * h$ if (t < g) exit
end do
bnldev=merge($j, n, j<=n$)
else
This is the mean of the deviate to be produced.
Use the direct method while n is not too large. This can require up to 25 calls to ran 1 .
If fewer than one event is expected out of 25 or more trials, then the distribution is quite accurately Poisson. Use direct Poisson method.
if ($n /=$ nold) then en=n
oldg=gammln(en+1.0_sp) nold=n
end if
if ($p /=$ pold) then
$\mathrm{pc}=1.0 _\mathrm{sp}-\mathrm{p}$
$\mathrm{plog}=\log (\mathrm{p})$
$\mathrm{pc} \log =\log (\mathrm{pc})$
pold=p
end if
sq=sqrt (2.0_sp*am*pc) The following code should by now seem familiar: do
call ran1 (h)
$\mathrm{y}=\tan (\mathrm{PI} * \mathrm{~h})$
em=sq*y+am
if (em < 0.0 .or. em $>=$ en+1.0_sp) cycle Reject.
em=int (em) Trick for integer-valued distribution.
$\mathrm{t}=1.2 _\mathrm{sp} * \mathrm{sq} *\left(1.0 _\mathrm{sp}+\mathrm{y} * * 2\right) * \exp \left(o l d g-\mathrm{gamm} \ln \left(\mathrm{em}+1.0 _\mathrm{sp}\right)-\&\right.$
$\left.\operatorname{gammln}\left(e n-e m+1.0 _s p\right)+e m * p l o g+(e n-e m) * p c l o g\right)$
call ran1 (h)
if ($\mathrm{h}<=\mathrm{t}$) exit Reject. This happens about 1.5 times per devi-
bnldev=em
end if
if ($\mathrm{p} /=\mathrm{pp}$) bnldev=n-bnldev Remember to undo the symmetry transformaEND FUNCTION bnldev

The routines psdes and psdes_safe both perform exactly the same hashing as was done by the Fortran 77 routine psdes. The difference is that psdes makes assumptions about arithmetic that go beyond the strict Fortran 90 model, while psdes_safe makes no such assumptions. The disadvantage of psdes_safe is that it is significantly slower, performing most of its arithmetic in double-precision reals that are then converted to integers with Fortran 90's modulo intrinsic.

In fact the nonsafe version, psdes, works fine on almost all machines and compilers that we have tried. There is a reason for this: Our assumed integer model is the same as the C language unsigned int, and virtually all modern computers and compilers have a lot of C hidden inside. If psdes and psdes_safe produce identical output on your system for any hundred or so different input values, you can be quite confident about using the faster version exclusively.

At the other end of things, note that in the very unlikely case that your system fails on the ran_hash routine in the ran_state module (you will have learned this from error messages generated by ran_init), you can substitute psdes_safe for ran_hash: They are plug-compatible.

```
SUBROUTINE psdes_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
    "Pseudo-DES" hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
    returned hashed on all bits. Note that this version of the routine assumes properties of
    integer arithmetic that go beyond the Fortran }90\mathrm{ model, though they are compatible with
    unsigned integers in C.
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B) :: i,ia,ib,iswap,itmph,itmpl
do i=1,NITER Perform niter iterations of DES logic, using a simpler
    iswap=rword
    ia=ieor(rword,C1(i)) The bit-rich constants C1 and (below) C2 guarantee lots
    itmpl=iand(ia,65535) of nonlinear mixing.
    itmph=iand(ishft(ia,-16),65535)
```

```
    ib=itmpl**2+not(itmph**2)
    ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
    rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
    lword=iswap
end do
END SUBROUTINE psdes_s
SUBROUTINE psdes_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),'psdes_v')
do i=1,NITER
    iswap=rword
    ia=ieor(rword,C1(i))
    itmpl=iand(ia,65535)
    itmph=iand(ishft(ia,-16),65535)
    ib=itmpl**2+not(itmph**2)
    ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
    rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
    lword=iswap
end do
END SUBROUTINE psdes_v
SUBROUTINE psdes_safe_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
    "Pseudo-DES" hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
    returned hashed on all bits. This is a slower version of the routine that makes no assumptions
    outside of the Fortran }90\mathrm{ integer model.
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B) :: i,ia,ib,iswap
REAL(DP) :: alo,ahi
do i=1,NITER
    iswap=rword
    ia=ieor(rword,C1(i))
    alo=real(iand(ia,65535),dp)
    ahi=real(iand(ishft(ia,-16),65535),dp)
    ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
    ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
    rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
    lword=iswap
end do
CONTAINS
FUNCTION modint(x)
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
```

```
if (a > big) a=a-base
modint=nint (a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_s
```

