APPENDIX NUMBER 1

GROVES-CONANT LETTER

This is the original directive of the Los Alamos Laboratory, referred to in Chapter I.
February 25, 1943

Dr. J. R. Oppenheimer
University of California
Berkeley, California

Dear Dr. Oppenheimer:

We are addressing this letter to you as the Scientific Director of the special laboratory in New Mexico in order to confirm our many conversations on the matters of organization and responsibility. You are at liberty to show this letter to those with whom you are discussing the desirability of their joining the project with you; they of course realizing their responsibility as to secrecy, including the details of organization and personnel.

I. The laboratory will be concerned with the development and final manufacture of an instrument of war, which we may designate as Projectile S-1-T. To this end, the laboratory will be concerned with:

A. Certain experimental studies in science, engineering and ordnance; and

B. At a later date large-scale experiments involving difficult ordnance procedures and the handling of highly dangerous material.

The work of the laboratory will be divided into two periods in time: one, corresponding to the work mentioned in section A; the other, that mentioned in section B. During the first period, the laboratory will be on a strictly civilian basis, the personnel, procurement and other arrangements being carried on under a contract arranged between the War Department and the University of California. The conditions of this contract will be essentially similar to that of the usual OSRD contract. In such matters as draft deferment, the policy of the War Department and OSRD in regard to the personnel working under this contract will be practically identical. When the second division of the work is entered upon (mentioned in B), which will not be earlier than January 1, 1944, the scientific and engineering staff will be composed of commissioned officers. This is necessary because of the dangerous nature of the
work and the need for special conditions of security. It is expected that many of those employed as civilians during the first period (A) will be offered commissions and become members of the commissioned staff during the second period (B), but there is no obligation on the part of anyone employed during period A to accept a commission at the end of that time.

II. The laboratory is part of a larger project which has been placed in a special category and assigned the highest priority by the President of the United States. By his order, the Secretary of War and certain other high officials have arranged that the control of this project shall be in the hands of a Military Policy Committee, composed of Dr. Vannevar Bush, Director of OSRD, as Chairman, Major General W. D. Styer, Chief of Staff, SCS, Rear Admiral W. R. Purnell, Assistant Chief of Staff to Admiral King; Dr. James B. Conant serves as Dr. Bush's deputy and alternate on this Committee, but attends all meetings and enters into all discussions. Brigadier General L. R. Groves of the Corps of Engineers has been given over-all executive responsibility for this project, working under the direction of the Military Policy Committee. He works in close cooperation with Dr. Conant, who is Chairman of the group of scientists who were in charge of the earlier phases of some aspects of the investigation.

III. Responsibilities of the Scientific Director.

1. He will be responsible for:

a. The conduct of the scientific work so that the desired goals as outlined by the Military Policy Committee are achieved at the earliest possible dates.

b. The maintenance of secrecy by the civilian personnel under his control as well as their families.

2. He will of course be guided in his determination of policies and courses of action by the advice of his scientific staff.

3. He will keep Dr. James B. Conant and General Groves informed to such extent as is necessary for them to carry on the work which falls in their respective spheres. Dr. Conant will be available at any time for consultation on general scientific problems as well as to assist in the determination of definite scientific policies and research programs. Through Dr. Conant complete access to the scientific world is guaranteed.
IV. Responsibilities of the Commanding Officer.

1. The Commanding Officer will report directly to General Groves.

2. He will be responsible for:
 a. The work and conduct of all military personnel.
 b. The maintenance of suitable living conditions for civilian personnel.
 c. The prevention of trespassing on the site.
 d. The performance of duty by such guards as may be established within the reservation for the purpose of maintaining the secrecy precautions deemed necessary by the Scientific Director.

V. Cooperation.

The closest cooperation is of course necessary between the Commanding Officer and the Scientific Director if each is to perform his function to the maximum benefit of the work. Such a cooperative attitude now exists on the part of Dr. Conant and General Groves and has so existed since General Groves first entered the project.

Very sincerely yours,

[Signatures]

Dr. J. R. Oppenheimer - 3 - February 25, 1943
APPENDIX NUMBER 2

HIROSHIMA TELETYPE

Copy of teletype announcing success of Hiroshima mission received at Los Alamos from Washington office, prepared by Manley (see Chapter XIX).

Note comments by teletype operators at end. They were T/3 Flora L. Little of Jackson, Mississippi, in the Washington office and T/3 Mildred Weiss of New Orleans, Louisiana, in the Los Alamos office.
FLANNED FROM THE PLANE BY PERSON, ONE FIVE MINUTES AFTER RELEASE
AND RAYED HERE WAS THIS INFORMATION QUOTE PAPER HE DID NOT
FOR OPENHESTER FROM GENERAL CROES THIS RESULT IS HUNGARY PREPARED
BY DOCTOR MARKLEY PAPER CLEAR CUT RESULTS COMMA IN ALL RESPECTS SUCCESS
FUL PO EXCEEDED TR TEST IN VISIBLE EFFECTS PO NORMAL CONDITION
CONDITIONS OBTAINED IN AIRCRAFT AFTER DELIVERY WAS ACCOMPLISHED PD
VISUAL ATTACK ON NEBRASKA AT ZERO FIVE TWO THREE O ONE FIVE Z WITH
ONLY ONE TENTH CLOUD COVER PO FLICK AND FIGHTER ABSENT UNAFTER
RETURN TO EASE AND GENERAL INTERROGATION FARVELL SENT THE
FOLLOWING FOLLOWING INFORMATION QUOTE ALONG OPENING IN CLOUD
COVER DIRECTLY OVER TARGET MADE Bombing Favorable PD EXCELLENT RECORD
REPORTED FROM FASTER PO FLICK NOT YET PAUCED BUT OTHER OBSERVING
MEMORABLE AL THE ANTICIPATE GOOD TRACK RECORD PO NO APP'RE

DEEO OFA
R MIL
X HOW MANY LINES DID U GET
R IZ LIMNA
PLANES ALSO ANTICIPATE GOOD TRACK RECORD PO NO APPRECIABLE NOTICE OF
SOUND PO BRIGHT DAYLIGHT CAUSING PRESS TO BE LESS BLINING THAN THEXX
TR PD A BALL OF FIRE COMMENCED IN A FEW SECONDS TO JULIE CLOUDS AND
BOILING AND UPWARD SWIRLING PLAMES PD THEN JUST COMPLETED WHEN FLASE
WAS AXE OBSERVED PO INTENSELY BRIGHT LIGHT COMBINED BY ALL AND RATE
OF RISE OF WHITE CLOUD FASTER THAN AT TR PO IT WAS ONE THIRD GREATER
IN DIAMETER REACHING THIRTY THOUSAND FEET IN THREE MINUTES PD MAXIMUM
ALTITUDE AT LEAST FORTY THOUSAND FEET WITH FLATTENED TOP AT THIS
LEVEL PD COMBAT AIRPLANE THREE HUNDRED SEVENTY THREE MILES AWAY AT

MELCHS DEVO AND FEET OBSERVED IT PO D

N ILS
.4 OK OPR WILL JUST HAVE TO KEEP THING AS THESE MESSAGES AS UMP

NIN PLS

OPR U STARTED THIS MSG AS PART TWO ISNT IT PART OF PART ONE
M NIN OPR I TOLD U I NO START PART TWO WHERE PART ONE NILED
IS THAT CLEAR

BUT OPR I DIDNT GET PART ONE COMPLETE

AND THE I TOLD TO U TO AT START WITH IZ LINE
AND THE IZ LINE U L O WELL I TOLD U MEANT U GET IZ OK
M THIS IS A AWFUL MESS ISN'T IT IT SH SURE IS DON'T THINK WHERE

NIN PLS

TRY ANOTHER MACHINE MAYBE IT WILL DO BETTER
OPR IT ISNT UC MACH AND I KNOW IT IT'S NINE AND THERE ISN'T
A THING CAN BE DONE AS THE REPAIR MAN SAID THERE ISN'T ANYTHING WRONG
WITH IT HAS BEEN HERE ALL DAY AND THIS IS AS GOOD AS IT WILL RUN
I HAVE LOADS TO DO ON U TONIGHT BUT WELL HAVE TO DO IT THIS WAY
A FEW LINES AT A TIME HERE I WANT TO TALK TO THE LT A NIN
OK
OPR U CALL U BACK IN A BT 5 MINUTES
OK
Scale - 1.8" = 1 mile, squares are 1/2 mi. × 1/2 mi.

