19.5 Relaxation Methods for Boundary Value Problems 863

FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem (19.0.3), isacombination of Fourier analysisand cyclicreduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagona system in the x-direction for each y-Fourier mode:

@+ AT Ak, = A2g0F (19.4.35)

Here)\,(:) is the eigenvalue of TM corresponding to the kth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows that)\,(:) will involve terms like
cos(2rk/L) — 2 raised to apower. Solvethetridiagona systems for a§ at thelevels
j=2"2x2".4x2" .., J—2". Fourier synthesize to get the y-values on these
z-lines. Then fill in the intermediate z-lines as in the original CR agorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for atypical case of a128x128
mesh, the optimal level isr = 2; asymptotically, » — log,(log, J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both = and %) and the CR method are roughly
comparable. FACR with » = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual agorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with » = 2 gives another factor
of two gain in speed.

CITED REFERENCES AND FURTHER READING:
Swartzrauber, P.N. 1977, SIAM Review, vol. 19, pp. 490-501. [1]

Buzbee, B.L, Golub, G.H., and Nielson, C.W. 1970, SIAM Journal on Numerical Analysis, vol. 7,
pp. 627-656; see also op. cit. vol. 11, pp. 753-763. [2]

Hockney, R.W. 1965, Journal of the Association for Computing Machinery, vol. 12, pp. 95-113. [3]

Hockney, R.W. 1970, in Methods of Computational Physics, vol. 9 (New York: Academic Press),
pp. 135-211. [4]

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6. [5]

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314-329. [6]

19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
meatrix that arises from finite differencing and then iterating until a solutionisfound.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the dliptic equation

Lu=p (19.5.1)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

864 Chapter 19. Partial Differential Equations

where £ represents some elliptic operator and p is the source term. Rewrite the
equation as a diffusion equation,

— =Lu— 1952

5 = Lu—p ()
An initia distribution u relaxes to an equilibrium solution as t — oo. This
equilibrium has al time derivatives vanishing. Therefore it is the solution of the
origina ellipticproblem (19.5.1). We seethat al themachinery of §19.2, ondiffusive
initial value equations, can be brought to bear on the solution of boundary value

problems by relaxation methods.

Let usapply thisideato our model problem (19.0.3). The diffusion equation is
ou 0%u &

R + 0 —p (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

U/jj'l = uj,l —+ F (uj—l—l,l + uj—l,l + Uj7l+1 + uj,l—l — 4uj7l) — pj,lAt (1954)
Recall from (19.2.6) that FTCS differencingis stablein one spatia dimensiononly if
At/A? < 1. Intwo dimensions this becomes At/A? < 1. Suppose wetry to take
the largest possibletimestep, and set At = A?%/4. Then equation (19.5.4) becomes

1 A2
wirt =7 (g uio e i) = (1955)

Thus the algorithm consists of using the average of v at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classica method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are aways
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigrid methods (§19.6). Here we make use of updated values of « on
theright-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed I, we have
A2

= pid (19.5.6)

1
n+1l __ n n+1 n n+1
u = — (uj 1,0 +uj_17l —|—uj7l 1 —|—uj7l_1) — 1

gl 4
Thismethod isalso slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A-x=b (19.5.7)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

19.5 Relaxation Methods for Boundary Value Problems 865

we can consider splitting A as
A=L+D+U (19.5.8)

where D is the diagona part of A, L is the lower triangle of A with zeros on the
diagonal, and U is the upper triangle of A with zeros on the diagonal .
In the Jacobi method we write for the rth step of iteration

D-x" =—(L+U)-x""D4p (19.5.9)

For our model problem (19.5.5), D issimply the identity matrix. The Jacobi method
converges for matrices A that are “diagonally dominant” in a sense that can be
made mathematically precise. For matrices arising from finite differencing, this
condition is usually met.

What is the rate of convergence of the Jacobi method? A detailed anadysisis
beyond our scope, but here is some of the flavor: The matrix —D~' - (L + U) is
the iteration matrix which, apart from an additive term, maps one set of x’sinto the
next. The iteration matrix has eigenvalues, each one of which reflects the factor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better al have modulus < 1 for
the relaxation to work at al! The rate of convergence of the method is set by the
rate for the dlowest-decaying eigenmode, i.e., the factor with largest modulus. The
modulus of thislargest factor, therefore lying between 0 and 1, is called the spectral
radius of the relaxation operator, denoted p;.

The number of iterations r required to reduce the overall error by a factor
1077 is thus estimated by

pln10

r —Tnpy) (19.5.10)

In general, the spectral radius ps goes asymptotically to the value 1 as the grid
size J is increased, so that more iterations are required. For any given equation,
grid geometry, and boundary condition, the spectral radius can, in principle, be
computed analytically. For example, for equation (19.5.5) on a J x J grid with
Dirichlet boundary conditions on al four sides, the asymptotic formula for large
J turns out to be

71,2

The number of iterationsr required to reduce the error by afactor of 10~? isthus

2pJ2In10 1
e LGo ~ ZpJ? (19.5.12)
™ 2

In other words, the number of iterationsis proportional to the number of mesh points,
J2. Since 100 x 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

866 Chapter 19. Partial Differential Equations

The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L+D) x" =—-U-x""Y 4+b (19.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show [1-3] that the spectral radius isjust the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

pel- (19.5.14)
2In10 1
e w ~ opJ° (19.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
il leaves the method impractical.