SUBROUTINE psdes_safe_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER (I4B), SAVE : : C1 (4), C2 (4)
DATA C1 /Z'BAA96887', Z'1E17D32C',Z'03BCDC3C', Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6', Z'55A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap
REAL(DP), DIMENSION(size(lword)) :: alo,ahi
INTEGER(I4B) :: i
i=assert_eq(size(lword), size(rword), 'psdes_safe_v')
do i=1,NITER
iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16), 65535), dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior (ishft(ib, 16), iand(ishft(ib,-16), 65535))
rword=ieor(lword, modint(real(ieor(C2(i),ia), dp)+alo*ahi))
lword=iswap
end do
CONTAINS
FUNCTION modint (x)
REAL(DP), DIMENSION(:), INTENT(IN) : : x
INTEGER(I4B), DIMENSION(size(x)) :: modint
REAL (DP), DIMENSION(size(x)) : : a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x, base)
where (a > big) a=a-base
modint=nint (a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_v

FUNCTION modint(x) This embedded routine takes a double-precision real argument, and returns it as an integer $\bmod 2^{32}$ (correctly wrapping it to negative to take into account that Fortran 90 has no unsigned integers).

SUBROUTINE ran3_s (harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) : : harvest
Random number generation by DES-like hashing of two 32-bit words, using the algorithm ran_hash. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values).
INTEGER (K4B) : : temp
if (lenran < 1) call ran_init(1)
Initialize.
nran0=ieor(nran0,ishft(nran0,13))
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
Two Marsaglia shift sequences are maintained as input to the hashing. The period of the combined generator is about 1.8×10^{19}.

```
rans=nran0
mran0=ieor(mran0,ishft(mran0,5))
mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))
temp=mran0
call ran_hash(temp,rans) Hash.
harvest=amm*merge(rans,not(rans), rans<0 ) Make the result positive definite (note
END SUBROUTINE ran3_s
    that amm is negative).
```

```
SUBROUTINE ran3_v(harvest)
```

SUBROUTINE ran3_v(harvest)
USE nrtype
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran,nran,ranv
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran,nran,ranv
IMPLICIT NONE
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B), DIMENSION(size(harvest)) :: temp
INTEGER(K4B), DIMENSION(size(harvest)) :: temp
INTEGER(K4B) :: n
INTEGER(K4B) :: n
n=size(harvest)
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
if (lenran < n+1) call ran_init(n+1)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
where (nran(1:n) == 1) nran(1:n)=270369_k4b
ranv(1:n)=nran(1:n)
ranv(1:n)=nran(1:n)
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
temp=mran(1:n)
temp=mran(1:n)
call ran_hash(temp,ranv(1:n))
call ran_hash(temp,ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran3_v

```
END SUBROUTINE ran3_v
```