- Hard surfaced roads
- Trails (foot)
\(\nabla \ \text{VI} \) Site and Designation Number
--- Water supply main
--- Power line
☆ Firing sites

<table>
<thead>
<tr>
<th>Number</th>
<th>Site</th>
<th>Division</th>
<th>NS Coordinate</th>
<th>EW Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Post Tech Area</td>
<td></td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>II</td>
<td>Omega</td>
<td>G</td>
<td>93</td>
<td>121</td>
</tr>
<tr>
<td>III</td>
<td>S. Mesa</td>
<td>G</td>
<td>89</td>
<td>158</td>
</tr>
<tr>
<td>IV</td>
<td>Alpha</td>
<td>G</td>
<td>68</td>
<td>108</td>
</tr>
<tr>
<td>V</td>
<td>Beta</td>
<td>G</td>
<td>69</td>
<td>94</td>
</tr>
<tr>
<td>VI</td>
<td>2-Mile Mesa - upper</td>
<td>X</td>
<td>74</td>
<td>171</td>
</tr>
<tr>
<td>VII</td>
<td>2-Mile Mesa - lower</td>
<td>Q</td>
<td>69</td>
<td>147</td>
</tr>
<tr>
<td>VIII</td>
<td>Anchor Gun Site</td>
<td>O</td>
<td>65</td>
<td>184</td>
</tr>
<tr>
<td>IX</td>
<td>Anchor HE</td>
<td>X</td>
<td>65</td>
<td>183</td>
</tr>
<tr>
<td>X</td>
<td>Bayo</td>
<td>G</td>
<td>107</td>
<td>71</td>
</tr>
<tr>
<td>XI</td>
<td>K</td>
<td>G</td>
<td>38</td>
<td>157</td>
</tr>
<tr>
<td>XII</td>
<td>L</td>
<td>X</td>
<td>59</td>
<td>139</td>
</tr>
<tr>
<td>XIII</td>
<td>P</td>
<td>G</td>
<td>47</td>
<td>171</td>
</tr>
<tr>
<td>XIV</td>
<td>Q</td>
<td>X</td>
<td>52</td>
<td>152</td>
</tr>
<tr>
<td>XV</td>
<td>R</td>
<td>X</td>
<td>49</td>
<td>138</td>
</tr>
<tr>
<td>XVI</td>
<td>S</td>
<td>X</td>
<td>46</td>
<td>187</td>
</tr>
<tr>
<td>XVII</td>
<td>X</td>
<td>G</td>
<td>72</td>
<td>192</td>
</tr>
<tr>
<td>XVIII</td>
<td>Pajarito</td>
<td>O-X</td>
<td>45</td>
<td>91</td>
</tr>
<tr>
<td>XIX</td>
<td>E. Gate Lab</td>
<td>R</td>
<td>93</td>
<td>72</td>
</tr>
<tr>
<td>XX</td>
<td>Sandia</td>
<td>G</td>
<td>77</td>
<td>82</td>
</tr>
</tbody>
</table>
APPENDIX NUMBER 4

TRINITY PROJECT DETAIL LOCATION PLAN

<table>
<thead>
<tr>
<th>Station</th>
<th>Group Leader</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piezo Gauge</td>
<td>Walker</td>
<td>x</td>
</tr>
<tr>
<td>Sentinel (Type A)</td>
<td>Moon</td>
<td>●</td>
</tr>
<tr>
<td>Sentinel (Type B)</td>
<td>Moon</td>
<td>✫</td>
</tr>
<tr>
<td>Geophone</td>
<td>Houghton</td>
<td>△</td>
</tr>
<tr>
<td>Paper Box Gauge</td>
<td>Hoogterp</td>
<td>⊙</td>
</tr>
<tr>
<td>Flash Bomb</td>
<td>Mack</td>
<td>⬤</td>
</tr>
<tr>
<td>R 4 Ground Station</td>
<td>Segrè</td>
<td>♊</td>
</tr>
<tr>
<td>R 4 Balloon Winch</td>
<td>Segrè</td>
<td>♊</td>
</tr>
<tr>
<td>E. D. G.</td>
<td>Moon</td>
<td>♊</td>
</tr>
<tr>
<td>Mack Slit Camera</td>
<td>Mack</td>
<td>♊</td>
</tr>
<tr>
<td>Impulse Meter</td>
<td>Jorgensen</td>
<td>⊗</td>
</tr>
<tr>
<td>Condenser Gauge</td>
<td>Bright</td>
<td>✡</td>
</tr>
<tr>
<td>Excess Velocity Gauge</td>
<td>Barschall</td>
<td>⊗</td>
</tr>
<tr>
<td>Tank Range Poles</td>
<td>Anderson</td>
<td>△</td>
</tr>
<tr>
<td>Tank Flag Poles</td>
<td>Anderson</td>
<td>⊗</td>
</tr>
<tr>
<td>Primacord Station</td>
<td>Mack</td>
<td>⊤</td>
</tr>
<tr>
<td>Metal Stake (Earth Disp)</td>
<td>Penney</td>
<td>○</td>
</tr>
<tr>
<td>Piezo Gauge Amplifier</td>
<td>Walker</td>
<td>⊙</td>
</tr>
<tr>
<td>Balloon</td>
<td>Richards</td>
<td>●</td>
</tr>
<tr>
<td>Balloon Winch</td>
<td>Richards</td>
<td>●</td>
</tr>
<tr>
<td>Ground Station</td>
<td>Richards</td>
<td>●</td>
</tr>
</tbody>
</table>

Note: Angles are Azimuths on "OA" Line
Distances thus (800) are Radial Yards from "O"
Distances thus (75') are Offsets from L of Roads and Center Lines.

Scale: 1500 Yard circle - 1" = 300 Yards, - Sheet 1
10,000 Yards - 1" = 2750 Yards. - Sheet A

- 325 -
APPENDIX NUMBER 5

TECHNICAL AREA PLOT MAP

Map showing building layout of the Technical Area, as drafted in December 1942. Technical Buildings T, U, V, W, X, Y and Z were constructed as map indicates. Dashed lines show removed ranch houses.
TECHNICAL AREA AS OF DECEMBER 1942

<table>
<thead>
<tr>
<th>Building No.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Infirmary</td>
</tr>
<tr>
<td>16</td>
<td>Gatehouse</td>
</tr>
<tr>
<td>25</td>
<td>T - Main Tech Building</td>
</tr>
<tr>
<td>26</td>
<td>U - Chem. and Phys. Labs</td>
</tr>
<tr>
<td>27</td>
<td>V - Shop (Machine)</td>
</tr>
<tr>
<td>28</td>
<td>W - Van de Graaff</td>
</tr>
<tr>
<td>29</td>
<td>Y - Cryogenics Lab</td>
</tr>
<tr>
<td>30</td>
<td>X - Cyclotron</td>
</tr>
<tr>
<td>31</td>
<td>Z - Cockcroft-Walton</td>
</tr>
<tr>
<td>32</td>
<td>Covered walk</td>
</tr>
<tr>
<td>33-36</td>
<td>Ranch houses</td>
</tr>
<tr>
<td>37</td>
<td>Chem. Stock</td>
</tr>
<tr>
<td>41</td>
<td>Warehouse</td>
</tr>
<tr>
<td>42</td>
<td>Icehouse</td>
</tr>
<tr>
<td>44</td>
<td>Boiler</td>
</tr>
<tr>
<td>47</td>
<td>Guard tower</td>
</tr>
<tr>
<td>48</td>
<td>Ranch house - PX</td>
</tr>
<tr>
<td>56</td>
<td>Cooling towers</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS
GLOSSARY OF TERMS

(α, n) Reaction. Any nuclear reaction in which an alpha particle (helium nucleus) is absorbed by a nucleus, with subsequent emission of a neutron.

Autocatalytic Assembly. Any method of assembling supercritical amounts of nuclear explosive, in which the initial stages of the explosion are made to assist the further assembly of the explosive, e.g., by expulsion or compression of neutron absorbers placed in the active material.

Baratol. A castable explosive mixture of barium nitrate and TNT.

Baronal. A castable explosive mixture of barium nitrate, TNT, and aluminum.

Betatron. Induction electron accelerator for generating electron beams of very great energies.

Branching Ratio. The ratio of the capture cross section to the fission cross section.

Cockcroft-Walton Accelerator. An accelerator using voltage multiplication of the rectified output of a high voltage transformer to obtain a high potential.

Composition B. A castable explosive mixture containing RDX, TNT, and wax in the proportion 60/40/1.

Critical Mass. That amount of fissionable material which, under the particular conditions, will produce fission neutrons at a rate just equal to the rate at which they are lost by absorption (without fission) or diffusion out of the mass.

Tamped Critical Mass. The critical mass when the active material is surrounded by a tamper.

Critical Radius. The radius of a spherical arrangement of fissionable material equal to one critical mass under existing conditions.

Cross Section. A quantitative measure of the probability per particle of the occurrence of a given nuclear reaction. It is defined as the number of nuclear reactions of a given type that occur, divided by the number of
target nuclei per square centimeter and by the number of incident particles.

__Absorption Cross Section.__ The cross section for the absorption of a neutron by a given nucleus.

__Capture Cross Section.__ The cross section for the \((n, \gamma)\) reaction, in which a neutron is absorbed by a nucleus, with subsequent emission of gamma radiation.

__Fission Cross Section.__ The cross section for the absorption of a neutron, followed by fission.

__Scattering Cross Section.__ The cross section for the scattering of a neutron by the nuclei of some target material. Since scattering is a quantitative matter, the definition is incomplete. The differential scattering cross section is the cross section for scattering at an angle between \(\theta\) and \(\theta + d\theta\). The transport cross section is an average or integral scattering cross section, so defined as to give the average scattering in the forward direction:

\[
\sigma_T = 2\pi \int_0^\pi (1 - \sin \theta) \sigma_s(\theta) \sin \theta \, d\theta
\]

where \(\sigma_s(\theta)\) is the differential scattering cross section defined above.

__Cyclotron.__ Magnetic resonance accelerator, used in investigating atomic structures.

__D(d, n) Reaction.__ The nuclear reaction produced by bombarding deuterons with deuterons, producing high energy neutrons.

__D-D Source.__ The above reaction used as a source of high energy neutrons. At Los Alamos, the Cockcroft-Walton accelerator was principally used for this purpose.

__Deuterium.__ Heavy hydrogen, \(D_2\) or \(H_2^2\), the hydrogen isotope of mass two.

__Deuteron.__ A nucleus of deuterium or heavy hydrogen.

__Electron Volt.__ An electron volt is the energy acquired by an electron falling through a potential of 1 volt. One electron volt is about \(1.6 \times 10^{-12}\) ergs. In thermodynamic units, 1 electron volt corresponds to a temperature of about 12,000 degrees absolute. Thus a fortieth of a volt per particle corresponds to "room temperature." Energies of this order are called "thermal." One million electron volts corresponded to a temperature of \(1.2 \times 10^{10}\) degrees absolute.
Fission Spectrum. The spectrum, or energy distribution, of neutrons emitted in the fission process.

