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16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn to xn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(
xn + 1

2h, yn + 1
2k1

)
yn+1 = yn + k2 +O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic
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Figure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5) (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpoint method
(16.1.2) if at least twice as large a step is possible with (16.1.3) for the same accuracy.
Is that so? The answer is: often, perhaps even usually, but surely not always! This
takes us back to a central theme, namely that high order does not always mean
high accuracy. The statement “fourth-order Runge-Kutta is generally superior to
second-order” is a true one, but you should recognize it as a statement about the
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Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
That is, it reflects the nature of the problems that contemporary scientists like to solve.

For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse’s last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In §16.2 we will give
a modern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalls in
constructing a good Runge-Kutta code is given in [3].

Here is the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for this first value? The answer
will become clear only in the next section, but in brief is this: This call may not
be your only one with these starting conditions. You may have taken a previous
step with too large a stepsize, and this is your replacement. In that case, you do not
want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX)
hh=h*0.5
h6=h/6.
xh=x+hh
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do 11 i=1,n First step.
yt(i)=y(i)+hh*dydx(i)

enddo 11

call derivs(xh,yt,dyt) Second step.
do 12 i=1,n

yt(i)=y(i)+hh*dyt(i)
enddo 12

call derivs(xh,yt,dym) Third step.
do 13 i=1,n

yt(i)=y(i)+h*dym(i)
dym(i)=dyt(i)+dym(i)

enddo 13

call derivs(x+h,yt,dyt) Fourth step.
do 14 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i))
enddo 14

return
END

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along the trajectory of an ordinary differential
equation can serve as an initial point. The fact that all steps are treated identically also
makes it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

We consider adaptive stepsize control, discussed in the next section, an essential
for serious computing. Occasionally, however, you just want to tabulate a function at
equally spaced intervals, and without particularly high accuracy. In the most common
case, you want to produce a graph of the function. Then all you need may be a
simple driver program that goes from an initialxs to a final xf in a specified number
of steps. To check accuracy, double the number of steps, repeat the integration, and
compare results. This approach surely does not minimize computer time, and it can
fail for problems whose nature requires a variable stepsize, but it may well minimize
user effort. On small problems, this may be the paramount consideration.

Here is such a driver, self-explanatory, which tabulates the integrated functions
in a common block path.

SUBROUTINE rkdumb(vstart,nvar,x1,x2,nstep,derivs)
INTEGER nstep,nvar,NMAX,NSTPMX
PARAMETER (NMAX=50,NSTPMX=200) Maximum number of functions and

maximum number of values to
be stored.

REAL x1,x2,vstart(nvar),xx(NSTPMX),y(NMAX,NSTPMX)
EXTERNAL derivs
COMMON /path/ xx,y Storage of results.

C USES rk4
Starting from initial values vstart(1:nvar) known at x1 use fourth-order Runge-Kutta to
advance nstep equal increments to x2. The user-supplied subroutine derivs(x,v,dvdx)
evaluates derivatives. Results are stored in the common block path. Be sure to dimension
the common block appropriately.

INTEGER i,k
REAL h,x,dv(NMAX),v(NMAX)
do 11 i=1,nvar Load starting values.

v(i)=vstart(i)
y(i,1)=v(i)

enddo 11

xx(1)=x1
x=x1
h=(x2-x1)/nstep
do 13 k=1,nstep Take nstep steps.

call derivs(x,v,dv)
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call rk4(v,dv,nvar,x,h,v,derivs)
if(x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar

y(i,k+1)=v(i)
enddo 12

enddo 13

return
END
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16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance, most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the
three separate Runge-Kutta steps in the procedure requires 4 evaluations, but the
single and double sequences share a starting point, so the total is 11. This is to be
compared not to 4, but to 8 (the two half-steps), since — stepsize control aside —
we are achieving the accuracy of the smaller (half) stepsize. The overhead cost is
therefore a factor 1.375. What does it buy us?