As given, ran3 uses the ran_hash function in the module ran_state as its DES surrogate. That function is sufficiently fast to make ran3 only about a factor of 2 slower than our baseline recommended generator ran1. The slower routine psdes and (even slower) psdes_safe are plug-compatible with ran_hash, and could be substituted for it in this routine.

```
FUNCTION irbit1(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit1
    Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
    is modified for the next call).
if (btest(iseed,17) .neqv. btest(iseed,4) .neqv. btest(iseed,1) &
    .neqv. btest(iseed,0)) then
    iseed=ibset(ishft(iseed,1),0)
    irbit1=1
else
    iseed=ishft(iseed,1)
    irbit1=0
end if
END FUNCTION irbit1
```

```
FUNCTION irbit2(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2
    Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
    is modified for the next call).
INTEGER(I4B), PARAMETER :: IB1=1,IB2=2,IB5=16,MASK=IB1+IB2+IB5
if (btest(iseed,17)) then Change all masked bits, shift, and put 1 into bit 1.
    iseed=ibset(ishft(ieor(iseed,MASK),1),0)
    irbit2=1
else
    iseed=ibclr(ishft(iseed,1),0)
    irbit2=0
end if
END FUNCTION irbit2
SUBROUTINE sobseq(x,init)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) : : init
INTEGER(I4B), PARAMETER :: MAXBIT=30,MAXDIM=6
    When the optional integer init is present, internally initializes a set of MAXBIT direction
    numbers for each of MAXDIM different Sobol' sequences. Otherwise returns as the vector X
    of length N the next values from N of these sequences. ( }N\mathrm{ must not be changed between
    initializations.)
REAL(SP), SAVE :: fac
INTEGER(I4B) :: i,im,ipp,j,k,l
INTEGER(I4B), DIMENSION(:,:), ALLOCATABLE:: iu
INTEGER(I4B), SAVE :: in
INTEGER(I4B), DIMENSION(MAXDIM), SAVE :: ip,ix,mdeg
INTEGER(I4B), DIMENSION(MAXDIM*MAXBIT), SAVE :: iv
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv / 6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (present(init)) then Initialize, don't return a vector.
    ix=0
    in=0
    if (iv(1) /= 1) RETURN
    fac=1.0_sp/2.0_sp**MAXBIT
    allocate(iu(MAXDIM,MAXBIT))
    iu=reshape(iv,shape(iu))
        To allow both 1D and 2D addressing.
    do k=1,MAXDIM
        do j=1,mdeg(k) Stored values require only normalization.
            iu(k,j)=iu(k,j)*2**(MAXBIT-j)
        end do
        do j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.
            ipp=ip(k)
            i=iu(k,j-mdeg(k))
            i=ieor(i,i/2**mdeg(k))
            do l=mdeg(k)-1,1,-1
                if (btest(ipp,0)) i=ieor(i,iu(k,j-l))
                    ipp=ipp/2
            end do
            iu(k,j)=i
        end do
    end do
    iv=reshape(iu,shape(iv))
    deallocate(iu)
```

```
else Calculate the next vector in the sequence.
    im=in
    do j=1,MAXBIT
        if (.not. btest(im,0)) exit
        im=im/2
    end do
    if (j > MAXBIT) call nrerror('MAXBIT too small in sobseq')
    im=(j-1)*MAXDIM
    j=min(size(x),MAXDIM)
    ix(1:j)=ieor(ix(1:j),iv(1+im:j+im))
            XOR the appropriate direction number into each component of the vector and convert
            to a floating number.
        x(1:j)=ix(1:j)*fac
        in=in+1 Increment the counter.
end if
END SUBROUTINE sobseq
```

