Numerical Recipes in C

The Art of Scientific Computing Second Edition

William H. Press

Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky

Department of Physics, Cornell University

William T. Vetterling

Polaroid Corporation

Brian P. Flannery

EXXON Research and Engineering Company

Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright © Cambridge University Press 1988, 1992 except for §13.10 and Appendix B, which are placed into the public domain, and except for all other computer programs and procedures, which are Copyright © Numerical Recipes Software 1987, 1988, 1992, 1997 All Rights Reserved.

Some sections of this book were originally published, in different form, in *Computers in Physics* magazine, Copyright © American Institute of Physics, 1988–1992.

First Edition originally published 1988; Second Edition originally published 1992. Reprinted with corrections, 1993, 1994, 1995, 1997. This reprinting is corrected to software version 2.08

Printed in the United States of America Typeset in TFX

Without an additional license to use the contained software, this book is intended as a text and reference book, for reading purposes only. A free license for limited use of the software by the individual owner of a copy of this book who personally types one or more routines into a single computer is granted under terms described on p. xvii. See the section "License Information" (pp. xvi–xviii) for information on obtaining more general licenses at low cost.

Machine-readable media containing the software in this book, with included licenses for use on a single screen, are available from Cambridge University Press. See the order form at the back of the book, email to "orders@cup.org" (North America) or "trade@cup.cam.ac.uk" (rest of world), or write to Cambridge University Press, 110 Midland Avenue, Port Chester, NY 10573 (USA), for further information.

The software may also be downloaded, with immediate purchase of a license also possible, from the Numerical Recipes Software Web Site (http://www.nr.com). Unlicensed transfer of Numerical Recipes programs to any other format, or to any computer except one that is specifically licensed, is strictly prohibited. Technical questions, corrections, and requests for information should be addressed to Numerical Recipes Software, P.O. Box 243, Cambridge, MA 02238 (USA), email "info@nr.com", or fax 781 863-1739.

Library of Congress Cataloging in Publication Data

Numerical recipes in C: the art of scientific computing / William H. Press

... [et al.]. - 2nd ed.

Includes bibliographical references (p.) and index.

ISBN 0-521-43108-5

1. Numerical analysis-Computer programs. 2. Science-Mathematics-Computer programs.

3. C (Computer program language) I. Press, William H.

QA297.N866 1992

519.4'0285'53-dc20

92-8876

A catalog record for this book is available from the British Library.

```
ISBN 0 521 43108 5 Book
ISBN 0 521 43720 2 Example book in C
ISBN 0 521 43724 5 C diskette (IBM 3.5", 1.44M)
ISBN 0 521 57608 3 CDROM (IBM PC/Macintosh)
ISBN 0 521 57607 5 CDROM (UNIX)
```

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.
Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

Contents

	Preface to the Second Edition	хi
	Preface to the First Edition	xiv
	License Information	xvi
	Computer Programs by Chapter and Section	xix
1	Preliminaries	1
	1.0 Introduction	1
	1.1 Program Organization and Control Structures	5
	1.2 Some C Conventions for Scientific Computing	15
	1.3 Error, Accuracy, and Stability	28
2	Solution of Linear Algebraic Equations	32
	2.0 Introduction	32
	2.1 Gauss-Jordan Elimination	36
	2.2 Gaussian Elimination with Backsubstitution	41
	2.3 LU Decomposition and Its Applications	43
	2.4 Tridiagonal and Band Diagonal Systems of Equations	50
	2.5 Iterative Improvement of a Solution to Linear Equations	55
	2.6 Singular Value Decomposition	59
	2.7 Sparse Linear Systems	71
	2.8 Vandermonde Matrices and Toeplitz Matrices	90
	2.9 Cholesky Decomposition	96
	2.10 QR Decomposition	98
	2.11 Is Matrix Inversion an N^3 Process?	102
3	Interpolation and Extrapolation	105
	3.0 Introduction	105
	3.1 Polynomial Interpolation and Extrapolation	108
	3.2 Rational Function Interpolation and Extrapolation	111
	3.3 Cubic Spline Interpolation	113
	3.4 How to Search an Ordered Table	117
	3.5 Coefficients of the Interpolating Polynomial	120
	3.6 Interpolation in Two or More Dimensions	123