Inelastic Scattering. The scattering of neutrons in which energy is lost to excitation of target nuclei.

Li(p, n) Reaction. The nuclear reaction in which neutrons are produced by bombardment of lithium by protons.

Neutron Number. The number of neutrons emitted per fission. This number is statistically variable; the expression refers therefore to the average number per fission.

(n, γ) reaction. A nuclear reaction in which a neutron is captured by a nucleus, with subsequent emission of gamma radiation.

PETN. Pentaerythritol tetranitrate.

RDX. Cyclotrimethylenetrinitramine.

Thermonuclear reaction. A mass nuclear reaction induced by thermal agitation of the reactant nuclei. The reaction is self-sustaining if the energy release is sufficient to counter-balance the energy losses that may be involved.

Tamper. A neutron reflector placed around a mass of fissionable material to decrease the neutron loss rate.

Taylor Instability. A hydrodynamical principle which states that when a light material pushes against a heavy one, the interface between them is unstable, and that when a heavy material pushes against a light one, the interface is stable.

Tritium. The hydrogen isotope of mass three. This isotope was discovered in the Cavendish Laboratory by Oliphant in 1934. It was there produced by deuterium-deuterium bombardment. Tritium is a radioactive gas with a half-life of about twenty years.

Triton. A nucleus of tritium.

Thermal Neutrons. Neutrons of thermal energy - see Electron Volt.

T-D Reaction. The nuclear reaction of tritons with deuterons.

Torpex. A castable explosive mixture of RDX, TNT, and aluminum.

Van de Graaff Generator. An accelerator using the electrostatic charge collected on a mechanically driven belt to obtain a high potential.
NAME INDEX

Ackerman, Major J. O., 16.1
Agnew, H., 19.10
Allen H. S., 3.80
Allison, S. K., 1.26, 6.61, 9.5, 9.7ff
Alvarez, L. W., 7.1, 7.9, 9.4, 9.6, 9.11, 15.2, 19.5, 19.10
Anderson, Ens. D. L., 19.10
Anderson, H. L., 13.2, App. 4
Arnold, Dean Samuel T., 3.46
Ashbridge, Col. W., 3.25, 9.4
Bacher, R. F., 1.15, 3.7, 6.1, 7.66, 9.2, 9.4, 9.6, 9.8ff, 9.20
Bainbridge, K. T., 3.7, 6.79, 7.1, 7.4, 7.8, 7.25, 7.44, 9.4, 9.6, 9.11ff, 16.1, 16.3, 18.1ff, 18.5, 18.7ff, 18.23
Baker, C. P., 19.10
Baker, James, see Bohr, Aage
Baker, Nicholas, see Bohr, Niels
Baike, C. C., 8.2, 17.1
Barnes, Lt. Philip, 19.19
Barschall, H. H., App. 4
Beahan, Capt. K. K., 19.19
Bederson, T/Sgt. B., 19.10
Bethe, H. A., 1.3, 1.15, 3.7, 5.2, 5.32ff, 5.48, 9.4, 9.11, 19.5, 20.2
Bloch, F., 1.3, 1.15
Bohr, Aage, 2.5
Bohr, Niels, 2.5ff, 9.5, 9.11
Bolstad, M., 19.2, 19.5, 19.10
Boltzmann, L., 5.5
Bonbrake, L. D., 7.1, 7.6
Brazier, B. E., 3.20, 3.25, 3.118ff, 8.5
Bretschere, E., 2.14, 13.2
Bridgman, W. P., 4.26, 5.22
Bright, W., App. 4
Brin, T/Sgt. R., 19.10
Brockman, Henry, 9.38
Brode, R. B., 7.1, 7.4, 7.34, 7.36ff, 9.6, 9.10, 14.1, 19.5
Brower, W. M., 3.110
Burke, J. E., 17.1
Bush, Lt. H. C., 18.5, 18.7ff
Bush, Vannevar, 7.3, 7.13, 9.15, 18.25, App. 1
Butler, S. A., 3.30
Caleca, T/Sgt. V., 19.10
Camac, M., 19.10
Carlson, R. W., 16.35, 18.8
Carlson, T/Sgt. E., 19.10
Chadwick, George, 7.5, 7.12, 7.14ff, 7.41, 9.25, 14.12

1References are to paragraph and exhibit numbers.
Chadwick, Sir James, 2.11, 2.13, 9.4, 18.25
Chappell, Lt. G. C., 16.1
Cherwell, Lord, 2.12
Christy, R. F., 1.15, 5.16, 9.11
Church, P. E., 18.8
Churchill, Winston, 2.4
Clausen, R. E., 3.57
Cline, C., 3.108, 3.110
Collins, T/4 A., 19.10
Conant, J. B., 1.10, 1.13ff, 7.3, 9.15, 18.24, App. 1
Condon, E. U., 1.15, 3.20
Cook, W. W., 3.25
Cornog, R., 7.6, 7.44
Crane, H. R., 7.14, 7.36
Critchfield, C. L., 1.15, 7.1, 7.4, 15.2
Davalo, Capt. S. P., 18.5, 18.7ff
Davison, B., 1.3, 2.14
Dawson, T/Sgt. R., 19.10
Dennes, W. R., 3.20, 3.43
de Silva, Capt. Peer, 3.51, 3.54
Dike, S., 19.2, 19.5, 19.10
Dirac, P. A. M., 1.3
Dodson, R. W., 8.2, 17.1
Doll, E. J., 9.6, 19.10
Dow, David, 3.20ff, 3.122, 9.4, 9.18ff,
Graph 8
Duffield, R. B., 8.2
Dunlap, R. H., 8.2, 17.1
Dyhr, A. E., 3.73
Ent, General, 18.3
Esterline, P., 7.6, 7.44
Farina, Capt. W. A., 9.24
Ferebee, Maj. Thomas, 19.15
Fermi, Enrico, 1.26, 5.15, 5.22, 5.44, 6.16ff, 6.23, 6.61, 9.2, 9.4, 9.11, 13.1, 13.3, 18.8
Feynman, R. P., 1.15, 5.2, 5.32ff, 5.61, 11.2
Flader, F., 3.125
Flanders, D. A., 5.2, 11.2
Foley, Melvin, 3.119
Fortine, T/Sgt. F., 19.10
Fowler, G., 9.10, 19.5
Frankel, S. P., 1.3, 5.6, 11.3
French, A. P., 2.14
Friedlander, G., 17.1
Frisch, O. R., 2.1, 2.5, 2.14, 15.2
Froman, D. K., 1.15, 6.1, 15.2
Fuchs, K., 1.3, 2.14
Galloway, G., 9.6, 14.1, 14.4, 19.5
Garner, C. S., 8.2, 17.1
Giauque, W. F., 8.94
Goodman, T/3 W., 19.10
Graves, A., 1.15
Green, C. B., 7.21
Greeneu I, C. H., 5.56
Greisen, K., 16.1, 16.3
Groves, Maj. Gen. L. R., 1.10, 1.13, 1.26, 1.81, 3.13, 3.36, 3.119, 3.126, 5.5ff, 7.3, 7.71, 9.15, 10.9, 18.5, 18.21, 19.15, 19.22, 20.6, App.1
Gurinsky, D. H., 16.1ff
Harmon, Col. J. M., 3.25
Harms, T/3 D., 19.10
Hawkins, D., 3.20, 3.34, 3.43, 3.57
Hemholtz, L., 17.1
Hempelmann, L. H., 1.15, 3.21, 3.87ff, 3.95, 9.18, 9.30, 18.8
Henderson, R. W., 7.44, 9.6, 16.1, 16.3
Heydenberg, N. P., 1.63
Higginbotham, W. A., 15.2
Hinch, William H., 9.32, 17.1
Hirschfelder, J. O., 7.1, 7.7, 7.21, 11.2, 14.1, 18.8
Hittell, J. L., 7.6
Murphy, T/Sgt. W., 19.10
Neddermeyer, Seth, 1.15, 1.78, 7.1, 7.4, 7.9, 7.50, 7.52, 9.4, 19.15, 15.23
Nelson, E. C., 1.3, 5.6, 11.2ff
Neumann, John von, 2.9, 5.19ff, 7.54ff, 7.70, 14.20
Nolan, Capt. J. F., 1.15, 19.5, 19.10
Nooker, T/Sgt. E., 19.10
Norton, F. H., 8.9
O'Keefe, Ens. B., 19.10
Olmstead, T. H., 7.24, 19.10
Olsen, E. E., 3.80
Oppenheimer, Frank, 18.8
Oppenheimer, J. R., 1.2ff, 1.10, 1.13ff, 1.18ff, 1.81, 1.87, 1.89, 2.3, 3.7, 3.15, 3.19, 3.70, 3.117, 9.4, 9.11, 9.13, 9.15, 9.17, 9.27, 18.7, 18.23, 20.6, App. 1
(see also Director in subject file)
Palmer, Major T. O., 3.54, 18.15
Parratt, L. G., 7.1, 7.8, 15.2
Peterls, R. E., 1.3, 2.3, 2.13, 2.14, 5.3, 11.2
Penney, W. G., 2.14, 9.12, 11.20, 14.20, 18.7ff, 19.5, 19.10
Perlman, T., 19.10
Peters, Rex, 3.108, 3.113ff, 9.38
Pfaff, Dan, 3.119
Placzek, George, 2.14, 11.2ff
Poole, M. J., 2.14
Popham, W. H., 3.95, 16.1
Potratz, H. A., 8.2, 17.1
Price, Lt. J. B., 16.1
Prohs, Ens. W., 19.10
Purnell, Rear Adm. W. R., App. 1
Rabi, I. I., 1.26, 9.4ff, 18.24
Reynolds, Ens. G., 19.10
Richards, H. T., App. 4
Roosevelt, F. D., 2.4, 3.19
Rose, E. L., 1.26, 1.79, 1.81
Rossi, Bruno, 6.1, 6.70ff, 15.2
Rotblat, J., 2.14
Rowe, Hartley, 9.5, 9.8
Roy, M. F., 16.3
Russ, H., 19.10
Russell, Horace Jr., 8.56
Schaffer, Lt. W. F., 16.1
Schreiber, R., 19.10
Seaborg, G. T., 1.86
Segre, Emilio, 1.15, 1.63, 1.65, 1.87, 6.1, 6.79, 12.1, App. 4
Semple, Capt. David, 7.76
Serber, C. L., 3.21, 3.82, 9.18
Serber, Robert, 1.3, 1.15, 1.27, 1.39, 1.51, 5.2, 11.2, 19.10
Seybolt, A. U., 8.2, 17.1
Shapiro, M. M., 14.1, 19.5
Sheard, H., 2.14
Simmons, S. J., 19.5
Skyrme, T. H. R., 2.14
Slotin, Louis, 18.21
Smith, C. S., 1.15, 8.2, 9.4
Smith, Maj. R. C., 3.21, 3.123ff, 3.127, 9.18
Spedding, F. H., 8.19
Stallings, Charlie, 3.119
Staub, H. H., 1.15, 6.1
Stevens, Maj. W. A., 7.1, 7.9, 16.2
Stevenson, Lt. Comdr. E., 19.10
Stevenson, J. H., 1.19
- 344 -
Stewart, Lt. Col. S. L., 9.25
(see also Contracting Officer in subject index)
Stout, J. W., 16.2
Stroke, F., 8.2
Styer, Maj. Gen. W. D., App. 1
Sweeney, Maj. C. W., 19.19
Taylor, G. I., 2.9, 5.25, 5.42, 18.25
Taylor, Lt. R. A., 18.7ff
Teller, Edward, 1.3, 1.15, 5.2ff, 5.4ff, 5.46ff, 5.52, 5.56, 5.64, 9.4, 13.2ff
Tenney, T/Sgt. G. H., 16.1
Thomas, C. A., 5.22, 8.4ff, 8.9
Thornton, T/Sgt. G., 19.10
Tibbets, Col. P. W., 19.2, 19.15, 19.19
Titterton, E. W., 2.1, 2.5, 2.14
Tolman, R. C., 1.26, 1.79, 1.81, 3.16, 5.55, 7.21, 18.25
Tritten, M. H., 3.46
Tuck, J. L., 2.14, 5.24
Tucker, Ens., 19.10
Tyler, Col., 9.46
Uderhill, R. M., 9.27
Urey, H. C., 4.34
Van Vleck, J. H., 1.3, 1.26
von Neumann, see Neumann
Wahl, A. C., 1.86, 9.30
Waldman, B., 18.7ff, 19.5, 19.10
Walker, R. L., App. 4
Warner, R. S., 9.6, 9.10, 19.5, 19.10
Weidenbaum, B., 16.1
Weiss, T/3 Mildred, App. 2
Weisskopf, V. F., 1.15, 5.2, 9.12, 11.2, 18.7ff
Weissman, S. L., 8.2, 17.1
White, Maj. Edward A., 3.74
Wichers, E., 17.1
Williams, J. H., 1.15, 1.19, 3.21, 3.119, 6.1, 9.18, 12.1, 18.7ff
Wilson, E. B., 1.26
Wilson, Col. R. C., 7.71
Wilson, R. R., 1.15, 1.17, 3.6, 6.1, 9.2, 9.4, 9.11, 12.1, 18.7ff
Wilt, D. L., 3.73
Workman, E. J., 7.11
Zacharias, J. R., 9.13
Zimmerli, T/4 F., 19.10
SUBJECT INDEX