Successive Overrelaxation (SOR)

We get abetter algorithm — one that was the standard a gorithm until the 1970s
— if we make an overcorrection to the value of x(*) at the rth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) for x("), add and
subtract x("~1) on the right-hand side, and hence write the Gauss-Seidel method as

X =x=D (L 4+D)"" - [(L+D+U)-xO"1 —p] (19.5.16)
The term in square brackets is just the residual vector £~ so
X =xr=b _ (L 4 D)7t Y (19.5.17)
Now overcorrect, defining
X = xr=1) _ (L 4+ D). gD (19.5.18)

Here w is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:

e The method is convergent only for 0 < w < 2. If 0 < w < 1, we speak
of underrelaxation.

e Under certain mathematical restrictions generally satisfied by matrices
arising from finite differencing, only overrelaxation (1 < w < 2) can give
faster convergence than the Gauss-Seidel method.

o If pyaconi 1S the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidd iteration), then the optimal
choice for w is given by

w = 2 (19.5.19)

1+ Vl_pﬁacobi

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

19.5 Relaxation Methods for Boundary Value Problems 867

e For this optimal choice, the spectral radius for SOR is

2
PSOR=< Placobi) (19.5.20)

1+ Vl_pﬁacobi

As an application of the above results, consider our model problem for which
PJacobi 1S given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

2

~ 19521
YEIT w/J ()

2
psor = 1 — 77T forlarge J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initia error by
a factor of 1077,

Jnlo 1
b 2: ~ op (19.5.23)

~

Comparing with equation (19.5.12) or (19.5.15), we see that optimal SOR requires
of order J iterations, as opposed to of order J2. Since J istypicaly 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we choose w for a problem for which the answer is not known
analyticaly? That is just the weak point of SOR! The advantages of SOR abtain
only in afairly narrow window around the correct value of w. It is better to take w
dlightly too large, rather than slightly too small, but best to get it right.

One way to choose w is to map your problem approximately onto a known
problem, replacing the coefficientsin the equation by average values. Note, however,
that the known problem must have the same grid size and boundary conditionsas the
actua problem. We give for reference purposes the value of pjacon; for our model
problem on arectangular J x L grid, allowing for the possibility that Az # Ay:

[¢e} + (Ar) co il
S — — s —
J T\ A L
Placobi = v/ (19.5.24)
14 (A
Ay

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement = — 27.

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with dightly different coefficients, is to determine the
optimum value w empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of w are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

868 Chapter 19. Partial Differential Equations

Consider a general second-order eliptic equation in = and y, finite differenced on
a square as for our model equation. Corresponding to each row of the matrix A
is an equation of the form

ajiprn +bjiui—10 4 ¢jaug i + djaugi-1 + ejaug = fi (19.5.25)

For our model equation, wehad a = b = ¢ = d = 1,e = —4. The quantity
f is proportiona to the source term. The iterative procedure is defined by solving
(19.5.25) for wu;,:
« 1
w = (fi = ajaujran = bjauwj—11 = ciaujipr — djauji-1) (19.5.26)
s
Then w39™ is a weighted average

ul = w1 - w)udy (19.5.27)

We calculate it as follows. The residual at any stage is
Ei0 = ajaujprg +bjaug 1+ ciaugie +djugao1 +ejaugg — i (19.5.28)

and the SOR agorithm (19.5.18) or (19.5.27) is

wh = udf — Wil (19.5.29)
€5,1

This formulation is very easy to program, and the norm of the residual vector ¢, ;
can be used as a criterion for terminating the iteration.

Another practical point concerns the order in which mesh points are processed.
The obvious strategy is simply to proceed in order down the rows (or columns).
Alternatively, suppose we divide the mesh into “odd” and “even” meshes, like the
red and black sguares of a checkerboard. Then equation (19.5.26) shows that the
odd points depend only on the even mesh values and vice versa. Accordingly,
we can carry out one half-sweep updating the odd points, say, and then another
half-sweep updating the even points with the new odd values. For the version of
SOR implemented below, we shall adopt odd-even ordering.

The last practical point is that in practice the asymptotic rate of convergence
in SOR is not attained until of order J iterations. The error often grows by a
factor of 20 before convergence setsin. A trivial modification to SOR resolves this
problem. It is based on the observation that, while w is the optimum asymptotic
relaxation parameter, it is not necessarily a good initia choice. In SOR with
Chebyshev acceleration, one uses odd-even ordering and changes w at each half-
sweep according to the following prescription:

w® =1
w(l/?) = 1/(1 - p%acobi/2)

(19.5.30)
W2 — /(1 — p2 @™ /), n=1/2,1,...,00

o
w() — Woptimal

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

19.5 Relaxation Methods for Boundary Value Problems 869

The beauty of Chebyshev acceleration isthat the norm of the error always decreases
with each iteration. (This is the norm of the actua error in w;,;. The norm of
the residua ¢;,; need not decrease monotonically.) While the asymptotic rate of
convergence is the same as ordinary SOR, there is never any excuse for not using
Chebyshev acceleration to reduce the total number of iterations required.