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

vi Contents

4.2 Elementary Algorithms 136 4.3 Romberg Integration 140 4.4 Improper Integrals 141 4.5 Gaussian Quadratures and Orthogonal Polynomials 147 4.6 Multidimensional Integrals 161 5 Evaluation of Functions 165 5.0 Introduction 165 5.1 Series and Their Convergence 165 5.2 Evaluation of Continued Fractions 169 5.3 Polynomials and Rational Functions 173 5.4 Complex Arithmetic 176 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 178 5.6 Quadratic and Cubic Equations 183 5.7 Numerical Derivatives 186 5.8 Chebyshev Approximation 190 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195 5.10 Polynomial Approximation from Chebyshev Coefficients 197 5.11 Economization of Power Series 198 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 204 5.14 Evaluation of Functions by Path Integration 208 6 Special Functions 212 6.0 Introduction 212 6.3 Exponen	4	Integration of Functions	129
4.2 Elementary Algorithms 136 4.3 Romberg Integration 140 4.4 Improper Integrals 141 4.5 Gaussian Quadratures and Orthogonal Polynomials 147 4.6 Multidimensional Integrals 161 5 Evaluation of Functions 165 5.0 Introduction 165 5.1 Series and Their Convergence 165 5.2 Evaluation of Continued Fractions 169 5.3 Polynomials and Rational Functions 173 5.4 Complex Arithmetic 176 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 178 5.6 Quadratic and Cubic Equations 183 5.7 Numerical Derivatives 186 5.8 Chebyshev Approximation 190 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195 5.10 Polynomial Approximation from Chebyshev Coefficients 197 5.11 Padé Approximants 200 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 204 5.14 Evaluation of Functions by Path Integration 208 6 Special Functions 212 6.0 Introduction 212 6.1 Gamma Function, Cum		4.0 Introduction	129
4.3 Romberg Integration 140 4.4 Improper Integrals 141 4.5 Gaussian Quadratures and Orthogonal Polynomials 147 4.6 Multidimensional Integrals 161 5 Evaluation of Functions 165 5.0 Introduction 165 5.1 Series and Their Convergence 165 5.2 Evaluation of Continued Fractions 169 5.3 Polynomials and Rational Functions 173 5.4 Complex Arithmetic 176 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 178 5.6 Quadratic and Cubic Equations 183 5.7 Numerical Derivatives 186 5.8 Chebyshev Approximation 190 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195 5.10 Polynomial Approximation from Chebyshev Coefficients 197 5.11 Economization of Power Series 198 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 204 5.14 Evaluation of Functions by Path Integration 208 6 Special Functions 212 6.2 Incomplete Gamma Function, Error Function, Chi-Square		4.1 Classical Formulas for Equally Spaced Abscissas	130
4.4 Improper Integrals 4.5 Gaussian Quadratures and Orthogonal Polynomials 4.6 Multidimensional Integrals 5 Evaluation of Functions 5.0 Introduction 5.1 Series and Their Convergence 5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6. Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction		4.2 Elementary Algorithms	136
4.5 Gaussian Quadratures and Orthogonal Polynomials 4.6 Multidimensional Integrals 5 Evaluation of Functions 5.0 Introduction 5.1 Series and Their Convergence 5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution, F-Distribution, Cumulative Binomial Distribution (Pressel Functions) 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 7 Pandom Numbers 7.0 Introduction		4.3 Romberg Integration	140
4.6 Multidimensional Integrals 5 Evaluation of Functions 5.0 Introduction 5.1 Series and Their Convergence 5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 274			141
5 Evaluation of Functions 5.0 Introduction 5.1 Series and Their Convergence 5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 274			147
5.0 Introduction 5.1 Series and Their Convergence 5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Power Series 5.15 Padé Approximants 5.16 Revultation of Functions by Path Integration 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 274		4.6 Multidimensional Integrals	161
5.1 Series and Their Convergence 5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6. Special Functions 6. Incomplete Gamma Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 216 274	5	Evaluation of Functions	165
5.2 Evaluation of Continued Fractions 5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6. Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 274		5.0 Introduction	165
5.3 Polynomials and Rational Functions 5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 7.0 Introduction 274		5.1 Series and Their Convergence	165
5.4 Complex Arithmetic 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 7.0 Introduction 274		5.2 Evaluation of Continued Fractions	169
5.5 Recurrence Relations and Clenshaw's Recurrence Formula 5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 186 5.8 Chebyshev Approximation 190 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6. Special Functions 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 274		5.3 Polynomials and Rational Functions	173
5.6 Quadratic and Cubic Equations 5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, Cumulative Binomial Distribution Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 218 26 274 274 274		5.4 Complex Arithmetic	176