A Division, 9.2ff (see also Administrative Division)
Absorption cross sections, 12.12; of U-233, 13.32
Accelerating equipment, original, 6.2ff
Accident
 critical materials, 15.10
 plutonium, 3.97
Accident insurance, 9.19
Accounting Office, Los Angeles, 3.59
Active material receipt, Trinity, 18.21
Active material recovery, 16.32ff
Administration
 of Laboratory, 3.1ff
 recommendations of Reviewing Committee, 1.89ff
 reorganization, 9.1ff
 Trinity, 18.13ff
Administrative Board, 9.4
Administrative Division, 3.21ff, 9.2ff
 group organization, 3.21, 9.18
Age distribution, civilian personnel,
 Graph 1
Airborne tests, gun, 14.14ff
Aircraft release mechanism, 19.3,
 (see also B-29's)
Air shipments, 19.9
Air Transport Command, 19.15
Alamogordo Bombing Range, 18.3
Alberta Project, 9.12, 10.3ff, 10.21, 11.1, 14.2, 19.1ff

Albuquerque District Office, U. S. Engineers, 1.23, 3.117
Allotropic forms of plutonium, 8.7, 8.38, 17.24ff
Alloys
 plutonium, 17.24ff
 uranium, 8.25
Alpha particles
 investigation, 12.28
 ionization chamber, Trinity, 18.28
 polonium, 6.20, 15.17, 17.33
Ames, Iowa (see Iowa State College of Agriculture and Mechanical Arts)
"Amos" unit (see PMR)
Amplifiers developed, 6.83ff, 15.50, 18.28
Analysis Group, Chemistry and Metallurgy, 8.72ff, 17.50ff
Analytical
 methods, 8.73ff
 program, 8.69
 techniques, 4.15
Analyzer, electronic, 15.42
Anchor Ranch Proving Ground, 7.5, 7.24, 7.27
APS/13 radio altimeter (Archie), 7.36, 14.15ff
"Archie" (see APS/13)
Architect, 3.121
Argonne Laboratories, 3.14 (see also University of Chicago)

