408 Chapter 10. Minimization or Maximization of Functions

}

du=(*df) (u) ; Now all the housekeeping, sigh.
if (fu <= fx) {
if (u >= x) a=x; else b=x;
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, x,fx,dx)
MOV3(x,fx,dx, u,fu,du)
} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, u,fu,du)
} else if (fu < fv || v == x || v == w) {
MOV3(v,fv,dv, u,fu,du)

}
}
}
nrerror ("Too many iterations in routine dbrent");
return 0.0; Never get here.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 55; 454-458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), p. 78.

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after thissection will make explicit use of aone-dimensiona minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensiona minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster inal likely applications. However, the downhill simplex method
may frequently be the best method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is atriangle. In three dimensionsit is a tetrahedron,
not necessarily the regular tetrahedron. (The simplex method of linear programming,

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

10.4 Downhill Simplex Method in Multidimensions 409

simplex at beginning of step

high
low

reflection

@

reflection and expansion

(b)

contraction

(©

multiple
contraction

(d)

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here atetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) areflection away from the high point, (b) areflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
thelow point. An appropriatesequenceof such stepswill always convergeto aminimum of the function.

describedin§10.8, a so makes use of thegeometrical concept of asimplex. Otherwise
it iscompletely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N-dimensiona volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N-dimensional vector space.

In one-dimensional minimization, it was possibleto bracket aminimum, so that
the success of a subsequent isolation was guaranteed. Alas! Thereis no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our agorithm a starting guess, that is, an N-vector of independent
variablesasthefirst point totry. Thealgorithmisthen supposed to make itsown way

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

410 Chapter 10. Minimization or Maximization of Functions

downhill through the unimaginable complexity of an N-dimensiona topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point,
but with V + 1 points, defining an initial smplex. If you think of one of these
points (it matters not which) as being your initia starting point Py, then you can
take the other N points to be

P, =Py +)e; (10.4.1)

where the g;’s are N unit vectors, and where A is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different \;’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just
moving the point of the smplex where the function is largest (“highest point”)
through the opposite face of the simplex to a lower point. These steps are called
reflections, and they are constructed to conserve the volume of the simplex (hence
maintain its nondegeneracy). When it can do so, the method expands the simplex
in one or another direction to take larger steps. When it reaches a “valley floor,”
the method contracts itself in the transverse direction and tries to ooze down the
valley. If there is a situation where the simplex is trying to “pass through the eye
of aneedle” it contracts itself in al directions, pulling itself in around its lowest
(best) point. The routine name amoeba is intended to be descriptive of thiskind of
behavior; the basic moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent
variable. We typically can identify one “cycle” or “step” of our multidimensiona
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usualy be smaller than the sguare root of the machine precision, it is perfectly
appropriateto let ftol be of order the machine precision (or perhaps dightly larger
S0 as not to be diddled by roundoff).

Notewsell that either of the above criteriamight be fooled by a singleanomal ous
step that, for onereason or another, failed to get anywhere. Therefore, itisfrequently
a good idea to restart a multidimensional minimization routine a a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the smplex again by equation (10.4.1), with
Py being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithmdid, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N-dimensional amoeba:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

10.4 Downhill Simplex Method in Multidimensions 411

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-10 A small number.
#define NMAX 5000 Maximum allowed number of function evalua-
#define GET_PSUM \ tions.
for (j=1;j<=ndim;j++) {\
for (sum=0.0,i=1;i<=mpts;i++) sum += p[il [j];\
psum[j]=sum;}
#define SWAP(a,b) {swap=(a); (a)=(b); (b)=swap;}