5.7 Numerical Derivatives 5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 200 201 202 203 204 205 206 207 207 208 209 209 210 210 211 212 212 213 213 214 215 215 216 217 217 218 218 219 219 219 210 210 210 210 210 211 211 211 211 212 212		5.5 Recurrence Relations and Clenshaw's Recurrence Formula	178
5.8 Chebyshev Approximation 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 7 274		5.6 Quadratic and Cubic Equations	183
5.9 Derivatives or Integrals of a Chebyshev-approximated Function 5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 200 201 202 203 204 204 205 212 212 213 214 215 215 216 216 217 217 218 218 219 219 210 210 210 210 211 211 211 212 212 213 213 214 215 215 216 216 217 217 218 218 219 219 219 210 210 210 210 210 211 211 211 211 212 212		5.7 Numerical Derivatives	186
5.10 Polynomial Approximation from Chebyshev Coefficients 5.11 Economization of Power Series 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 204 5.14 Evaluation of Functions by Path Integration 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 274 7.0 Introduction		5.8 Chebyshev Approximation	190
5.11 Economization of Power Series 5.12 Padé Approximants 200 5.13 Rational Chebyshev Approximation 204 5.14 Evaluation of Functions by Path Integration 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 7.0 Introduction 204 205 206 212 212 213 214 215 215 216 216 217 217 218 218 219 219 219 220 221 221 222 223 224 224 225 226 226 227 227 227 228 229 229 220 220 221 221 222 222 223 224 224 225 226 226 227 227 227 228 229 220 220 221 222 222 222 222 222 222 223 223 224 224		5.9 Derivatives or Integrals of a Chebyshev-approximated Function	195
5.12 Padé Approximants 204 5.13 Rational Chebyshev Approximation 208 6.14 Evaluation of Functions by Path Integration 6.0 Introduction 212 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 216 6.3 Exponential Integrals 222 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 271 7 Random Numbers 274		5.10 Polynomial Approximation from Chebyshev Coefficients	197
5.13 Rational Chebyshev Approximation 5.14 Evaluation of Functions by Path Integration 6.208 6 Special Functions 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 271 7 Random Numbers 274		5.11 Economization of Power Series	198
5.14 Evaluation of Functions by Path Integration 6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 7.0 Introduction 222 232 243 244 245 246 247 247 247		5.12 Padé Approximants	200
6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 212 213 213 214 215 216 216 217 217 218 218 219 220 221 222 223 224 225 226 226 227 227 226 227 227 227 228 229 229 220 220 220 220 220 221 220 221 222 222		5.13 Rational Chebyshev Approximation	204
6.0 Introduction 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 7.0 Introduction 212 213 213 214 215 216 216 217 217 218 218 219 220 220 221 222 223 224 225 226 226 227 227 227 228 229 220 220 220 220 221 220 221 222 222 223 224 225 226 226 227 227 227 228 229 229 220 220 220 220 220 220 221 220 221 222 222		5.14 Evaluation of Functions by Path Integration	208
6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 216 6.3 Exponential Integrals 222 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274	6	Special Functions	212
6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 216 6.3 Exponential Integrals 222 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274		6.0 Introduction	212
Probability Function, Cumulative Poisson Function 6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 7 Random Numbers 7.0 Introduction 226 2274 2274		6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients	213
6.3 Exponential Integrals 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 6.5 Bessel Functions of Integer Order 6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 222 223 224 225 226 227 227 227 228 229 220 220 220 220 220 220 220 220 220			216
6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274			222
Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274			
6.5 Bessel Functions of Integer Order 236 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274 7.0 Introduction			226
6.6 Modified Bessel Functions of Integer Order 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 6.8 Spherical Harmonics 6.9 Fresnel Integrals, Cosine and Sine Integrals 6.10 Dawson's Integral 6.11 Elliptic Integrals and Jacobian Elliptic Functions 6.12 Hypergeometric Functions 7 Random Numbers 7.0 Introduction 236 240 240 240 240 240 240 240 240 240 240			
6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274			
Bessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274 7.0 Introduction 274			
6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274 7.0 Introduction 274			240
6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274 7.0 Introduction 274			
6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 274 7.0 Introduction 274		•	
6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 7.0 Introduction 274		· · · · · · · · · · · · · · · · · · ·	
6.12 Hypergeometric Functions 271 7 Random Numbers 274 7.0 Introduction 274		<u> </u>	
7.0 Introduction 274			
7.0 Introduction 274	7	Random Numbers	274
			275