References are to paragraph and exhibit numbers.
Arming and fusing, gun, 7.33ff, 14.15ff
Arming Party, Trinity, 18.24
Army Air Forces, 7.37
 Weather Division, 18.17
Army Specialized Training Program, 3.47
Assay methods, 8.74, 8.88, 17.58ff
Assembly (see Gun assembly, implosion)
 alternative, 13.1, 13.15ff
 critical, (see Critical Assemblies)
 final, Trinity, 18.20ff
Assembly and Assembly Tests Group,
 Explosives Division, 16.40
Assistant Chief of Naval Operations
 for Material, 19.7
Assistant Directors, 9.2
Associate Directors, 9.2
Asymmetries in implosion, 5.27, 10.7,
 Atmosphere of earth, thermonuclear
 reaction of, 1.48ff
Atomic bomb (see bomb)
Atomic Energy Committee, interim,
 20.1
Autocatalysis, 1.44, 1.77
Autocatalytic bomb
 method of assembly, 13.15
 use of B-10, 4.35
AYD radio altimeter, 7.37
B-10 (see Boron)
B-29, use of, 7.68ff, 19.2ff, 19.15,
 19.18ff
Babcock and Wilcox Corporation, 16.34
Back scattering measurements, 6.51ff
"Baker experiment," 6.10
Balance, microtorsion, 17.49
Ball of fire, investigation of
 contribution of Taylor, 2.9
 Trinity, 18.28
Ballistics, 7.21, 7.69, 14.17, 19.3
 Ballistics Group, Ordnance Division
 safety in delivery, 19.3
Baratol, 16.12
Barium-140, (see Radio Barium)
Barographs, 18.5
Barometric switch design and proof,
 7.35
Baronal, 16.23
Base camp, Trinity, 18.5
Base, overseas, 19.4
Bayo Canyon (RaLa), 4.41, 15.29,
 17.3
Berkeley conference, 1.3 (see also
 University of California)
Beryllia
 bricks as tamper, Water Boiler,
 4.13, 13.29
 compacts, 4.2, 8.48ff
 crucibles, 17.11
 fabrication techniques, 3.107, 4.33
 tamper, 15.6
Beryllium crucibles, 17.29
Beryllium oxide, (see Beryllia)
Betatron, use of, 7.61, 15.22, 15.23ff
Betatron Group, G Division, 15.23ff
Biological research, plutonium, 9.30
Bismuth, polonium separated from,
 17.34
Blast effect of Super, 13.8
Blast measurements, Trinity, 18.2,
 18.28
Blast operated switches, Trinity,
 18.28
"Blind" target assembly, 4.16
Blistering in coating, 17.28
Block-buster pumpkin program,
 14.17
Blood counts, variation in, 3.91
Boltzmann's equation, 5.5
Bomb, models, tests of, 7.69ff, 19.2ff
Bomb-reduction technique
 metallurgy of plutonium, 4.30
 metallurgy of uranium, 4.30
 plutonium at Chicago, Los Alamos,
 8.8
Boron
absorption measurements, 6.30
"bubble" autocatalysis, 13.15
compacts as neutron absorbers, 8.47ff
determination, 8.74, 8.86
fabrication techniques, 4.33
neutron absorber, 4.35
separation, 4.34
Borong trifluoride, 17.47
counters, 6.84, 8.60
Box Gauges, aluminum diaphragm, Trinity, 18.28
"branching ratio," 6.43ff, 12.18ff
Breech design modified, 14.14
British
arrival of first representatives, 2.1
eye work, 1.3
head of mission, 2.11, 2.13
mission, 2.1ff
personnel, 2.1, 2.5, 2.9, 2.14
photographic study of fission
neutrons, Liverpool, 6.25
project, 2.2
reports, 2.3
work on damage, 1.51
work on fission neutrons, 6.25
work on fission spectrum, 1.62
Brown University refractories, 8.9
Bruceton, 7.57, 16.7 (see also
Explosives Research Laboratory)
Building, G Division, 15.3
Buildings, initial plan of, 1.18, (see
also Construction)
Bureau of Ordnance, 7.70, 19.7
Bureau of Standards, 7.70
Bureau of Yards and Docks, Navy
Department, 19.7
Business manager, appointment, 3.59
Business Office, 3.59ff, 3.65ff, 3.74
Business officer, University of
California, 1.12, (see also Business
manager)
Buying Group, Procurement Section, 3.80
C-54 transport, 19.9, 19.15, 19.18
C Shop, 3.102ff, 7.40, 9.38,
Graph 9, 11
fire, 9.40
Cadmium
plate, 17.13
Calcium oxide impurities, 17.55
Calculations Group, Ordnance
Division, 14.2
Theoretical Division, 14.2
Calibrating circuit, 15.50
California (see University of California)
California Institute of Technology,
9.15ff, 16.7 (see also Camel Project)
California State Employees
Retirement System, 3.60
Calorimeter, 17.49
Camel Project, 9.15ff, 14.17, 16.7
16.40
liaison, 9.17
pumpkin program, 14.17
tests, 19.3
Cameras
color, 18.28
drum, 7.28
Fairchild aero view, Trinity, 18.28
Fastax, 18.28
gamma ray, 18.28
rotating mirror, 16.9
rotating prism, 7.57
Cameras, Photographic Group, 15.49
Canadian Project (see Montreal Project)
Capture cross sections, 1.65 (see also radiative capture)
measurements, 6.40ff, 12.26
Carbon microdetermination, 8.74, 8.87
by gasometric analysis, 8.90ff
Carnegie Institution, Washington, D. C.
subproject, 1.4
work on fission cross section, 1.63
Casting
bomb, CM Division, 17.15
explosives, 7.58, 16.12, 16.15ff
uranium, 17.12
Censorship of mail, 3.36
Centrifugal casting, uranium, 17.12
Centrifuge bomb
plutonium reduction, 8.41
uranium reduction, 8.22ff
Cerium metal production, 8.9
Cerium sulfide, 8.9, 17.30
Chain reaction
defined, 1.29
explosive, 15.8
Chain reactor, controlled (see Water Boiler)
Chambers, Trinity, 18.28
Chemical compounds, formation in air
by nuclear explosion, 13.19
Chemical and metallurgical properties
of polonium, 17.22
Chemistry, building for, 8.5, 17.59
Chemistry, first period, 4.37
Chemistry of U-235, 8.12
Chemistry and Metallurgy Division,
8.1ff, 9.2ff, 10.4, 10.15, 17.1ff
building, 8.5, 17.59
control of plutonium hazard, 3.95
early program, 1.70ff
health, 9.32ff
Chicago (see University of Chicago)
Chicago Purchasing Office, 3.73, 9.27
Civilian personnel
age distribution, Graph 1
employed, Graph 2, 3
Tinian, 19.12
Cladding techniques, 17.13
Clearance of personnel, 3.33
Clinton
plutonium, 4.46, 9.1, 10.6
plutonium spontaneous fission rate, 6.23
polonium, 17.34
radio-barium, 17.42
Clinton Laboratories, 8.12 (see also Oak Ridge)
Clock switches, gun, 14.15
Closed systems, DP site, 17.65
Cloud chamber
data on energy of neutrons, Rice Institute, 6.25
recording for betatron, 15.23
technique for fission spectrum measurement, 12.10
CM Division, 9.2ff (see also Chemistry and Metallurgy Division)
Coating, hold-down and protective, plutonium, 17.28
Cockcroft-Walton accelerator, 6.5, 6.49, 13.22
University of Illinois, 1.17
Codes, Tinian, 19.21
Colloquium, 3.10ff
Color cameras, 18.28
Colorimetric methods, 8.74, 8.83ff
Columbia University
isotopic analysis, mass spectrograph method, 6.79
Combat group, 19.2
planes, personnel, 19.15, 19.19
Combined Policy Committee, Britain-USA, 2.4, 2.11
Commandant, Navy Yard, Mare Island, 19.7
Commander, Western Sea Frontier, 19.7
Commanding Officer, 509th Group, 19.2
Commanding Officer, Special Engineer Detachment, 3.54
Communications
Tinian, 19.21
Trinity, 18.13
Community Council, 3.27
Community problems, 3.25ff
Composite core, 11.2, 11.3
Composition B, 16.12, 16.17
Compression studies
betatron, 15.26
Condenser gauges, Trinity, 18.28
Condenser microphone method of investigating implosion, 15.33
Conference
Berkeley, 1.3
Los Alamos, April 1943, 1.26ff
Los Alamos, Feb. 1945, 10.9
University of Chicago, 1.4
Construction, 1.23, 3.29, 3.117, 9.19,
Graph 8
betatron, 15.24
Chemistry and Metallurgy Division, 17.3
DP site, 17.60
RaLa, 15.29
S Site, 16.26ff
Tinian, 19.9
Trinity, 18.5, 18.14
Consultants
Aage Bohr, 2.5
Niels Bohr, 2.5
G. Chadwick, 7.5
G. B. Kistiakowsky, 7.55
C. C. Lauritsen, 9.8
J. von Neumann, 2.9
I. I. Rabi, 1.26
Hartley Rowe, 9.13
G. I. Taylor, 2.9
C. A. Thomas, 8.4
Contact method of investigating implosion, 15.33
Contamination, plutonium, 8.72ff, 17.59
Continuous extraction apparatus, 17.7
Contract, OSRD, 1.11
Contract, employment, 9.19
Contracting agency, construction, 1.2
Contracting Officer, 3.40, 3.58, 3.70
3.78, 9.22
procurement, 9.27
salary policy, 3.40ff, 3.56ff, 9.22
Contractor's representative, 9.27
(see also University of California)
Contractors, construction, 3.117ff
Control station, Trinity, 18.24
Controlled nuclear reaction, 1st supercritical with prompt neutrons, 15.8
Controlled reactor, (see Water Boiler)
Coordinating Council, 3.8
at Trinity, 18.25
Coordinator, purification research, 8.4ff
Cornell University
experiments on delayed neutron emission, 1.64
subproject, 1.4
velocity selector equipment, 6.38
Corrosion protection, 17.14
Corrosion, plutonium, 17.24ff
Corrosion, Water Boiler, 8.64, 8.12
Cosmic ray neutrons cause detonation, 1.39
effect on U-235, 6.22
Counters, 6.35ff, 6.83ff, 8.59, 12.15,
12.25, 17.47
Cowpuncher committee, 9.5ff, 9.17,
10.11
Trinity, 18.19
Cylinder studies, nonlens implosion, 16.9

D Building, 17.3, 17.59
Dahlgren, 6.35ff, 7.69 (see also Navy Proving Ground)
Damage, 1.3, 1.52
estimates of Super, 13.6ff
Danger (see hazard, safety)
D-D cross sections, measurements, 5.49, 13.21

D-D Group
absolute fission cross sectional measurements, 6.37
fission cross sections, 12.12
multiplication experiments, 12.18ff
neutron number measurements, 12.3
scattering measurements, 6.50ff, 6.54, 12.15ff

D-D Group, Standards subgroup
calibrated radon beryllium source, 6.16
standardized natural sources, 6.78

D-D reactions, 5.48
D-D source (see Cockcroft-Walton accelerator)
Decay time measurement, 12.17
Decontamination, 9.33, 17.37, 17.59 of boiler, 13.27
Deferment (see draft deferment)
Delay circuits, electronic, 15.50
Delayed gamma ray measurements, Trinity, 18.28
Delayed neutron emission, 1.64
Delayed neutron measurement, 4.3, 15.9
Trinity, 18.28

Delivery of bomb, 19.1ff
date, 19.15, 19.19
Delivery Group, Ordnance Division, 7.67, 19.1ff
proving of gun, 14.11
Department of Terrestrial Magnetism
(see Carnegie Institution)
Dermatitis, TNT, 3.99

Design
bomb, freezing of, 9.9, 9.16
DP Site, 17.62
Fat Man, 14.3ff, 19.7
gun, freezing of, 14.12
implosion, 5.20ff,
implosion core and tamper, 5.25ff,
5.37ff, 15.4
initiator, 15.38
lens molds, 16.24, 16.40
lens molds, freezing of, 16.24
Little Boy, 19.7
outer case, freezing of, 14.3
pit assembly, 15.13
tamper, 5.25, 5.40
Water Boiler, 6.65, 13.25ff

Design Group, 7.40ff
Detailed experiments (see differential experiments)
Destination (see Tinian)
Detector Group
absolute fission cross section measurements, 5.17, 6.37
design of mock-fission sources, 6.28
instrument development, 6.82ff
measurement of neutron flux, 6.34
new counting techniques, 6.35ff
study of neutron spectroscopy methods, 6.27

Detectors, fission, 6.83ff
Determination of critical mass, 4.11

Detonating Circuit Group, X Division, 16.38
Detonating system, 16.37ff

Detonation
"accidental," 1.39
implosion, 4.28
surface or underwater, 14.18
theory of mechanism, 13.4

