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16.1 Runge-Kutta Method

The formula for the Euler method is

Yn+1 = Yn + hf(Tn, yn) (16.1.1)

which advancesasolutionfromz,, tox,, 1 = x,,+h. Theformulaisunsymmetrical:
It advances the solution through an interva h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h?) added to (16.1.1).

There are severd reasons that Euler’s method is not recommended for practica
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both z and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

kl = hf(CCn, yn)
ko = hf (xn + Sh,yn + $k1) (16.1.2)
Yn+1 = YUn + k2 + O(h’g)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionaly called nth
order if its error term is O(h"*1)] In fact, (16.1.2) is caled the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(z,y) that al agreeto first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
termsorder by order. That isthe basicideaof the Runge-Kuttamethod. Abramowitz
and Stegun [1], and Gear [2], give various specific formulasthat derivefromthisbasic
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Figure 16.1.1. Euler's method. In this simplest (and least accurate) method for integrating an ODE,

the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.
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Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at

each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of theinterval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

kl = hf(fl?n, yn)

h k
ko = hf(an + 5.9n + )
h ey
k :h' n ardn e
3 flz +2y +2)
ky = hf(xn + h,yn + k3)

ki ks ks k
Yni1 = Un+ — + = + = + =+ O(h) (16.1.3)

6 3 3 6

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). Thiswill be superior to the midpoint method
(16.1.2) if at least twice aslarge astep is possiblewith (16.1.3) for the same accuracy.
Isthat so? The answer is. often, perhaps even usually, but surely not dways! This
takes us back to a centra theme, namely that high order does not aways mean
high accuracy. The statement “fourth-order Runge-Kutta is generally superior to
second-order” is a true one, but you should recognize it as a statement about the
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712 Chapter 16.  Integration of Ordinary Differential Equations

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at theinitial point, twice at trial midpoints, and once at atrial endpoint. From these derivatives the
final function value (shown as afilled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
That is, it reflects thenature of the problemsthat contemporary scientistsliketo solve.

For many scientific users, fourth-order Runge-K uttais not just thefirst word on
ODE integrators, but the last word as well. In fact, you can get pretty far on thisold
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse's last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kuttais for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. 1n §16.2 we will give
amodern implementation of a Runge-Kuttamethod that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalsin
constructing a good Runge-Kutta code is given in[3].

Here is the routine for carrying out one classica Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for thisfirst value? The answer
will become clear only in the next section, but in brief is this: This call may not
be your only one with these starting conditions. You may have taken a previous
step with too large a stepsize, and thisis your replacement. In that case, you do not
want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

#include "nrutil.h"

void rk4(float y[], float dydx[], int n, float x, float h, float yout[],

void (*derivs) (float, float [], float []))
Given values for the variables y[1..n] and their derivatives dydx [1. .n] known at x, use the
fourth-order Runge-Kutta method to advance the solution over an interval h and return the
incremented variables as yout [1..n], which need not be a distinct array from y. The user
supplies the routine derivs (x,y,dydx), which returns derivatives dydx at x.

int i;
float xh,hh,h6,*dym,*dyt,*yt;

dym=vector(1,n);
dyt=vector(1,n);
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16.1 Runge-Kutta Method 713

yt=vector(1l,n);

hh=hx0.5;

h6=h/6.0;

xh=x+hh;

for (i=1;i<=n;i++) yt[il=y[i]+hh*dydx[i]; First step.
(*derivs) (xh,yt,dyt); Second step.
for (i=1;i<=n;i++) yt[il=y[i]+hh*dyt[i];

(*derivs) (xh,yt,dym) ; Third step.

for (i=1;i<=n;i++) {
yt[il=y[il+h*dym[i];
dym[i] += dyt[i];

(*derivs) (x+h,yt,dyt) ; Fourth step.
for (i=1;i<=n;i++) Accumulate increments with proper
yout [i]=y [i]+h6% (dydx[i]+dyt [i]+2.0*dym[i]); weights.

free_vector(yt,1,n);
free_vector(dyt,1,n);
free_vector(dym,1,n);

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along thetrajectory of an ordinary differential
equation can serveasaninitial point. Thefact that all stepsaretreated identically also
makes it easy to incorporate Runge-Kuttainto relatively simple “driver” schemes.

We consider adaptive stepsi ze control, discussed in the next section, an essential
for serious computing. Occasionaly, however, you just want to tabulate afunction at
equally spaced intervals, and without particul arly high accuracy. 1nthemost common
case, you want to produce a graph of the function. Then &l you need may be a
simpledriver program that goes from an initial =, to afinal = ; in aspecified number
of steps. To check accuracy, double the number of steps, repeat the integration, and
compare results. Thisapproach surely does not minimize computer time, and it can
fail for problemswhose nature requires a variabl e stepsize, but it may well minimize
user effort. On small problems, this may be the paramount consideration.

Here is such adriver, self-explanatory, which tabulates the integrated functions
in the global arrays *x and *xy; be sure to alocate memory for them with the
routines vector () and matrix(), respectively.

#include "nrutil.h"
float **y,*xx; For communication back to main.

void rkdumb(float vstart[], int nvar, float x1, float x2, int nstep,

void (*derivs) (float, float [], float []))
Starting from initial values vstart[1..nvar] known at x1 use fourth-order Runge-Kutta
to advance nstep equal increments to x2. The user-supplied routine derivs(x,v,dvdx)
evaluates derivatives. Results are stored in the global variables y[1..nvar] [1..nstep+1]
and xx[1..nstep+1].
{

void rk4(float y[], float dydx[], int n, float x, float h, float yout[],

void (*derivs) (float, float [], float [1));

int i,k;

float x,h;

float *v,*vout,*dv;

v=vector(1l,nvar);
vout=vector(1,nvar);
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714 Chapter 16.  Integration of Ordinary Differential Equations

dv=vector(1,nvar);
for (i=1;i<=nvar;i++) { Load starting values.
v[il=vstart[i];

y[i1[1]1=v[i];

xx[1]=x1;

x=x1;

h=(x2-x1) /nstep;

for (k=1;k<=nstep;k++) { Take nstep steps
(*derivs) (x,v,dv);
rk4(v,dv,nvar,x,h,vout,derivs);

if ((float) (x+h) == x) nrerror("Step size too small in routine rkdumb");
X += h;
xx [k+1]=x; Store intermediate steps.

for (i=1;i<=nvar;i++) {
v[il=vout[i];
y[i] [k+1]=v[i];
}
}
free_vector(dv,1,nvar);
free_vector(vout,1,nvar);
free_vector(v,1,nvar);
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16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator shoul d exert someadaptivecontrol over itsown progress,
making frequent changesin itsstepsize. Usually the purpose of thisadaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computationa effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
guantity that can be monitored.

Implementation of adaptive stepsize control requiresthat the stepping algorithm
signal information about its performance, most important, an estimate of itstruncation
error. Inthissection wewill learn how such information can beobtained. Obviously,
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