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs

^	•••
Contents	V11
Contents	V 11

	7.2 Transformation Method: Exponential and Normal Deviates	287
	7.3 Rejection Method: Gamma, Poisson, Binomial Deviates	290
	7.4 Generation of Random Bits	296
	7.5 Random Sequences Based on Data Encryption	300
	7.6 Simple Monte Carlo Integration	304
	7.7 Quasi- (that is, Sub-) Random Sequences	309
	7.8 Adaptive and Recursive Monte Carlo Methods	316
8	Sorting	329
	8.0 Introduction	329
	8.1 Straight Insertion and Shell's Method	330
	8.2 Quicksort	332
	8.3 Heapsort	336
	8.4 Indexing and Ranking	338
	8.5 Selecting the M th Largest	341
	8.6 Determination of Equivalence Classes	345
9	Root Finding and Nonlinear Sets of Equations	347
	9.0 Introduction	347
	9.1 Bracketing and Bisection	350
	9.2 Secant Method, False Position Method, and Ridders' Method	354
	9.3 Van Wijngaarden–Dekker–Brent Method	359
	9.4 Newton-Raphson Method Using Derivative	362
	9.5 Roots of Polynomials	369
	9.6 Newton-Raphson Method for Nonlinear Systems of Equations	379
	9.7 Globally Convergent Methods for Nonlinear Systems of Equations	383
10	Minimization or Maximization of Functions	394
	10.0 Introduction	394
	10.1 Golden Section Search in One Dimension	397
	10.2 Parabolic Interpolation and Brent's Method in One Dimension	402
	10.3 One-Dimensional Search with First Derivatives	405
	10.4 Downhill Simplex Method in Multidimensions	408
	10.5 Direction Set (Powell's) Methods in Multidimensions	412
	10.6 Conjugate Gradient Methods in Multidimensions	420
	10.7 Variable Metric Methods in Multidimensions	425
	10.8 Linear Programming and the Simplex Method	430
	10.9 Simulated Annealing Methods	444
11	Eigensystems	456
	11.0 Introduction	456
	11.1 Jacobi Transformations of a Symmetric Matrix	463
	11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:	
	Givens and Householder Reductions	469
	11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix	475
	11.4 Hermitian Matrices	481
	11.5 Reduction of a General Matrix to Hessenberg Form	482