 if (present(init)) then ... allocate(iu(...)) ... iu=reshape(...)
 Wanting to avoid the deprecated EQUIVALENCE statement, we must
 reshape iv into a two-dimensional array, then un-reshape it after we
 are done. This is done only once, at initialization time, so there is no serious
inefficiency introduced.

```
SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE
    FUNCTION func(pt,wgt)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), DIMENSION(:), INTENT(IN) :: pt
    REAL(SP), INTENT(IN) :: wgt
    REAL(SP) :: func
    END FUNCTION func
END INTERFACE
REAL(SP), PARAMETER :: ALPH=1.5_sp,TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MXDIM=10,NDMX=50
    Performs Monte Carlo integration of a user-supplied d}d\mathrm{ -dimensional function func over a
    rectangular volume specified by region, a vector of length 2d consisting of d "lower left"
    coordinates of the region followed by d "upper right" coordinates. The integration consists of
    itmx iterations, each with approximately ncall calls to the function. After each iteration
    the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init
    signals whether this call is a new start, or a subsequent call for additional iterations (see
    comments below). The input flag nprn (normally 0) controls the amount of diagnostic
    output. Returned answers are tgral (the best estimate of the integral), sd (its standard
    deviation), and chi2a ( }\mp@subsup{\chi}{}{2}\mathrm{ per degree of freedom, an indicator of whether consistent results
    are being obtained). See text for further details.
INTEGER(I4B), SAVE :: i,it,j,k,mds,nd,ndim,ndo,ng,npg Best make everything static,
INTEGER(I4B), DIMENSION(MXDIM), SAVE :: ia,kg allowing restarts.
REAL(SP), SAVE :: calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,harvest
REAL(SP), DIMENSION(NDMX,MXDIM), SAVE :: d,di,xi
REAL(SP), DIMENSION(MXDIM), SAVE :: dt,dx,x
REAL(SP), DIMENSION(NDMX), SAVE :: r,xin
REAL(DP), SAVE :: schi,si,swgt
```

```
ndim=size(region)/2
if (init <= 0) then Normal entry. Enter here on a cold start.
    mds=1 Change to mds=0 to disable stratified sam-
    ndo=1 pling, i.e., use importance sampling only.
    xi(1,:)=1.0
end if
if (init <= 1) then Enter here to inherit the grid from a previous
    si=0.0
    swgt=0.0
    schi=0.0
end if
if (init <= 2) then Enter here to inherit the previous grid and its
    nd=NDMX
    ng=1
    if (mds /= 0) then Set up for stratification.
        ng=(ncall/2.0_sp+0.25_sp)**(1.0_sp/ndim)
        mds=1
        if ((2*ng-NDMX) >= 0) then
            mds=-1
            npg=ng/NDMX+1
            nd=ng/npg
            ng=npg*nd
            end if
    end if
    k=ng**ndim
    npg=max(ncall/k,2)
    calls=real(npg,sp)*real(k,sp)
    dxg=1.0_sp/ng
    dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.0_sp)
    xnd=nd
    dxg=dxg*xnd
    dx(1:ndim)=region(1+ndim:2*ndim)-region(1:ndim)
    xjac=1.0_sp/calls*product(dx(1:ndim))
    if (nd /= ndo) then Do binning if necessary.
            r(1:max (nd,ndo))=1.0
            do j=1,ndim
                call rebin(ndo/xnd,nd,r,xin,xi(:,j))
            end do
            ndo=nd
    end if
    if (nprn >= 0) write(*,200) ndim,calls,it,itmx,nprn,&
            ALPH,mds,nd,(j,region(j),j,region(j+ndim), j=1,ndim)
end if
do it=1,itmx Main iteration loop. Can enter here (init \geq
    ti=0.0 3) to do an additional itmx iterations
    tsi=0.0 with all other parameters unchanged.
    kg(:)=1
    d(1:nd,:)=0.0
    di(1:nd,:)=0.0
    iterate: do
        fb=0.0
        f2b=0.0
        do k=1,npg
            wgt=xjac
                    do j=1,ndim
                    call ran1(harvest)
                    xn=(kg(j)-harvest)*dxg+1.0_sp
                    ia(j)=max(min(int(xn),NDMX),1)
                    if (ia(j) > 1) then
                    xo=xi(ia(j),j)-xi(ia(j)-1,j)
                        rc=xi(ia(j)-1,j)+(xn-ia(j))*xo
                    else
                    xo=xi(ia(j),j)
                        rc=(xn-ia(j))*xo
```

```
            end if
            x(j)=region(j)+rc*dx(j)
            wgt=wgt*xo*xnd
        end do
        f=wgt*func(x(1:ndim),wgt)
        f2=f*f
        fb=fb+f
        f2b=f2b+f2
        do j=1,ndim
            di(ia(j),j)=di(ia(j),j)+f
            if (mds >= 0) d(ia(j),j)=d(ia(j),j)+f2
        end do
    end do
    f2b=sqrt(f2b*npg)
    f2b=(f2b-fb)*(f2b+fb)
    if (f2b <= 0.0) f2b=TINY
    ti=ti+fb
    tsi=tsi+f2b
    if (mds < 0) then Use stratified sampling.
        do j=1,ndim
            d(ia(j),j)=d(ia(j),j)+f2b
        end do
    end if
    do k=ndim,1,-1
    kg(k)=mod}(\textrm{kg}(\textrm{k}),ng)+
        if (kg(k) /= 1) cycle iterate
    end do
    exit iterate
end do iterate
tsi=tsi*dv2g
Compute final results for this iteration.
wgt=1.0_sp/tsi
si=si+real(wgt,dp)*real(ti,dp)
schi=schi+real(wgt,dp)*real(ti,dp)**2
swgt=swgt+real(wgt,dp)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-0.99_dp),0.0_dp)
sd=sqrt(1.0_sp/swgt)
tsi=sqrt(tsi)
if (nprn >= 0) then
    write(*,201) it,ti,tsi,tgral,sd,chi2a
    if (nprn /= 0) then
        do j=1,ndim
            write(*,202) j,(xi(i,j),di(i,j),&
                i=1+nprn/2,nd,nprn)
            end do
        end if
end if
do j=1,ndim
        xo=d(1,j)
        xn=d(2,j)
        d(1,j)=(xo+xn)/2.0_sp
        dt(j)=d(1,j)
        do i=2,nd-1
            rc=xo+xn
            xo=xn
            xn=d(i+1,j)
            d(i,j)=(rc+xn)/3.0_sp
            dt(j)=dt(j)+d(i,j)
    end do
    d(nd,j)=(xo+xn)/2.0_sp
    dt(j)=dt(j)+d(nd,j)
end do
where (d(1:nd,:) < TINY) d(1:nd,:)=TINY
do j=1,ndim
```