Detonator committee, 9.11
Detonator Group, G Division, 15.47
15.42, 16.37
Detonator Group, Trinity, 18.22
Detonators, 15.42, 16.37
asimultaneity test, Trinity, 18.28
Detroit Office, 7.5, 7.12ff, 7.41ff,
7.71, 14.12
Deuterium, 1.48
liquefaction plant planned, 1.76, 5.51, 8.94
production and storage of liquid deuterium, 8.95ff
thermonuclear reaction in, 1.3, 5.45
tritium reaction cross sections, 10.13, 13.20

Deuterium bomb (see Super)
Development, Engineering, Tests Group, Explosives Division, 18.1ff
Development, meaning of, 1.53ff

Differential experiments
early program of, 1.59ff
explanation of, 1.57
R Division, 12.2
scattering measurements, 12.15

Diffusion theory, 4.11, 5.6ff, 11.4ff
Directive, Explosives Division, 16.4
Directive, G Division, 15.1
Directive, of Laboratory (Groves-Conant letter), 1.13, App. 1

Director, 1.10, 3.18, 3.78, 3.88, 3.126, 9.30
appointment of, 1.2

Director of Procurement office, 3.69ff

Directorate of Tube Alloys, 2.2,
(see also British project)
Discovery of Pu-240, 4.42ff
Discriminators, 6.83ff
Development of Substitute Materials Project (DSM), 1.1, 1.7
Division Leader
Chemistry and Metallurgy, 8.2
Experimental Physics, 6.1
Explosives Division, 16.2
Ordnance Division, 7.3
Divisions, personnel distribution,
Graph 5, 6
Document room, library, 3.84
Double slit spectrograph, 17.56
Double spectrograph, 17.56
DP Site, 9.32, 17.59
DP Site Group, Chemistry and
Metallurgy Division, 17.59
Draft deferment policy, 3.42ff
Drafting room (see Shops)
Dragon, 15.7ff
Drop tests, 7.67ff, 16.39, 19.3ff
Camel program, 9.16
gun, 14.7, 14.13
Dry purification
plutonium, 8.32ff, 17.21
uranium, 8.17, 17.6
"dry run" Trinity, 18.20
Dummy guns, 14.7
Dust-borne product survey, Trinity,
18.28
DuPont Company, 5.56, 8.12
Dynamics, implosion, 7.63, 16.5
Earth shock measurement, Trinity,
18.28
East Area, DP Site, 17.61ff
East Gate Laboratory, 12.7
Editor, 3.86
Efficiency, 1.34ff (see also energy
release)
early calculations of, 1.38
Electric Detonator Group, G Division,
16.37, 19.3
Electric detonators, 15.42ff, 16.37ff,
19.3
Electric fusing information, 19.3
Electric Method Group, G Division,
15.31ff
Electric method implosion studies,
15.31ff
Electrodepotted metal coating, plu-
tonium, 17.28
Electrolysis
plutonium reduction, 8.40
uranium reduction, 8.22ff
Electron multiplier chambers,
Trinity, 18.28
Electronic records, implosion, 7.57
Electronic switch, 16.38
Electronics Group
counting techniques, 6.35ff
development of instruments, 6.82ff
instruments for Health Group, 3.90,
3.98
Electronics Group, G Division, 9.31,
15.50ff
Electronics test officer
1st drop plane, 19.15
2nd drop plane, 19.19
Electroplated metal coating, pluto-
nium, 17.28
Electrostatic Generator (see van de
Graaff)
Electrostatic Generator Group
absolute fission cross section
measurement, 6.37
boron absorption measurements,
6.30
capture cross section measurement,
6.42, 12.26
design of mock fission sources,
6.28
experiment with thorium fission
detector, 6.13
first experiment, 6.12
fission cross sections, 12.12
fission spectrum measurement,
12.9ff
mass spectrographic analysis, 12.27
measurement of branching ratio, U-235, 6.44, 12.19
multiplication experiment, 12.18ff
ratio of neutron numbers, 6.15
scattering studies, 6.54
sphere multiplication experiment, 13.31
study of neutron spectroscopy methods, 6.27
use of photographic emulsion technique, 6.26
Emergency purchases fund, 3.64
Emission time after fission, neutron measurement, 6.10
Employment contracts, 9.19
Enclosed apparatus, plutonium purification, 17.18
Encyclopedia, 20.2
Energy release
nuclear fission, 1.28
nuclear measurements, Trinity, 18.28
Super, 13.5
test, 18.2
Energy spectrum of fission neutrons, 6.25ff
Engineering, Explosives Division, 16.39ff
Engineering, meaning of, 1.53ff
Engineering of molds, 16.40
Engineering office, Detroit, 14.12
Engineering research, recommendations of Reviewing Committee, 1.88
Engineering and shops, 3.100ff
Engineering Group, Explosives Division, 16.39
Engineering Group, Ordnance Division, 14.3ff
Engineering Group, Ordnance Engineering Division, 7.40ff, 7.67
Engineering Service Group, Explosives Division, 16.40
England (see British)
Enlisted men (see Military personnel, Special Engineer Detachment, Women's Army Corps)
Enlisted Reserve Corps, Graph 2
Enola Gay, 19.15
Enriched uranium hexafluoride, estimates of critical assemblies, 13.18
Epsilon phase plutonium, 17.27
Ether extraction method, 17.5, 17.19, 17.38
Excess sound velocity measurements, Trinity, 18.28
Experimental Physics Division, 6.1ff
(see also Research Division)
Experimental Shop (see V Shop)
Expert Tool and Die Company, 14.12
Explosion, Trinity, description, 18.25
Explosions, surface and underwater, 14.18ff
Explosive chain reaction, 15.8
Explosive switch, 16.38
Explosives (see also High Explosives, HE)
Explosives development, 16.12ff
Explosives Development and Production Group, Explosives Division, 16.12ff, 16.15ff
Explosives, X-ray examination, 16.10
Explosives Division, 5.27, 7.66, 9.1ff
10.5, 10.7, 10.8
Explosives Research Laboratory, 7.26, 7.52, 7.57, 16.7, 16.12
"Extrapolated end-point" solution, 5.6ff
F Division and groups, 9.2ff, 10.5, 10.12ff, 11.3, 13.1ff
Fansteel Metallurgical Corporation, 4.36
Farrell mission, 19.22
Fastax cameras, Trinity, 18.28

