
7.1 Uniform Deviates 267

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

As for references on this subject, the one to turn to first is Knuth [1]. Then
try [2]. Only a few of the standard books on numerical methods [3-4] treat topics
relating to random numbers.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 11. [3]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range
(typically 0 to 1), with any one number in the range just as likely as any other. They
are, in other words, what you probably think “random numbers” are. However,
we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean
and standard deviation. These other sorts of deviates are almost always generated by
performing appropriate operations on one or more uniform deviates, as we will see
in subsequent sections. So, a reliable source of random uniform deviates, the subject
of this section, is an essential building block for any sort of stochastic modeling
or Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called
a “random number generator.” That routine typically has an unforgettable name like
“ran,” and a calling sequence like

x=ran(iseed) sets x to the next random number and updates iseed

You initialize iseed to a (usually) arbitrary value before the first call to ran.
Each initializing value will typically return a different subsequent random sequence,
or at least a different subsequence of some one enormously long sequence. The same
initializing value of iseed will always return the same random sequence, however.

Now our first, and perhaps most important, lesson in this chapter is: Be very,
very suspicious of a system-supplied ran that resembles the one just described. If all
scientific papers whose results are in doubt because of bad rans were to disappear
from library shelves, there would be a gap on each shelf about as big as your
fist. System-supplied rans are almost always linear congruential generators, which

268 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

generate a sequence of integers I1, I2, I3, . . . , each between 0 and m − 1 (a large
number) by the recurrence relation

Ij+1 = aIj + c (mod m) (7.1.1)

Here m is called the modulus, and a and c are positive integers called the multiplier
and the increment, respectively. The recurrence (7.1.1) will eventually repeat itself,
with a period that is obviously no greater thanm. Ifm, a, and c are properly chosen,
then the period will be of maximal length, i.e., of lengthm. In that case, all possible
integers between 0 and m− 1 occur at some point, so any initial “seed” choice of I0
is as good as any other: The sequence just takes off from that point. The real number
between 0 and 1 which is returned is generally Ij+1/m, so that it is strictly less than
1, but occasionally (once in m calls) exactly equal to zero. iseed is set to Ij+1 (or
some encoding of it), so that it can be used on the next call to generate Ij+2, and so on.

The linear congruential method has the advantage of being very fast, requiring
only a few operations per call, hence its almost universal use. It has the disadvantage
that it is not free of sequential correlation on successive calls. If k random numbers at
a time are used to plot points in k dimensional space (with each coordinate between
0 and 1), then the points will not tend to “fill up” the k-dimensional space, but
rather will lie on (k − 1)-dimensional “planes.” There will be at most about m1/k

such planes. If the constants m, a, and c are not very carefully chosen, there will
be many fewer than that. The number m is usually close to the machine’s largest
representable integer, e.g., ∼ 232. So, for example, the number of planes on which
triples of points lie in three-dimensional space is usually no greater than about the
cube root of 232, about 1600. You might well be focusing attention on a physical
process that occurs in a small fraction of the total volume, so that the discreteness
of the planes can be very pronounced.

Even worse, you might be using a ran whose choices of m, a, and c have
been botched. One infamous such routine, RANDU, with a = 65539 and m = 231,
was widespread on IBM mainframe computers for many years, and widely copied
onto other systems [1]. One of us recalls producing a “random” plot with only 11
planes, and being told by his computer center’s programming consultant that he
had misused the random number generator: “We guarantee that each number is
random individually, but we don’t guarantee that more than one of them is random.”
Figure that out.

Correlation ink-space is not the only weakness of linear congruential generators.
Such generators often have their low-order (least significant) bits much less random
than their high-order bits. If you want to generate a random integer between 1 and
10, you should always do it using high-order bits, as in

j=1+int(10.*ran(iseed))

and never by anything resembling

j=1+mod(int(1000000.*ran(iseed)),10)

7.1 Uniform Deviates 269

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(which uses lower-order bits). Similarly you should never try to take apart a
“ran” number into several supposedly random pieces. Instead use separate calls
for every piece.

Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators
that have been used over the last 30 years or more. Along with a good theoretical
review, they present an anecdotal sampling of a number of inadequate generators
that have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple mul-
tiplicative congruential algorithm

Ij+1 = aIj (mod m) (7.1.2)

can be as good as any of the more general linear congruential generators that have
c 6= 0 (equation 7.1.1) — if the multiplier a and modulus m are chosen exquisitely
carefully. Park and Miller propose a “Minimal Standard” generator based on the
choices

a = 75 = 16807 m = 231 − 1 = 2147483647 (7.1.3)

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in
subsequent years passed all new theoretical tests, and (perhaps more importantly)
has accumulated a large amount of successful use. Park and Miller do not claim that
the generator is “perfect” (we will see below that it is not), but only that it is a good
minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a
high-level language, since the product of a and m− 1 exceeds the maximum value
for a 32-bit integer. Assembly language implementation using a 64-bit product
register is straightforward, but not portable from machine to machine. A trick
due to Schrage [2,3] for multiplying two 32-bit integers modulo a 32-bit constant,
without using any intermediates larger than 32 bits (including a sign bit) is therefore
extremely interesting: It allows the Minimal Standard generator to be implemented
in essentially any programming language on essentially any machine.

Schrage’s algorithm is based on an approximate factorization of m,

m = aq + r, i.e., q = [m/a], r = m mod a (7.1.4)

with square brackets denoting integer part. If r is small, specifically r < q, and
0 < z < m − 1, it can be shown that both a(z mod q) and r[z/q] lie in the range
0, . . . , m − 1, and that

az mod m =

{
a(z mod q)− r[z/q] if it is ≥ 0,
a(z mod q)− r[z/q] +m otherwise

(7.1.5)

The application of Schrage’s algorithm to the constants (7.1.3) uses the values
q = 127773 and r = 2836.

Here is an implementation of the Minimal Standard generator:

270 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION ran0(idum)
INTEGER idum,IA,IM,IQ,IR,MASK
REAL ran0,AM
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,

* IQ=127773,IR=2836,MASK=123459876)
“Minimal” random number generator of Park and Miller. Returns a uniform random deviate
between 0.0 and 1.0. Set or reset idum to any integer value (except the unlikely value MASK)
to initialize the sequence; idum must not be altered between calls for successive deviates
in a sequence.

INTEGER k
idum=ieor(idum,MASK) XORing with MASK allows use of zero and other simple

bit patterns for idum.k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
ran0=AM*idum Convert idum to a floating result.
idum=ieor(idum,MASK) Unmask before return.
return
END

The period of ran0 is 231 − 2 ≈ 2.1 × 109. A peculiarity of generators of
the form (7.1.2) is that the value 0 must never be allowed as the initial seed — it
perpetuates itself — and it never occurs for any nonzero initial seed. Experience has
shown that users always manage to call random number generators with the seed
idum=0. That is why ran0 performs its exclusive-or with an arbitrary constant both
on entry and exit. If you are the first user in history to be proof against human error,
you can remove the two lines with the ieor function.

Park and Miller discuss two other multipliers a that can be used with the same
m = 231− 1. These are a = 48271 (with q = 44488 and r = 3399) and a = 69621
(with q = 30845 and r = 23902). These can be substituted in the routine ran0

if desired; they may be slightly superior to Lewis et al.’s longer-tested values. No
values other than these should be used.

The routine ran0 is a Minimal Standard, satisfactory for the majority of appli-
cations, but we do not recommend it as the final word on random number generators.
Our reason is precisely the simplicity of the Minimal Standard. It is not hard to think
of situations where successive random numbers might be used in a way that acciden-
tally conflicts with the generation algorithm. For example, since successive numbers
differ by a multipleof only 1.6×104 out of a modulus of more than 2×109, very small
random numbers will tend to be followed by smaller than average values. One time
in 106, for example, there will be a value < 10−6 returned (as there should be), but
this will always be followed by a value less than about 0.0168. One can easily think
of applications involving rare events where this property would lead to wrong results.

There are other, more subtle, serial correlations present in ran0. For example,
if successive points (Ii, Ii+1) are binned into a two-dimensional plane for i =
1, 2, . . . , N , then the resulting distribution fails the χ2 test when N is greater than a
few×107, much less than the periodm−2. Since low-order serial correlations have
historically been such a bugaboo, and since there is a very simple way to remove
them, we think that it is prudent to do so.

The following routine, ran1, uses the Minimal Standard for its random value,
but it shuffles the output to remove low-order serial correlations. A random deviate
derived from the jth value in the sequence, Ij , is output not on the jth call, but rather
on a randomized later call, j+32 on average. The shuffling algorithm is due to Bays
and Durham as described in Knuth [4], and is illustrated in Figure 7.1.1.

7.1 Uniform Deviates 271

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION ran1(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ran1,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,

* NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
“Minimal” random number generator of Park and Miller with Bays-Durham shuffle and
added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DATA iv /NTAB*0/, iy /0/
if (idum.le.0.or.iy.eq.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ Start here when not initializing.
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j) Output previously stored value and refill the shuffle ta-

ble.iv(j)=idum
ran1=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

The routine ran1 passes those statistical tests that ran0 is known to fail. In
fact, we do not know of any statistical test that ran1 fails to pass, except when the
number of calls starts to become on the order of the periodm, say > 108 ≈ m/20.