 \(r(1: n d)=\left(\left(1.0 _s p-d(1: n d, j) / d t(j)\right) /(\log (d t(j))-\log (d(1: n d, j)))\right) * *\) ALPH
 \(r c=\operatorname{sum}(r(1: n d))\)
 call \(r\) ebin(\(r c / x n d, n d, r, x i n, x i(:, j))\)
 end do
 end do
 200 format(/' input parameters for vegas: ndim=',i3,' ncall=',f8.0\&
/28x,' it=',i5,' itmx=',i5\&
/28x,' nprn=',i3,' alph=',f5.2/28x,' mds=',i3,' nd=',i4\&
/(30x,'xl(',i2,')= ',g11.4,' xu(',i2,')= ',g11.4))
201 format(/' iteration no.', I3,': ', 'integral =', g14.7,' +/- ', g9.2,\&
/' all iterations: integral =',g14.7,' +/- ',g9.2,\&
, chi**2/it''n =',g9.2)
202 format(/' data for axis ',I2/' X delta i ',\&
' x delta i ',' x delta i ',\&
$/(1 \mathrm{x}, \mathrm{f} 7.5,1 \mathrm{x}, \mathrm{g} 11.4,5 \mathrm{x}, \mathrm{f} 7.5,1 \mathrm{x}, \mathrm{g} 11.4,5 \mathrm{x}, \mathrm{f} 7.5,1 \mathrm{x}, \mathrm{g} 11.4)$)
CONTAINS
SUBROUTINE rebin(rc, nd, r, xin, xi)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: rc
INTEGER(I4B), INTENT(IN) : : nd
REAL(SP), DIMENSION(:), INTENT(IN) :: r
REAL(SP), DIMENSION(:), INTENT(OUT) : : xin
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xi
Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.
INTEGER(I4B) : : i,k
REAL (SP) : : dr, xn, xo
$\mathrm{k}=0$
$\mathrm{xo}=0.0$
dr=0.0
do $i=1, n d-1$
do
if (rc <= dr) exit
$\mathrm{k}=\mathrm{k}+1$
$d r=d r+r(k)$
end do
if (k > 1) $x o=x i(k-1)$
xn=xi(k)
$d r=d r-r c$
$\mathrm{xin}(\mathrm{i})=\mathrm{xn}-(\mathrm{xn}-\mathrm{xo}) * \mathrm{dr} / \mathrm{r}(\mathrm{k})$
end do
xi(1:nd-1)=xin(1:nd-1)
xi(nd)=1.0
END SUBROUTINE rebin
END SUBROUTINE vegas
RECURSIVE SUBROUTINE miser (func, regn, ndim, npts, dith, ave, var)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
IMPLICIT
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL (SP) : : func
REAL(SP), DIMENSION(:), INTENT(IN) : : x
END FUNCTION func
END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts

```
REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave,var
REAL(SP), PARAMETER :: PFAC=0.1_sp,TINY=1.0e-30_sp,BIG=1.0e30_sp
INTEGER(I4B), PARAMETER :: MNPT=15,MNBS=60
    Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
    volume specified by region, a 2\timesndim vector consisting of ndim "lower-left" coordinates
    of the region followed by ndim "upper-right" coordinates. The function is sampled a total
    of npts times, at locations determined by the method of recursive stratified sampling. The
    mean value of the function in the region is returned as ave; an estimate of the statistical
    uncertainty of ave (square of standard deviation) is returned as var. The input parameter
    dith should normally be set to zero, but can be set to (e.g.) 0.1 if func's active region
    falls on the boundary of a power-of-2 subdivision of region.
    Parameters: PFAC is the fraction of remaining function evaluations used at each stage to
    explore the variance of func. At least MNPT function evaluations are performed in any
    terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
    are available.
REAL(SP), DIMENSION(:), ALLOCATABLE :: regn_temp
INTEGER(I4B) :: j,jb,n,ndum,npre,nptl,nptr
INTEGER(I4B), SAVE :: iran=0
REAL(SP) :: avel,varl,fracl,fval,rgl,rgm,rgr,&
    s,sigl,siglb,sigr,sigrb,sm,sm2,sumb,sumr
REAL(SP), DIMENSION(:), ALLOCATABLE :: fmaxl,fmaxr,fminl,fminr,pt,rmid
ndum=assert_eq(size(regn),2*ndim,'miser')
allocate(pt(ndim))
if (npts < MNBS) then Too few points to bisect; do straight Monte
    sm=0.0