- 355 -
Fat Man, 7.71ff, 19.2ff, 19.7 (see also
implosion assembly and bomb)
ballistics, 14.17
design, 14.3ff
1561, 7.77, 19.2
fusing, 14.15
pit assembly design, 15.13
tests, Tinian, 19.14
1222, 7.75
Feasibility of bomb, 4.1, 6.8ff
Feasibility of initiator, 15.39
Field crews, Tinian, 19.10
Field measurements, ballistics, 14.17
Field tests, 19.1ff
arming and fusing, 7.37ff
dummy bombs, 7.67ff
Field work, detonators, 15.47
Fire, C shop, 9.40
Fire danger, 17.59
Firing circuit tests, 14.16
Firing sites, G Division, 15.3
Firing units, Fat Man, 19.3
First Technical Service Detachment, 19.11
Fission bomb, priority of,
recommendations of Reviewing
Committee, 1.86
Fission cross sections
absolute measurements, 6.37
early work, 1.63
measurements, 6.29ff, 10.13, 12.12ff
Pu-239 and U-235, 4.12
U-235 by Cyclotron Group, 6.38
Fission detector, 6.56, 6.83ff
Fission products
Hiroshima, 18.28
rehearsal test, 18.11
Trinity, 18.28
Fission spectrum
determination, 6.26
early work done, 1.62
measurements, 10.13, 12.9ff
Fission Studies Group, F Division,
18.12
sphere multiplication experiments,
13.31
509th Composite Group, 19.2
Flash photography
of cloud chamber for betatron,
15.23
of HE, 7.57, 16.9
Flash X-ray photographic method,
7.57, 15.17, 16.9
Flight performance, detonators, 19.3
Flight test models, fabrication of,
7.14
Fluorine analysis, 8.74ff, 8.82
Foils, preparation of, 4.41, 8.54ff,
17.48
Foreman
C shop, 3.108
utilities, 3.119
V shop, 3.103
Forming uranium, 17.12
France, report of Joliot, 4.43ff
Freezing of bomb models, 19.2
Freezing of design, 9.9, 9.16
gun, 14.12
lens mold, 16.24
outer case, 14.3
Frijoles Lodge, temporary housing,
3.30
Full scale explosive castings, shop,
9.49
Full scale shots
electric method, 15.34
magnetic method, 15.21
Full scale test, 18.1ff
bomb models, 7.71ff
gun assembly, 14.10
Fuse Development Group, Engineering
Division, 7.34ff, 7.67
Fuse Development Group, Ordnance
Division, 10.4, 14.11, 14.15ff, 19.3
Fuses, 7.13
impact, 7.39
radio proximity, 7.36
tests of, 17.13
Fusing devices, 7.33ff
Fusing Group (see Fuse Development Group)
Fusing system, 14.15ff
G Division (see specific groups),
10.5, 10.7, 10.8, 10.13, 11.6, 11.21,
15.1ff
formation, 7.66
groups, 9.1ff
G Engineers, 9.9, 15.13ff,
work on initiator, 15.41
Gadget Division (see G Division)
Gamma building, 15.3
Gamma ray
cameras, Trinity, 18.28
in radiographic work, 15.14
investigation, 12.28
ionization chambers, Trinity, 18.28
measurement
Radioactivity Group, 6.77
Trinity, 18.2
radiation, RaLa, 15.28
sentinels, Trinity, 18.28
Gasometric analysis, 8.74, 8.79
Geiger counters
Trinity, 18.28
X-ray method, 15.15
Geophysical Laboratory, 7.21
Glass Shop, 3.101
Gold foil detectors, Trinity, 18.28
Governing Board, 3.1ff, 9.4
membership of, 3.7
review of implosion, 4.21
Graphite block in power boiler, 13.30
Graphite molds, 17.12
Graphite purity analysis, 8.74, 8.81
Graphite Shop, 3.102
Gravimetric assay, 17.58
Gravimetric methods, 8.74, 8.87
Ground shock measurements, Trinity, 18.2
Group organization
Administrative Division, 3.21, 9.18
Alberta Project, 19.5, 19.10ff
Chemistry and Metallurgy Division, 8.2ff, 17.1
Experimental Physics Division, 6.1
Explosives Division, 16.1ff
F Division, 13.2
G Division, 15.2
Ordnance Division, 7.1, 14.1
Research Division, 12.1
Theoretical Division, 5.1ff, 11.1ff
Tinian, 19.10ff
Trinity Project, 18.7
Groves-Conant letter, directive, 1.13, App. 1
Gun assembly, 1.77, 4.14ff, 7.17ff
10.2ff, 14.5ff, 19.2ff
casting, 17.15
critical mass, 5.17, 12.24
design, 1.80, 7.1ff
early estimate of assembly time, 6.23
early proposal, 1.42
first period, 4.14ff
for plutonium abandoned, 4.47
frozen, 14.12
group, 10.2ff, 11.7, 14.5ff, 19.3,
19.7
plutonium abandoned, 6.24
requirements for Pu-239 purity, 1.42
safety tests, 15.11
Gun fabrication at Naval Gun Factory, 7.22
Gun proving, 7.20ff
Half-life measurement, La-140, 17.46
Hanford pile justified, 4.2
Hanford plutonium, 9.1, 9.32, 10.6, 17.59
spontaneous fission rate, 6.24
Harbors, use of bomb in, 14.18
Harvard University
cyclotron, 1.17, 6.3
high pressure laboratory, investigation of hydride, 4.26
Hazard, plutonium, 3.94ff (see also safety)
HE (see explosives or High Explosives)
Health and Safety, Special Services Group, CM (see Service Group)
Health Group, 3.87ff, 9.29ff (see also safety)
Health Group, CM Division
analysis, 17.51, 17.54
legal interests, 3.89
plutonium hazard, 17.59
Heavy elements
determination, 17.51
spontaneous fission measurements, 12.8
Heiland recorders, Trinity, 18.28
Hemispheres (plutonium)
Trinity, 17.28
Hemispherical implosions, 16.9
Hercules Powder Company,
16.7
High Explosives, 9.16
experiments, interpretation of,
contribution of Taylor, 2.9
flash photography, 7.57, 16.9
ten casting, molds for, 9.50
poisoning, 3.99
High Explosives Assembly Group,
19.3
High Explosives Development Group,
Ordnance Engineering Division, 7.44
18.1
High-power Water Boiler, 6.61ff, 17.37ff
High Vacuum Research Group, Chemistry and Metallurgy Division, 8.38
8.92, 17.28
Hiroshima, 19.17
and Nagasaki damage compared with Super, 13.8ff
Hiroshima bomb, 17.15
teleype from, 19.21, App. 2
Hospital, 3.31
"hot" chemistry laboratory, 17.38
Hot pressing
uranium, 17.12
Housing, 3.28ff
guest ranches, 1.19
shop personnel, 9.46
shortage, 9.21
shortage, military personnel, 3.51
temporary, financing, 3.65
HT (heat treating) shop, Graph 9
Hundred-ton shot, Trinity, 18.10ff
Hydride (uranium hydride); 8.18ff, 15.5ff, 17.4
bomb, 5.12, 6.29ff
gun, 7.31
implosion of uranium, 4.40
integral experiment, 6.56
metallurgy, 4.29
plastic, 15.6
program, abandonment, 4.12
Hydrodynamics of implosion
contribution of Taylor, 2.9
IBM machines, 4.25
Hydroxide-oxalate process, RaLa, 17.45
IBM calculations
hydrodynamics of implosion, 4.20, 4.25, 5.1ff, 5.23ff, 11.13
implosion, 11.10
IBM machines, 11.3
Ignition of structural material,
 Trinity, 18.28
Illinois (see University of Illinois)
Impact explosion, 14.15
Impact fuse, 7.39, 14.15
Implosion bomb (see also Fat Man)
 design, 7.43ff
 design, contribution of Taylor, 2.9
 impact fuse, 7.39
 pit assembly design, 15.13
Implosion, 1.45, 7.63
 assembly, 19.2ff
 design, 5.20ff, 15.4
 dynamics, reorganization for work
 on, 9.1ff
 dynamics, study, 16.5
 efficiency calculations, 5.29ff,
 11.1ff, 11.14ff
 experiment, Trinity, 18.28
 first period, 4.18ff, 5.18
 initiator, 10.9
 jets, 10.7
 lens, 5.24, 5.26, 10.7
 method, 1.79
 predetonation, 5.43ff
 temperature effects, 11.9ff
 test, active material, 7.62
 utilizing plutonium, 10.5ff
Implosion Group, 5.3
Implosion Initiator Committee, 9.11
Implosion program
 at Camel, 9.16
 concentration on, 4.47
 expansion and reorganization, 7.8ff,
 7.55
 growth and development, 7.50ff
Implosion studies, 15.14ff
 betatron, 15.23ff
 electric method, 15.31ff
 magnetic method, 7.57, 15.18ff
 RaLa method, 7.61, 15.28ff
 X-ray studies, 15.17
Implosion Studies Group, X-ray
 studies, 15.17
Impulse gauges, Trinity, 18.28
Impurities, 17.50ff
Impurity spectrum, 17.51
Indemnity Insurance Company, 9.19
Indianapolis, 19.15
Inelastic Scattering, 12.18ff
 importance, 6.49, 6.53
 importance in tamper, 4.13
"informers," 7.35ff
Initiator, 1.43, 4.41, 15.35ff
 chemistry of, 8.58ff
 design, contribution of Bohr, 2.7
 design, contribution of Taylor, 2.9
 development, 15.17
 modulated, 11.9, 11.12
 neutron background measurement,
 19.28
 production, 17.61
Initiator Committee, 9.11
Initiator Group, G Division, 9.11,
 15.35ff
 electric method, 15.33
Inspection (see testing)
Instrumentation
 developments in Experimental
 Physics, 6.82
 early program of, 1.70
 proving gun, 7.25ff
Instrumentation Group, Ordnance
 Engineering Division, 7.35, 7.57
Insurers, monitoring, 3.98
Insurance, 3.68, 9.19
Integral experiments
 early program of, 1.66ff
 explanation of, 1.57
 miscellaneous, 12.24ff
 multiplication, 10.13, 12.18ff
 Research Division, 12.2
 Water Boiler, 4.48, 6.57ff
Integral scattering experiments, 12.16
 hydride bomb, 6.56
Intelligence officer, 3.33ff
 supervision of Special Engineer Detachment, 3.54
Interim Committee, 20.1
Intermediate Scheduling Conference, 9.5ff
Inventions, 3.127ff
Inventory, 9.24
Investment casting, 17.12
Inyokern (see Camel)
Ion Chamber data on energy of neutrons, Stanford, 6.25
Ionization chambers
 RLa, 15.28
 Trinity, 18.28
Iowa State College of Agriculture and Mechanical Arts
 cerium metal refractories, 8.9ff
 crucibles, 17.30
 purification research, 3.14, 8.4
 uranium hydride, 8.19
Iron determination, 8.74, 8.85
Isolation, policy of, 1.7ff
Isotope analysis, 6.79ff, 12.27
Isotopes (see also specific elements)
 barium, radio-, 8.12, 15.28, 17.42
 B-10, 4.34ff, 8.47, 13.15, 17.47
 deuterium, 1.47, 13.20ff
 He-3, 5.48
 lanthanum, radio-, 8.12, 8.68ff, 12.28, 15.28, 17.42
 neptunium, 12.14
 Pu-240, 4.42ff, 6.23, 7.29, 8.11, 10.6, 12.5, 12.27
 tritium, 5.47ff, 13.20ff
 U-233, 12.4, 12.13, 12.28, 13.32
 U-239, 1.30
Iwo Jima, 19.9, 19.14
Jets, 5.24
 early problems of implosion, 4.28ff
 implosive, 10.7
 investigation of, 16.10
 theory of, contributions of Taylor, 2.9
 X-ray study, 15.17
Joliot effect, spontaneous neutron emission, 4.44, 6.20, 8.58
Jornada del Muerto, 18.3
Jornada del Muerto Site (see Trinity Site)
Jumbino, 16.35, 17.8
Jumbo, 7.61ff, 16.32ff, 18.2, 18.9
 tower, 18.25
K site, 15.24
K-25 diffusion plant, safety calculations, 13.18
Kewaunee Manufacturing Company, 17.67
Kingman (see Wendover)
Kirtland Field, 9.13
Laboratory relations with U. S. Engineers, 3.17ff
Laboratory shop (see V shop)
 Lens program, 7.64ff, 10.8
 molds, 7.46, 16.40
 S site production, 16.22ff
 Lens shots, compression studies, 15.26
Liaison, 3.12ff, 9.14ff
 Air Forces, 7.35, 7.67ff
 Alberta Project, 19.7
 Chemistry and Metallurgy Division, 8.4ff
 Explosives Division, 16.7
 recommended by Reviewing Committee, 1.84
 University of Michigan, 7.36
 Library, Los Alamos, 3.82ff
 Little Boy, 7.75, 14.3ff, 19.2ff, 19.7
 (see also gun assembly)
ballistics, 14.17

tests, Tinian, 19.14

Liverpool (see British)

