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A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A · x− C · y = b

C · x + A · y = d
(2.3.17)

which can be written as a 2N × 2N set of real equations,(
A −C
C A

)
·
(

x
y

)
=

(
b
d

)
(2.3.18)

and then solved with ludcmp and lubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient in
time, since the complex multiplies in a complexified version of the routines would each use
4 real multiplies, while the solution of a 2N × 2N problem involves 8 times the work of
an N ×N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take onlyO(N) operations, and the whole solution can be encoded
very concisely. The resulting routinetridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N ×N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is

b1 c1 0 · · ·
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

· · · 0 aN bN

 ·


u1

u2

· · ·
uN−1

uN

 =


r1

r2

· · ·
rN−1

rN

 (2.4.1)
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Notice that a1 and cN are undefined and are not referenced by the routine that follows.

#include "nrutil.h"

void tridag(float a[], float b[], float c[], float r[], float u[],
unsigned long n)

Solves for a vector u[1..n] the tridiagonal linear set given by equation (2.4.1). a[1..n],
b[1..n], c[1..n], and r[1..n] are input vectors and are not modified.
{

unsigned long j;
float bet,*gam;

gam=vector(1,n); One vector of workspace, gam is needed.
if (b[1] == 0.0) nrerror("Error 1 in tridag");
If this happens then you should rewrite your equations as a set of order N − 1, with u2

trivially eliminated.
u[1]=r[1]/(bet=b[1]);
for (j=2;j<=n;j++) { Decomposition and forward substitution.

gam[j]=c[j-1]/bet;
bet=b[j]-a[j]*gam[j];
if (bet == 0.0) nrerror("Error 2 in tridag"); Algorithm fails; see be-

low.u[j]=(r[j]-a[j]*u[j-1])/bet;
}
for (j=(n-1);j>=1;j--)

u[j] -= gam[j+1]*u[j+1]; Backsubstitution.
free_vector(gam,1,n);

}

There is no pivoting in tridag. It is for this reason that tridag can fail even
when the underlying matrix is nonsingular: A zero pivot can be encountered even for
a nonsingular matrix. In practice, this is not something to lose sleep about. The kinds
of problems that lead to tridiagonal linear sets usually have additional properties
which guarantee that the algorithm in tridag will succeed. For example, if

|bj | > |aj |+ |cj | j = 1, . . . , N (2.4.2)

(called diagonal dominance) then it can be shown that the algorithm cannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causes numerical instability. In practice, however, such instability is almost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systems are slightly more general and have (say)m1 ≥ 0 nonzero elements
immediately to the left of (below) the diagonal andm2 ≥ 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification ifm1 andm2 are both� N .
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In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N ×N case.

The precise definition of a band diagonal matrix with elements aij is that

aij = 0 when j > i+m2 or i > j +m1 (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45◦ clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + m2 columns and N rows. This is best illustrated by an example:
The band diagonal matrix 

3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4

 (2.4.4)

which has N = 7, m1 = 2, and m2 = 1, is stored compactly as the 7 × 4 matrix,

x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x

 (2.4.5)

Here x denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m1 + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements aij out of the
compact storage format in an orderly fashion.

#include "nrutil.h"

void banmul(float **a, unsigned long n, int m1, int m2, float x[], float b[])
Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal and m2
rows above. The input vector x and output vector b are stored as x[1..n] and b[1..n],
respectively. The array a[1..n][1..m1+m2+1] stores A as follows: The diagonal elements
are in a[1..n][m1+1]. Subdiagonal elements are in a[j..n][1..m1] (with j > 1 ap-
propriate to the number of elements on each subdiagonal). Superdiagonal elements are in
a[1..j][m1+2..m1+m2+1] with j < n appropriate to the number of elements on each su-
perdiagonal.
{

unsigned long i,j,k,tmploop;

for (i=1;i<=n;i++) {
k=i-m1-1;
tmploop=LMIN(m1+m2+1,n-k);
b[i]=0.0;
for (j=LMAX(1,1-k);j<=tmploop;j++) b[i] += a[i][j]*x[j+k];

}
}
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It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout’s
method, see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
is to return the upper triangular factor (U ) in the same space that A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N × m1. The
diagonal elements of U (whose product, times d= ±1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of ludcmp in §2.3:

#include <math.h>
#define SWAP(a,b) {dum=(a);(a)=(b);(b)=dum;}
#define TINY 1.0e-20

void bandec(float **a, unsigned long n, int m1, int m2, float **al,
unsigned long indx[], float *d)

Given an n× n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal rows,
compactly stored in the array a[1..n][1..m1+m2+1] as described in the comment for routine
banmul, this routine constructs an LU decomposition of a rowwise permutation of A. The upper
triangular matrix replaces a, while the lower triangular matrix is returned in al[1..n][1..m1].
indx[1..n] is an output vector which records the row permutation effected by the partial
pivoting; d is output as ±1 depending on whether the number of row interchanges was even
or odd, respectively. This routine is used in combination with banbks to solve band-diagonal
sets of equations.
{

unsigned long i,j,k,l;
int mm;
float dum;

mm=m1+m2+1;
l=m1;
for (i=1;i<=m1;i++) { Rearrange the storage a bit.

for (j=m1+2-i;j<=mm;j++) a[i][j-l]=a[i][j];
l--;
for (j=mm-l;j<=mm;j++) a[i][j]=0.0;

}
*d=1.0;
l=m1;
for (k=1;k<=n;k++) { For each row...

dum=a[k][1];
i=k;
if (l < n) l++;
for (j=k+1;j<=l;j++) { Find the pivot element.

if (fabs(a[j][1]) > fabs(dum)) {
dum=a[j][1];
i=j;

}
}
indx[k]=i;
if (dum == 0.0) a[k][1]=TINY;
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in
some applications).
if (i != k) { Interchange rows.

*d = -(*d);
for (j=1;j<=mm;j++) SWAP(a[k][j],a[i][j])

}
for (i=k+1;i<=l;i++) { Do the elimination.

dum=a[i][1]/a[k][1];
al[k][i-k]=dum;
for (j=2;j<=mm;j++) a[i][j-1]=a[i][j]-dum*a[k][j];
a[i][mm]=0.0;

}
}

}
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Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U , then the original matrix (perhaps as modified by roundoff error)
is in fact singular. In this regard, bandec is somewhat more robust than tridag above,
which can fail algorithmically even for nonsingular matrices; bandec is thus also useful (with
m1 = m2 = 1) for some ill-behaved tridiagonal systems.

Once the matrix A has been decomposed, any number of right-hand sides can be solved in
turn by repeated calls to banbks, the backsubstitution routine whose analog in §2.3 is lubksb.

#define SWAP(a,b) {dum=(a);(a)=(b);(b)=dum;}

void banbks(float **a, unsigned long n, int m1, int m2, float **al,
unsigned long indx[], float b[])

Given the arrays a, al, and indx as returned from bandec, and given a right-hand side vector
b[1..n], solves the band diagonal linear equations A · x = b. The solution vector x overwrites
b[1..n]. The other input arrays are not modified, and can be left in place for successive calls
with different right-hand sides.
{

unsigned long i,k,l;
int mm;
float dum;

mm=m1+m2+1;
l=m1;
for (k=1;k<=n;k++) { Forward substitution, unscrambling the permuted rows

as we go.i=indx[k];
if (i != k) SWAP(b[k],b[i])
if (l < n) l++;
for (i=k+1;i<=l;i++) b[i] -= al[k][i-k]*b[k];

}
l=1;
for (i=n;i>=1;i--) { Backsubstitution.

dum=b[i];
for (k=2;k<=l;k++) dum -= a[i][k]*b[k+i-1];
b[i]=dum/a[i][1];
if (l < mm) l++;

}
}

The routines bandec and banbks are based on the Handbook routines bandet1 and
bansol1 in [1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.
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A

A−1

δx

x +
 δx

x b
b + δb

δb

Figure 2.5.1. Iterative improvement of the solution to A · x = b. The first guess x + δx is multiplied by
A to produce b + δb. The known vector b is subtracted, giving δb. The linear set with this right-hand
side is inverted, giving δx. This is subtracted from the first guess giving an improved solution x.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multiplied by the matrix A, your slightly wrong
solution gives a product slightly discrepant from the desired right-hand side b, namely

A · (x + δx) = b + δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)