void amoeba(float **p, float y[], int ndim, float ftol,

float (*funk) (float []), int *nfunk)
Multidimensional minimization of the function funk (x) where x[1. .ndim] is a vector in ndim
dimensions, by the downhill simplex method of Nelder and Mead. The matrix p[1. .ndim+1]
[1..ndim] is input. lts ndim+1 rows are ndim-dimensional vectors which are the vertices of
the starting simplex. Also input is the vector y[1..ndim+1], whose components must be pre-
initialized to the values of funk evaluated at the ndim+1 vertices (rows) of p; and ftol the
fractional convergence tolerance to be achieved in the function value (n.b.!). On output, p and
y will have been reset to ndim+1 new points all within £tol of a minimum function value, and
nfunk gives the number of function evaluations taken.
{

float amotry(float **p, float y[], float psum[], int ndim,

float (*funk) (float []), int ihi, float fac);
int i,ihi,ilo,inhi,j,mpts=ndim+1;
float rtol,sum,swap,ysave,ytry,*psum;

psum=vector(1,ndim) ;
*nfunk=0;
GET_PSUM
for (;) {
ilo=1;
First we must determine which point is the highest (worst), next-highest, and lowest
(best), by looping over the points in the simplex.
ihi = y[1]>y[2] ? (inhi=2,1) : (inhi=1,2);
for (i=1;i<=mpts;i++) {
if (y[i] <= y[ilo]) ilo=i;
if (y[il > y[ihil) {
inhi=ihi;
ihi=i;
} else if (y[i] > y[inhi] && i != ihi) inhi=i;
}
rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo])+TINY);
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) { If returning, put best point and value in slot 1.
SWAP(y[1],y[ilol)
for (i=1;i<=ndim;i++) SWAP(p[1][i],plilo][i])
break;
}
if (*nfunk >= NMAX) nrerror ("NMAX exceeded");
*nfunk += 2;
Begin a new iteration. First extrapolate by a factor —1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.
ytry=amotry(p,y,psum,ndim, funk,ihi,-1.0);
if (ytry <= yl[ilol)
Gives a result better than the best point, so try an additional extrapolation by a
factor 2.
ytry=amotry(p,y,psum,ndim, funk,ihi,2.0);
else if (ytry >= y[inhi]l) {
The reflected point is worse than the second-highest, so look for an intermediate
lower point, i.e., do a one-dimensional contraction.
ysave=y[ihi];
ytry=amotry(p,y,psum,ndim, funk,ihi,0.5);
if (ytry >= ysave) { Can’t seem to get rid of that high point. Better
for (i=1;i<=mpts;i++) { contract around the lowest (best) point.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

412 Chapter 10. Minimization or Maximization of Functions

if (i '= ilo) {
for (j=1;j<=ndim;j++)
plil [j1=psum[j]1=0.5*(p[i]l [j1+p[ilol [31);
y [i]=(*funk) (psum) ;

}
*nfunk += ndim; Keep track of function evaluations.
GET_PSUM Recompute psum.
}
} else --(*nfunk); Correct the evaluation count.
} Go back for the test of doneness and the next
free_vector(psum,1,ndim); iteration.

#include "nrutil.h"

float amotry(float **p, float y[], float psum[], int ndim,
float (*funk) (float []), int ihi, float fac)
Extrapolates by a factor fac through the face of the simplex across from the high point, tries
it, and replaces the high point if the new point is better.
{
int j;
float facl,fac2,ytry,*ptry;

ptry=vector(l,ndim) ;
fac1=(1.0-fac)/ndim;
fac2=facl-fac;
for (j=1;j<=ndim;j++) ptry[jl=psum[jl*facil-pl[ihi] [j]l*fac2;
ytry=(xfunk) (ptry); Evaluate the function at the trial point.
if (ytry < y[ihil) { If it’s better than the highest, then replace the highest.
y[ihil=ytry;
for (j=1;j<=ndim;j++) {
psum[j] += ptry[jl-plihi] [j];
plihil [j1=ptry[jl;
}
}
free_vector(ptry,1,ndim);
return ytry;

CITED REFERENCES AND FURTHER READING:
Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-313. [1]
Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391-398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1-§10.3) how to minimize a function of one variable. If we
gtart at a point P in N-dimensiona space, and proceed from there in some vector

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