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

viii Contents

	11.6 The QR Algorithm for Real Hessenberg Matrices 11.7 Improving Eigenvalues and/or Finding Eigenvectors by	486
	Inverse Iteration	493
12	Fast Fourier Transform	496
	12.0 Introduction	496
	12.1 Fourier Transform of Discretely Sampled Data	500
	12.2 Fast Fourier Transform (FFT)	504
	12.3 FFT of Real Functions, Sine and Cosine Transforms	510
	12.4 FFT in Two or More Dimensions	521
	12.5 Fourier Transforms of Real Data in Two and Three Dimensions	525
	12.6 External Storage or Memory-Local FFTs	532
13	Fourier and Spectral Applications	<i>537</i>
	13.0 Introduction	537
	13.1 Convolution and Deconvolution Using the FFT	538
	13.2 Correlation and Autocorrelation Using the FFT	545
	13.3 Optimal (Wiener) Filtering with the FFT	547
	13.4 Power Spectrum Estimation Using the FFT	549
	13.5 Digital Filtering in the Time Domain	558
	13.6 Linear Prediction and Linear Predictive Coding13.7 Power Spectrum Estimation by the Maximum Entropy	564
	(All Poles) Method	572
	13.8 Spectral Analysis of Unevenly Sampled Data	575
	13.9 Computing Fourier Integrals Using the FFT	584
	13.10 Wavelet Transforms	591
	13.11 Numerical Use of the Sampling Theorem	606
14	Statistical Description of Data	609
	14.0 Introduction	609
	14.1 Moments of a Distribution: Mean, Variance, Skewness,	007
	and So Forth	610
	14.2 Do Two Distributions Have the Same Means or Variances?	615
	14.3 Are Two Distributions Different?	620
	14.4 Contingency Table Analysis of Two Distributions	628
	14.5 Linear Correlation	636
	14.6 Nonparametric or Rank Correlation	639
	14.7 Do Two-Dimensional Distributions Differ?	645
	14.8 Savitzky-Golay Smoothing Filters	650
15	Modeling of Data	656
	15.0 Introduction	656
	15.1 Least Squares as a Maximum Likelihood Estimator	657
	15.2 Fitting Data to a Straight Line	661
	15.3 Straight-Line Data with Errors in Both Coordinates	666
	15.4 General Linear Least Squares	671
	15.5 Nonlinear Models	681