For situations when even longer random sequences are needed, L’Ecuyer [6] has
given a good way of combining two different sequences with different periods so
as to obtain a new sequence whose period is the least common multiple of the two
periods. The basic idea is simply to add the two sequences, modulo the modulus of
either of them (call it m). A trick to avoid an intermediate value that overflows the
integer wordsize is to subtract rather than add, and then add back the constantm− 1
if the result is ≤ 0, so as to wrap around into the desired interval 0, . . . , m− 1.

Notice that it is not necessary that this wrapped subtraction be able to reach all
values 0, . . . , m − 1 from every value of the first sequence. Consider the absurd
extreme case where the value subtracted was only between 1 and 10: The resulting
sequence would still be no less random than the first sequence by itself. As a
practical matter it is only necessary that the second sequence have a range covering
substantially all of the range of the first. L’Ecuyer recommends the use of the two
generators m1 = 2147483563 (with a1 = 40014, q1 = 53668, r1 = 12211) and
m2 = 2147483399 (with a2 = 40692, q2 = 52774, r2 = 3791). Both moduli
are slightly less than 231. The periods m1 − 1 = 2 × 3 × 7 × 631 × 81031 and
m2 − 1 = 2 × 19 × 31 × 1019 × 1789 share only the factor 2, so the period of
the combined generator is ≈ 2.3× 1018. For present computers, period exhaustion
is a practical impossibility.

272 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

OUTPUT

RAN

1

3 2

iy

iv1

iv32

Figure 7.1.1. Shuffling procedure used in ran1 to break up sequential correlations in the Minimal
Standard generator. Circled numbers indicate the sequence of events: On each call, the random number
in iy is used to choose a random element in the array iv. That element becomes the output random
number, and also is the next iy. Its spot in iv is refilled from the Minimal Standard routine.

Combining the two generators breaks up serial correlations to a considerable
extent. We nevertheless recommend the additional shuffle that is implemented in
the following routine, ran2. We think that, within the limits of its floating-point
precision, ran2 provides perfect random numbers; a practical definition of “perfect”
is that we will pay $1000 to the first reader who convinces us otherwise (by finding a
statistical test that ran2 fails in a nontrivial way, excluding the ordinary limitations
of a machine’s floating-point representation).

FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAL ran2,AM,EPS,RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,

* IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,
* IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)

Long period (> 2× 1018) random number generator of L’Ecuyer with Bays-Durham shuffle
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
idum2=idum
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ1

7.1 Uniform Deviates 273

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

idum=IA1*(idum-k*IQ1)-k*IR1
if (idum.lt.0) idum=idum+IM1
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ1 Start here when not initializing.
idum=IA1*(idum-k*IQ1)-k*IR1 Compute idum=mod(IA1*idum,IM1)without over-

flows by Schrage’s method.if (idum.lt.0) idum=idum+IM1
k=idum2/IQ2
idum2=IA2*(idum2-k*IQ2)-k*IR2 Compute idum2=mod(IA2*idum2,IM2) likewise.
if (idum2.lt.0) idum2=idum2+IM2
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j)-idum2 Here idum is shuffled, idum and idum2 are com-

bined to generate output.iv(j)=idum
if(iy.lt.1)iy=iy+IMM1
ran2=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

L’Ecuyer [6] lists additional short generators that can be combined into longer
ones, including generators that can be implemented in 16-bit integer arithmetic.

Finally, we give you Knuth’s suggestion [4] for a portable routine, which we
have translated to the present conventions as ran3. This is not based on the linear
congruential method at all, but rather on a subtractive method (see also [5]). One
might hope that its weaknesses, if any, are therefore of a highly different character
from the weaknesses, if any, of ran1 above. If you ever suspect trouble with one
routine, it is a good idea to try the other in the same application. ran3 has one
nice feature: if your machine is poor on integer arithmetic (i.e., is limited to 16-bit
integers), substitution of the three “commented” lines for the ones directly preceding
them will render the routine entirely floating-point.

FUNCTION ran3(idum)
Returns a uniform random deviate between 0.0 and 1.0. Set idum to any negative value
to initialize or reinitialize the sequence.

INTEGER idum
INTEGER MBIG,MSEED,MZ

C REAL MBIG,MSEED,MZ
REAL ran3,FAC
PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG)

C PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=1./MBIG)
According to Knuth, any large mbig, and any smaller (but still large) mseed can be sub-
stituted for the above values.