    sm2=0.0
    do n=1,npts
        call ranpt(pt,regn)
        fval=func(pt)
        sm=sm+fval
        sm2=sm2+fval**2
    end do
    ave=sm/npts
    var=max(TINY,(sm2-sm**2/npts)/npts**2)
else
    npre=max(int(npts*PFAC),MNPT)
    allocate(rmid(ndim),fmaxl(ndim),fmaxr(ndim),fminl(ndim),fminr(ndim))
    fminl(:)=BIG Initialize the left and right bounds for each
    fminr(:)=BIG dimension.
    fmaxl(:)=-BIG
    fmaxr(:)=-BIG
    do j=1,ndim
        iran=mod(iran*2661+36979,175000)
        s=sign(dith,real(iran-87500,sp))
        rmid(j)=(0.5_sp+s)*regn(j)+(0.5_sp-s)*regn(ndim+j)
    end do
    do n=1,npre Loop over the points in the sample.
        call ranpt(pt,regn)
        fval=func(pt)
        where (pt <= rmid)
            fminl=min(fminl,fval)
            fmaxl=max(fmaxl,fval)
        elsewhere
            fminr=min(fminr,fval)
            fmaxr=max(fmaxr,fval)
        end where
    end do
    sumb=BIG Choose which dimension jb to bisect.
    jb=0
    siglb=1.0
    sigrb=1.0
    do j=1,ndim
        if (fmaxl(j) > fminl(j) .and. fmaxr(j) > fminr(j)) then
```

```
            sigl=max(TINY,(fmaxl(j)-fminl(j))**(2.0_sp/3.0_sp))
            sigr=max(TINY,(fmaxr(j)-fminr(j))**(2.0_sp/3.0_sp))
            sumr=sigl+sigr Equation (7.8.24); see text.
            if (sumr <= sumb) then
                        sumb=sumr
                        jb=j
                    siglb=sigl
                    sigrb=sigr
                end if
            end if
    end do
    deallocate(fminr,fminl,fmaxr,fmaxl)
    if (jb == 0) jb=1+(ndim*iran)/175000 MNPT may be too small.
    rgl=regn(jb)
                            Apportion the remaining points between left
    rgm=rmid(jb)
        and right.
    rgr=regn(ndim+jb)
    fracl=abs((rgm-rgl)/(rgr-rgl))
    nptl=(MNPT+(npts-npre-2*MNPT)*fracl*siglb/ & Equation (7.8.23).
        (fracl*siglb+(1.0_sp-fracl)*sigrb))
    nptr=npts-npre-nptl
    allocate(regn_temp(2*ndim))
    regn_temp(:)=regn(:)
    regn_temp(ndim+jb)=rmid(jb) Set region to left.
    call miser(func,regn_temp,ndim,nptl,dith,avel,varl)
    Dispatch recursive call; will return back here eventually.
    regn_temp(jb)=rmid(jb)
    regn_temp(ndim+jb)=regn(ndim+jb) Set region to right.
    call miser(func,regn_temp,ndim,nptr,dith,ave,var)
    Dispatch recursive call; will return back here eventually.
    deallocate(regn_temp)
    ave=fracl*avel+(1-fracl)*ave Combine left and right regions by equation
    var=fracl*fracl*varl+(1-fracl)*(1-fracl)*var (7.8.11)(1st line).
    deallocate(rmid)
end if
deallocate(pt)
CONTAINS
SUBROUTINE ranpt(pt,region)
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: pt
REAL(SP), DIMENSION(:), INTENT(IN) :: region
    Returns a uniformly random point pt in a rectangular region of dimension d. Used by
    miser; calls ran1 for uniform deviates.
INTEGER(I4B) :: n
call ran1(pt)
n=size(pt)
pt(1:n)=region(1:n)+(region(n+1:2*n)-region(1:n))*pt(1:n)
END SUBROUTINE ranpt
END SUBROUTINE miser
```

The Fortran 90 version of this routine is much more straightforward than the Fortran 77 version, because Fortran 90 allows recursion. (In fact, this routine is modeled on the C version of miser, which was recursive from the start.)

Marsaglia, G., and Zaman, A. 1994, Computers in Physics, vol. 8, pp. 117-121. [1]
Marsaglia, G. 1985, Linear Algebra and Its Applications, vol. 67, pp. 147-156. [2]
Harbison, S.P., and Steele, G.L. 1991, C: A Reference Manual, Third Edition, §5.1.1. [3]