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

^ , ,	
Contents	1 Y
Contents	1/1

	15.6 Confidence Limits on Estimated Model Parameters 15.7 Robust Estimation	689 699	
16	Integration of Ordinary Differential Equations	707	
	16.0 Introduction	707	
	16.1 Runge-Kutta Method	710	≤. ॡ ₽ Ç છ
	16.2 Adaptive Stepsize Control for Runge-Kutta	714	Sample Copyrigh Permissi Peradable readable
	16.3 Modified Midpoint Method	722	le pa ight ssio ble f ebs
	16.4 Richardson Extrapolation and the Bulirsch-Stoer Method	724	age (C) illes
	16.5 Second-Order Conservative Equations	732	from NUMI 1988-1992 granted for (including the http://www.r
	16.6 Stiff Sets of Equations	734	n NL 8-19 nted ludii ludii
	16.7 Multistep, Multivalue, and Predictor-Corrector Methods	747	JMERI 992 by 96 int for int ng this w.nr.c
17	Two Point Boundary Value Problems	<i>753</i>	Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
	17.0 Introduction	753	ECI ridg user o ar call
	17.1 The Shooting Method	757	PES e UI s to s to 1-80
	17.2 Shooting to a Fitting Point	760	mal mal erve
	17.3 Relaxation Methods	762	C: 7 rsity (e ol
	17.4 A Worked Example: Spheroidal Harmonics	772	THE Pre ne p mpu 7423
	17.5 Automated Allocation of Mesh Points	783	AR: ss. lape ter, (No
	17.6 Handling Internal Boundary Conditions or Singular Points	784	THE ART OF : ty Press. Progra one paper copy omputer, is stric -7423 (North Ar
18	Integral Equations and Inverse Theory	788	SCIENTIFIC COMPUTING (ISBN 0-521-43108-5; rams Copyright (C) 1988-1992 by Numerical Recip for their own personal use. Further reproduction ictly prohibited. To order Numerical Recipes books (merica only), or send email to trade @cup.cam.ac
	18.0 Introduction	788	ENTIFIC C Copyright their own brohibited. ca only), c
	18.1 Fredholm Equations of the Second Kind	791	ight wn left.
	18.2 Volterra Equations	794	pers To
	18.3 Integral Equations with Singular Kernels	797	PUT 198 ona orde orde nd e
	18.4 Inverse Problems and the Use of A Priori Information	804	8-10 8-10 I usu I nsu I mai
	18.5 Linear Regularization Methods	808) (IS)92 e. Fi e. Fi l to
	18.6 Backus-Gilbert Method	815	by Nurther Jur
	18.7 Maximum Entropy Image Restoration	818	PUTING (ISBN 0-521-43 1988-1992 by Numerica sonal use. Further reprod order Numerical Recipes ind email to trade@cup.c
19	Partial Differential Equations	827	-43108 ical Re ical Re oducti oes bounces o.cam.
	19.0 Introduction	827	108-5) Recipes uction, or books, d am.ac.uk
	19.1 Flux-Conservative Initial Value Problems	834	bran disk
	19.2 Diffusive Initial Value Problems	847	Softw any cany cansiskette
	19.3 Initial Value Problems in Multidimensions	853	ware. copyi tes, o side N
	19.4 Fourier and Cyclic Reduction Methods for Boundary	000	ng c r CE lorth
	Value Problems	857	of ma ORO
	19.5 Relaxation Methods for Boundary Value Problems	863	achi Ms heric
	19.6 Multigrid Methods for Boundary Value Problems	871	ne- ia).
20	Less-Numerical Algorithms	889	
-	20.0 Introduction	889	
	20.1 Diagnosing Machine Parameters	889	
	20.2 Gray Codes	894	
	20.2 Graj Code5	0,74	

x Contents

20.3 Cyclic Redundancy and Other Checksums	896
20.4 Huffman Coding and Compression of Data	903
20.5 Arithmetic Coding	910
20.6 Arithmetic at Arbitrary Precision	915
References	926
Appendix A: Table of Prototype Declarations	930
Appendix B: Utility Routines	940
Appendix C: Complex Arithmetic	948
Index of Programs and Dependencies	951
General Index	965

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.
Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade @cup.cam.ac.uk (outside North America).

Preface to the Second Edition

Our aim in writing the original edition of *Numerical Recipes* was to provide a book that combined general discussion, analytical mathematics, algorithmics, and actual working programs. The success of the first edition puts us now in a difficult, though hardly unenviable, position. We wanted, then and now, to write a book that is informal, fearlessly editorial, unesoteric, and above all useful. There is a danger that, if we are not careful, we might produce a second edition that is weighty, balanced, scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then, we were making educated guesses, based on existing literature and our own research, about which numerical techniques were the most important and robust. Now, we have the benefit of direct feedback from a large reader community. Letters to our alter-ego enterprise, Numerical Recipes Software, are in the thousands per year. (Please, don't telephone us.) Our post office box has become a magnet for letters pointing out that we have omitted some particular technique, well known to be important in a particular field of science or engineering. We value such letters, and digest them carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this Second Edition of *Numerical Recipes* is substantially larger than its predecessor, in fact about 50% larger both in words and number of included programs (the latter now numbering well over 300). "Don't let the book grow in size," is the advice that we received from several wise colleagues. We have tried to follow the intended spirit of that advice, even as we violate the letter of it. We have not lengthened, or increased in difficulty, the book's principal discussions of mainstream topics. Many new topics are presented at this same accessible level. Some topics, both from the earlier edition and new to this one, are now set in smaller type that labels them as being "advanced." The reader who ignores such advanced sections completely will not, we think, find any lack of continuity in the shorter volume that results.