Here we give aroutine for SOR with Chebyshev acceleration.

#include <math.h>
#define MAXITS 1000
#define EPS 1.0e-5

void sor(double **a, double **b, double **c, double **d, double **e,

double **f, double **u, int jmax, double rjac)
Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a, b, c,
d, e, and £ are input as the coefficients of the equation, each dimensioned to the grid size
[1..jmax] [1..jmax]. uis input as the initial guess to the solution, usually zero, and returns
with the final value. rjac is input as the spectral radius of the Jacobi iteration, or an estimate
of it.
{

void nrerror(char error_text[]);

int ipass,j,jsw,1l,1lsw,n;

double anorm,anormf=0.0,omega=1.0,resid;

Double precision is a good idea for jmax bigger than about 25.

for (j=2;j<jmax;j++)
Compute initial norm of residual and terminate iteration when norm has been reduced by
a factor EPS.
for (1=2;1<jmax;1l++)
anormf += fabs(£[j]1[11);
for (n=1;n<=MAXITS;n++) {
anorm=0.0;
jsw=1;
for (ipass=1;ipass<=2;ipass++) { Odd-even ordering.
lsw=jsw;
for (j=2;j<jmax;j++) {
for (1=1lsw+1;1<jmax;1+=2) {
resid=alj] [11*ul[j+1][1]
+b[j1[11*ulj-11[1]
+c[31[11*ul3] [1+1]
+d[j]1[11*ulj][1-1]
+e[jI[11*ulj][1]
-£[j101];
anorm += fabs(resid);
ulj]l[1] -= omega*resid/e[j]1[1];

Assumes initial u is zero.

}
1lsw=3-1sw;
}
jsw=3-jsw;
omega=(n == 1 && ipass == 1 7 1.0/(1.0-0.5*rjac*rjac)
1.0/(1.0-0.25*rjac*rjac*omega)) ;
}
if (anorm < EPS*anormf) return;

}

nrerror ("MAXITS exceeded");

The main advantage of SOR is that it is very easy to program. Its main
disadvantage is that it is still very inefficient on large problems.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

870 Chapter 19. Partial Differential Equations

ADI (Alternating-Direction Implicit) Method

The ADI method of §19.3 for diffusion equations can beturned into arel axation
method for dliptic equations[1-4]. In §19.3, we discussed ADI as a method for
solving the time-dependent heat-flow equation

ou 9
o =V (19.5.31)

By lettingt — oo one also gets an iterative method for solving the éliptic equation
Viu=p (19.5.32)

In either case, the operator splitting is of the form
L=L.~+L, (19.5.33)

where £, represents the differencing in « and £, that in y.
For example, in our model problem (19.0.6) with Az = Ay = A, we have

Low = 2ujp —ujy1l — Uj-1,
(19.5.34)
Lyuw = 2uji —wjit1 = uji-1

More complicated operators may be similarly split, but there is some art involved.
A bad choice of splitting can lead to an algorithm that fails to converge. Usually
one tries to base the splitting on the physical nature of the problem. We know for
our model problem that an initial transient diffuses away, and we set up the z and
y splitting to mimic diffusion in each dimension.

Having chosen a splitting, we difference the time-dependent equation (19.5.31)
implicitly in two half-steps:

un+1/2 —uh _ _Erun+1/2 + Eyu" B
At)2 A2
un+1 _ un+1/2 _ Exu"“ﬂ + Eyu""’l (19535)
At/2 o A2

(cf. equation 19.3.16). Here we have suppressed the spatial indices (5,). In matrix
notation, equations (19.5.35) are

(Ly+71)-unt/2 =(r1—L,)-u" — A% (19.5.36)
(Ly +71) -untt = (rl—L,)-u"tt/2 - A2)p (19.5.37)
where
202
=" 19.5.38
"= A ()

The matrices on the left-hand sides of equations (19.5.36) and (19.5.37) are
tridiagonal (and usualy positive definite), so the equations can be solved by the

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

19.6 Multigrid Methods for Boundary Value Problems 871

standard tridiagonal algorithm. Givenu™, onesolves(19.5.36) for u™+1/2, substitutes
on the right-hand side of (19.5.37), and then solves for u™*!. The key question
is how to choose the iteration parameter r, the analog of a choice of timestep for
an initial value problem.

As usud, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. Thisisin fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If thisis done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature[1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (eg., 20 x 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of §2.7 are useful for solving a set
of difference equations directly. For production solution of large eliptic problems,
however, multigrid is now almost aways the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§68.3-8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods werefirst introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized on N grid pointsin O(N) operations.
The “rapid” direct dliptic solvers discussed in §19.4 solve special kinds of dliptic
equationsin O(N log N) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve genera
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all eliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