INTEGER i,iff,ii,inext,inextp,k
INTEGER mj,mk,ma(55) The value 55 is special and should not be modified; see

Knuth.C REAL mj,mk,ma(55)
SAVE iff,inext,inextp,ma
DATA iff /0/
if(idum.lt.0.or.iff.eq.0)then Initialization.

iff=1
mj=abs(MSEED-abs(idum)) Initialize ma(55) using the seed idum and the large num-

ber mseed.mj=mod(mj,MBIG)
ma(55)=mj
mk=1
do 11 i=1,54 Now initialize the rest of the table,

ii=mod(21*i,55) in a slightly random order,
ma(ii)=mk with numbers that are not especially random.
mk=mj-mk
if(mk.lt.MZ)mk=mk+MBIG

274 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

mj=ma(ii)
enddo 11

do 13 k=1,4 We randomize them by “warming up the generator.”
do 12 i=1,55

ma(i)=ma(i)-ma(1+mod(i+30,55))
if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG

enddo 12

enddo 13

inext=0 Prepare indices for our first generated number.
inextp=31 The constant 31 is special; see Knuth.
idum=1

endif
inext=inext+1 Here is where we start, except on initialization. Increment

inext, wrapping around 56 to 1.if(inext.eq.56)inext=1
inextp=inextp+1 Ditto for inextp.
if(inextp.eq.56)inextp=1
mj=ma(inext)-ma(inextp) Now generate a new random number subtractively.
if(mj.lt.MZ)mj=mj+MBIG Be sure that it is in range.
ma(inext)=mj Store it,
ran3=mj*FAC and output the derived uniform deviate.
return
END

Quick and Dirty Generators

One sometimes would like a “quick and dirty” generator to embed in a program, perhaps
taking only one or two lines of code, just to somewhat randomize things. One might wish to
process data from an experiment not always in exactly the same order, for example, so that
the first output is more “typical” than might otherwise be the case.

For this kind of application, all we really need is a list of “good” choices for m, a, and
c in equation (7.1.1). If we don’t need a period longer than 104 to 106, say, we can keep the
value of (m − 1)a + c small enough to avoid overflows that would otherwise mandate the
extra complexity of Schrage’s method (above). We can thus easily embed in our programs

jran=mod(jran*ia+ic,im)
ran=float(jran)/float(im)

whenever we want a quick and dirty uniform deviate, or

jran=mod(jran*ia+ic,im)
j=jlo+((jhi-jlo+1)*jran)/im

whenever we want an integer between jlo and jhi, inclusive. (In both cases jran was once
initialized to any seed value between 0 and im-1.)

Be sure to remember, however, that when im is small, the kth root of it, which is the
number of planes in k-space, is even smaller! So a quick and dirty generator should never
be used to select points in k-space with k > 1.

With these caveats, some “good” choices for the constants are given in the accompanying
table. These constants (i) give a period of maximal length im, and, more important, (ii) pass
Knuth’s “spectral test” for dimensions 2, 3, 4, 5, and 6. The increment ic is a prime, close to
the value (1

2
− 1

6

√
3)im; actually almost any value of ic that is relatively prime to im will do

just as well, but there is some “lore” favoring this choice (see [4], p. 84).

7.1 Uniform Deviates 275

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Constants for Quick and Dirty Random Number Generators

overflow at im ia ic

6075 106 1283
220

7875 211 1663
221

7875 421 1663
222

6075 1366 1283
6655 936 1399

11979 430 2531
223

14406 967 3041
29282 419 6173
53125 171 11213

224

12960 1741 2731
14000 1541 2957
21870 1291 4621
31104 625 6571

139968 205 29573
225

29282 1255 6173
81000 421 17117

134456 281 28411
226

overflow at im ia ic

86436 1093 18257
121500 1021 25673
259200 421 54773

227

117128 1277 24749
121500 2041 25673
312500 741 66037

228

145800 3661 30809
175000 2661 36979
233280 1861 49297
244944 1597 51749

229

139968 3877 29573
214326 3613 45289
714025 1366 150889

230

134456 8121 28411
259200 7141 54773

231

233280 9301 49297
714025 4096 150889

232

An Even Quicker and Dirtier Generator

Many FORTRAN compilers can be abused in such a way that they will multiply two 32-bit
integers ignoring any resulting overflow. In such cases, on many machines, the value returned
is predictably the low-order 32 bits of the true 64-bit product. (C compilers, incidentally,
can do this without the requirement of abuse — it is guaranteed behavior for so-called
unsigned long int integers. On VMS VAXes, the necessary FORTRAN command is
FORTRAN/CHECK=NOOVERFLOW.) If we now choose m = 232, the “mod” in equation (7.1.1)
is free, and we have simply

Ij+1 = aIj + c (7.1.6)

Knuth suggests a = 1664525 as a suitable multiplier for this value of m. H.W. Lewis
has conducted extensive tests of this value of a with c = 1013904223, which is a prime close
to (
√

5− 2)m. The resulting in-line generator (we will call it ranqd1) is simply

idum=1664525*idum+1013904223

This is about as good as any 32-bit linear congruential generator, entirely adequate for many
uses. And, with only a single multiply and add, it is very fast.