Here are some highlights of the new material in this Second Edition:

- a new chapter on integral equations and inverse methods
- a detailed treatment of multigrid methods for solving elliptic partial differential equations
- routines for band diagonal linear systems
- improved routines for linear algebra on sparse matrices
- Cholesky and QR decomposition
- orthogonal polynomials and Gaussian quadratures for arbitrary weight functions
- methods for calculating numerical derivatives
- Padé approximants, and rational Chebyshev approximation
- Bessel functions, and modified Bessel functions, of fractional order; and several other new special functions
- improved random number routines
- quasi-random sequences
- routines for adaptive and recursive Monte Carlo integration in highdimensional spaces
- globally convergent methods for sets of nonlinear equations

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). Sample page from NUMERICAL RECIPES IN C: Copyright (C) 1988-1992 by Cambridge University 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

- simulated annealing minimization for continuous control spaces
- fast Fourier transform (FFT) for real data in two and three dimensions
- fast Fourier transform (FFT) using external storage
- improved fast cosine transform routines
- wavelet transforms
- Fourier integrals with upper and lower limits
- spectral analysis on unevenly sampled data
- Savitzky-Golay smoothing filters
- fitting straight line data with errors in both coordinates
- a two-dimensional Kolmogorov-Smirnoff test
- the statistical bootstrap method
- embedded Runge-Kutta-Fehlberg methods for differential equations
- high-order methods for stiff differential equations
- a new chapter on "less-numerical" algorithms, including Huffman and arithmetic coding, arbitrary precision arithmetic, and several other topics.

Consult the Preface to the First Edition, following, or the Table of Contents, for a list of the more "basic" subjects treated.

Acknowledgments

It is not possible for us to list by name here all the readers who have made useful suggestions; we are grateful for these. In the text, we attempt to give specific attribution for ideas that appear to be original, and not known in the literature. We apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providing us with ideas, comments, suggestions, and programs for this Second Edition. We especially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert Lupton, Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie Baliunas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas Loredo, Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold Lewis, Peter Weinberger, David Syer, Richard Ferch, Steven Ebstein, Bradley Keister, and William Gould. We have been helped by Nancy Lee Snyder's mastery of a complicated TeX manuscript. We express appreciation to our editors Lauren Cowles and Alan Harvey at Cambridge University Press, and to our production editor Russell Hahn. We remain, of course, grateful to the individuals acknowledged in the Preface to the First Edition.

Special acknowledgment is due to programming consultant Seth Finkelstein, who wrote, rewrote, or influenced many of the routines in this book, as well as in its FORTRAN-language twin and the companion Example books. Our project has benefited enormously from Seth's talent for detecting, and following the trail of, even very slight anomalies (often compiler bugs, but occasionally our errors), and from his good programming sense. To the extent that this edition of *Numerical Recipes in C* has a more graceful and "C-like" programming style than its predecessor, most of the credit goes to Seth. (Of course, we accept the blame for the FORTRANish lapses that still remain.)

We prepared this book for publication on DEC and Sun workstations running the UNIX operating system, and on a 486/33 PC compatible running MS-DOS 5.0/Windows 3.0. (See §1.0 for a list of additional computers used in

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.
granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine(including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs program tests.) We enthusiastically recommend the principal software used: GNU Emacs, TeX, Perl, Adobe Illustrator, and PostScript. Also used were a variety of C compilers – too numerous (and sometimes too buggy) for individual acknowledgment. It is a sobering fact that our standard test suite (exercising all the routines in this book) has uncovered compiler bugs in many of the compilers tried. When possible, we work with developers to see that such bugs get fixed; we encourage interested compiler developers to contact us about such arrangements.

WHP and SAT acknowledge the continued support of the U.S. National Science Foundation for their research on computational methods. D.A.R.P.A. support is acknowledged for §13.10 on wavelets.

June, 1992

William H. Press Saul A. Teukolsky William T. Vetterling Brian P. Flannery Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.
Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

Preface to the First Edition

We call this book *Numerical Recipes* for several reasons. In one sense, this book is indeed a "cookbook" on numerical computation. However there is an important distinction between a cookbook and a restaurant menu. The latter presents choices among complete dishes in each of which the individual flavors are blended and disguised. The former — and this book — reveals the individual ingredients and explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational techniques. This book is unique, we think, in offering, for each topic considered, a certain amount of general discussion, a certain amount of analytical mathematics, a certain amount of discussion of algorithmics, and (most important) actual implementations of these ideas in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. You will find that for some topics we have tilted quite far to the analytic side; this where we have felt there to be gaps in the "standard" mathematical training. For other topics, where the mathematical prerequisites are universally held, we have tilted towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation.

We admit, therefore, to some unevenness in the "level" of this book. About half of it is suitable for an advanced undergraduate course on numerical computation for science or engineering majors. The other half ranges from the level of a graduate course to that of a professional reference. Most cookbooks have, after all, recipes at varying levels of complexity. An attractive feature of this approach, we think, is that the reader can use the book at increasing levels of sophistication as his/her experience grows. Even inexperienced readers should be able to use our most advanced routines as black boxes. Having done so, we hope that these readers will subsequently go back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods of numerical computation can be simultaneously efficient, clever, and — important — clear. The alternative viewpoint, that efficient computational methods must necessarily be so arcane and complex as to be useful only in "black box" form, we firmly reject.

Our purpose in this book is thus to open up a large number of computational black boxes to your scrutiny. We want to teach you to take apart these black boxes and to put them back together again, modifying them to suit your specific needs. We assume that you are mathematically literate, i.e., that you have the normal mathematical preparation associated with an undergraduate degree in a physical science, or engineering, or economics, or a quantitative social science. We assume that you know how to program a computer. We do not assume that you have any prior formal knowledge of numerical analysis or numerical methods.

The scope of *Numerical Recipes* is supposed to be "everything up to, but not including, partial differential equations." We honor this in the breach: First, we *do* have one introductory chapter on methods for partial differential equations (Chapter 19). Second, we obviously cannot include *everything* else. All the so-called "standard" topics of a numerical analysis course have been included in this book:

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recin by Numerical Recipes Software.

linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration (Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and ordinary differential equations (Chapter 16). Most of these topics have been taken beyond their standard treatments into some advanced material which we have felt to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard numerical analysis texts. These include the evaluation of functions and of particular special functions of higher mathematics (Chapters 5 and 6); random numbers and Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including multidimensional methods (Chapter 10); Fourier transform methods, including FFT methods and other spectral methods (Chapters 12 and 13); two chapters on the statistical description and modeling of data (Chapters 14 and 15); and two-point boundary value problems, both shooting and relaxation methods (Chapter 17).

The programs in this book are included in ANSI-standard C. Versions of the book in FORTRAN, Pascal, and BASIC are available separately. We have more to say about the C language, and the computational environment assumed by our routines, in $\S 1.1$ (Introduction).

Acknowledgments

Many colleagues have been generous in giving us the benefit of their numerical and computational experience, in providing us with programs, in commenting on the manuscript, or in general encouragement. We particularly wish to thank George Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr, Richard Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: Forman Acton, whose 1970 textbook *Numerical Methods that Work* (New York: Harper and Row) has surely left its stylistic mark on us; and Donald Knuth, both for his series of books on *The Art of Computer Programming* (Reading, MA: Addison-Wesley), and for TeX, the computer typesetting language which immensely aided production of this book.

Research by the authors on computational methods was supported in part by the U.S. National Science Foundation.

October, 1985

William H. Press Brian P. Flannery Saul A. Teukolsky William T. Vetterling Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.
Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).