To check whether your compiler and machine have the desired overflow proper-
ties, see if you can generate the following sequence of 32-bit values (given here in
hex): 00000000, 3C6EF35F, 47502932, D1CCF6E9, AAF95334, 6252E503, 9F2EC686,
57FE6C2D, A3D95FA8, 81FDBEE7, 94F0AF1A, CBF633B1.

If you need floating-point values instead of 32-bit integers, and want to avoid a divide by
floating-point 232, a dirty trick is to mask in an exponent that makes the value lie between 1 and
2, then subtract 1.0. The resulting in-line generator (call it ranqd2) will look something like

276 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

INTEGER idum,itemp,jflone,jflmsk
REAL ftemp
EQUIVALENCE (itemp,ftemp)
DATA jflone /Z’3F800000’/, jflmsk /Z’007FFFFF’/

C ...
idum=1664525*idum+1013904223
itemp=ior(jflone,iand(jflmsk,idum))
ran=ftemp-1.0

The hex constants 3F800000 and 007FFFFF are the appropriate ones for computers using
the IEEE representation for 32-bit floating-point numbers (e.g., IBM PCs and most UNIX
workstations). For DEC VAXes, the correct hex constants are, respectively, 00004080 and
FFFF007F. Notice that the IEEE mask results in the floating-point number being constructed
out of the 23 low-order bits of the integer, which is not ideal. Also notice that your compiler
may require a different notation for hex constants, e.g., x’3f800000’, ’3F800000’X, or even
16#3F800000. (Your authors have tried very hard to make almost all of the material in this
book machine and compiler independent— indeed, even programming language independent.
This subsection is a rare aberration. Forgive us. Once in a great while the temptation to
be really dirty is just irresistible.)

Relative Timings and Recommendations

Timings are inevitably machine dependent. Nevertheless the following table
is indicative of the relative timings, for typical machines, of the various uniform
generators discussed in this section, plus ran4 from §7.5. Smaller values in the table
indicate faster generators. The generators ranqd1 and ranqd2 refer to the “quick
and dirty” generators immediately above.

Generator Relative Execution Time

ran0 ≡ 1.0

ran1 ≈ 1.3

ran2 ≈ 2.0

ran3 ≈ 0.6

ranqd1 ≈ 0.10

ranqd2 ≈ 0.25

ran4 ≈ 4.0

On balance, we recommend ran1 for general use. It is portable, based on
Park and Miller’s Minimal Standard generator with an additional shuffle, and has no
known (to us) flaws other than period exhaustion.

If you are generating more than 100,000,000 random numbers in a single
calculation (that is, more than about 5% of ran1’s period), we recommend the use
of ran2, with its much longer period.

Knuth’s subtractive routine ran3 seems to be the timing winner among portable
routines. Unfortunately the subtractive method is not so well studied, and not a
standard. We like to keep ran3 in reserve for a “second opinion,” substitutingit when
we suspect another generator of introducing unwanted correlations into a calculation.

The routine ran4 generates extremely good random deviates, and has some
other nice properties, but it is slow. See §7.5 for discussion.

7.2 Transformation Method: Exponential and Normal Deviates 277

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Finally, the quick and dirty in-line generators ranqd1 and ranqd2 are very
fast, but they are machine dependent, nonportable, and at best only as good as a
32-bit linear congruential generator ever is — in our view not good enough in many
situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:

Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. [1]

Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132–138. [2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §§3.2–3.3. [4]

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 10. [5]

L’Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742–774. [6]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

7.2 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates with
a uniform probability distribution, so that the probability of generating a number
between x and x + dx, denoted p(x)dx, is given by

p(x)dx =
{
dx 0 < x < 1
0 otherwise

(7.2.1)

The probability distribution p(x) is of course normalized, so that∫ ∞
−∞

p(x)dx = 1 (7.2.2)

Now suppose that we generate a uniform deviatex and then take some prescribed
function of it, y(x). The probability distribution of y, denoted p(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

|p(y)dy| = |p(x)dx| (7.2.3)

or

p(y) = p(x)

∣∣∣∣dxdy
∣∣∣∣ (7.2.4)