Log of Comdr. Ashworth, 19.20

of Captain Parsons, 19.17

Los Alamos (see also Site Y)

Los Alamos Canyon, Water Boiler Site, 6.64

Los Alamos conferences, April, 1.26

Los Alamos Project offices, 1.25

Los Alamos Ranch School, 1.6

Los Alamos Technical Series, 20.2

Los Alamos University, 20.1

Low energy fission spectrum measurements, 12.10

Low power Water Boiler, 17.37

Machine shops (see shops)

Machining explosives, 16.14

Magnesia, 17.24

crucibles, 17.11

inger, 17.10

molds, 17.12

Magnesium oxride impurities, 17.55

"Magnetic Method," 7.57

Magnetic Method Group, G Division, 15.18ff

Maintenance Group, Tech Area, 3.119

Manhattan District

construction, 3.117

draft deferment, 3.44ff

DSM transfer to, 1.7

selection of site, 1.8

Manhattan District Master Policies, 1, 2, 3, 3.68

Manhattan District Medical Section, 9.33

Manpower shortage

S Site, 16.30

Trinity, 18.6, 18.13

Manufacture, explosives (see Production, explosives)

Maps, Trinity, 18.4

Martin Nebraska plant, 19.2

Mass spectrographic method, isotopic analysis, 6.79ff, 12.27

Massachusetts Institute of Technology crucibles, 17.30

liners, 17.10

research on refractories, 8.9ff

McDonald's ranch house, Trinity, 18.20

McKee, R. E., contractor, 3.121

"mechanical chemist," 4.41, 8.68

Medical officer, Trinity, 18.23

Metabolism of Plutonium (see hazard of plutonium)

Metallurgical Laboratory, 1.1, 9.20

(see also University of Chicago)

purification research, 8.4

spectrochemical methods, 4.25

Metallurgy, 1.74, 4.18ff, 8.3, 17.29ff

(see also micrometallurgy)

of plutonium, 4.32, 17.24ff

of uranium, 4.30, 8.19ff

Metallurgy groups, 7.32

Meteorology, Trinity, 18.17

Michigan (see University of Michigan)

Microchemical investigation of plutonium, 4.38

Microtorsion balance, 17.49

Migration of polonium, 17.34ff

Military Intelligence, Trinity, 18.15

Military organization

of Los Alamos Project, 1.10

of Alberta Project, 19.7

Military personnel, 3.47ff

S site, 16.15

Minnesota (see University of Minnesota)

Miscellaneous Metallurgy Group,

Chemistry and Metallurgy Division, 8.46ff, 17.10, 17.29ff

Graphite Shop, 3.102

Mitchell cameras, Trinity, 18.28
Mock bombs, 19.1ff
Mock-fission source, 12.10ff, 17.36
design of, 6.28
multiplication experiment, 12.18
Mock up, gun assembly, 12.24
Models of bomb, 19.2ff
Modulated initiator, 11.9
Moffett Wind Tunnel, 7.74
Mold Design, Engineering Service
and Consulting Group, X Division
(see Engineering Service Group)
Mold Design Section, 7.46
Mold development, 16.40
Molds Committee, 7.46
Molybdenum, determination, 8.74, 8.87
Monitoring and Decontamination Section,
Chemistry and Metallurgy Service
Group, 9.32
Monitoring equipment, 3.98, 9.31
Monitoring personnel, safety, 17.23
Monitoring system, 10.16
Monoergic neutrons, 6.33, 6.38
Monsanto Chemical Company (also
Monsanto Laboratories), 8.4, 8.6, 17.34
Montreal Project, 5.9
Morgan, J. E. Company, 3.121
MP detachment, Trinity, 18.5
Multi-point primacord shots, RaLa,
15.30
Muroc Airbase, 7.35, 7.71ff
Nagasaki, 19.20
Nagasaki hemispheres, 17.28
Nagasaki and Hiroshima damage,
compared with Super, 13.8ff
National Defense Research Council
Office, liaison service, 3.16
National Roster of Scientific and
Technical Personnel, 3.46
Natural sources, standardized by
D-D subgroup, 6.78
Naval Air Depot, McAlester, 19.7
Naval Gun design section, 7.21
Naval Gun Factory, 4.15, 7.5, 7.10,
7.22, 7.27, 14.12
Naval Mine Depot, Yorktown, 19.7
Naval Ordnance Plant, 14.12
Naval Ordnance Testing Station,
Inyokern, 19.7
Navy Bureau of Ordnance, 7.21
Navy Liaison, 7.5, 7.10
Navy Proving Ground, 7.10, 7.24
N-237 fission cross section, 12.14
Neutron absorbers, use in autocata-
lytic assembly, 13.15
and gamma rays from Super, ef-
facts of, 13.11
assay, 12.27
method of isotopic analysis, 6.79ff
background
cause of detonation, 1.39
of initiators, 12.28
tolerance, polonium, 17.33
bursts, 15.7ff
cosmic ray, effect on U-235, 6.22
count, plutonium, 17.16
counters, 4.41, 8.59
delayed emission, 1.63
delayed, measurement of, 4.3
diffusion, 4.11, 5.4ff
emission time after fission
measurement, 6.9ff
energy spectrum of fission, 6.25ff
flux, absolute measurement of,
6.33ff
initiators (see initiator)
irradiations from Water Boiler,
13.34
measurements, 15.9, 18.2 (Trinity)
monoergic, production of, 6.33ff
multiplication experiments, 12.18ff
multiplication rate as function of
mass, 12.25
multiplication studies, 17.27
multiplication Trinity measurement, 18.28
neutron number, measurements of, 1.59ff, 4.2, 6.12ff, 10.13, 12.3ff
radioactivity induced by, measured, 6.43
sources, 17.36, 17.47
spectroscopy, comparative study of methods, 6.27
Neutron reactor, enriched uranium water-modulated, (see Water Boiler)
New Mexico (see University of New Mexico)
New Mexico State Director of Selective Service, 3.44
New Mexico Statutory Workmen's Compensation, 3.68
New York (see Columbia)
New York Purchasing Office, 3.73, 9.27
Nitrogen–nitrogen reaction in atmosphere, 1.48
NOTS Inyokern, 19.7
Nuclear efficiency, Trinity, 18.2
Nuclear experiments, early, 4.12ff
Nuclear explosion, 13.17
damage of, 5.57ff
experimental, 18.1ff
formation of chemical compounds in air, 13.19
predictions, contributions of Taylor, 2.9
radiation effects on, 5.40
Nuclear measurement, energy release, 18.28
Nuclear reactions cause detonation, 1.39
controlled, 15.8
Nuclear specifications for bomb, 4.4ff
O Division (see Ordnance Division)
Oak Ridge, 3.14ff, 8.12 (see also Y-12 plant)
personnel, 9.20
Observation points, Trinity, 18.25
Occupation Groups, Graph 4
Office of Director, construction, 3.12, 9.17
Office of Scientific Research and Development
DSM transfer from, 1.7
letter of intent, 1.11
patent headquarters, 3.128
patent procedure, 3.123
salary scale, 3.37
Officer, Alberta Project, 19.5
Ohio State University, 5.51
storing liquid deuterium, 8.95
Omega, Water Boiler Site, 6.64, 15.4
Operating procedures, DP, 17.65
Optical method, blast measurement, Trinity, 18.28
Optics Group, G Division (see Photography and Optics Group)
Optics shop, 3.105
Ordnance, recommendations of Reviewing Committee, 1.87
Ordnance Division, 5.3, 5.17ff, 5.63
7.1ff, 9.2ff, 10.2ff, 14.1ff
Procurement section, 9.25
X-raying charges, 15.14
Ordnance Instrumentation Group, 7.57, 7.61
Ordnance liaisons, 7.10ff
Ordnance program, 1.76, 1.81
Ordnance Shop (see C Shop)
Organization of Laboratory, 3.1ff
(see also group organization)
Organization of Site Y, 1.10ff
Oscillograph, high speed, Trinity, 18.28
Oscillographic tests, detonators, 15.46
Outer case design frozen, 14.3
Output of plutonium, 17.19
Overseas operating base, 19.4
Overseas operations, 19.9
Oxalate precipitation, 17.19
Oxide method
 fluoride production, 17.21
 plutonium reduction, 8.42
Oxygen microdetermination by
gasometric analysis, 8.74, 8.90ff
P Site, 15.16
Pajarito Canyon Site, 6.19, 12.7, 15.19
Paraffin sphere, use in autocatalytic
assembly, 13.15
Patent agreements, 3.126
 cases, 3.127ff
 notebooks, 3.85, 3.126
 office, 3.123ff
 Officer, 3.123
Payroll records, 3.61ff
Peace negotiations, 19.22
Peak pressure measurements, Trinity, 18.28
Pentolite, 16.12, 16.17
Permanent earth displacement meas-
urement, Trinity, 18.28
Personnel Administration, 3.22ff,
 9.20ff
 clearance, 3.33
 Director, 3.23, 3.57ff
distribution in divisions,
 Graph 5, 6
 employed, Graph 2, 3
 employees, construction, 3.118ff
 first major expansion, 1.88
 overseas, 19.10
 procurement, 9.20ff, 3.46
 reorganization, 3.57
 salary policy, 3.37ff, 9.22
 scientific, 1.14ff
 shop, 9.38ff
Phases of plutonium, 17.24ff
Phosphate method, 17.43
Phosphorous determination, 8.74, 8.83
Photoelectric method as proving
technique, 7.25
Photographic and Optics Group, G
 Division, 15.48
Photographic emulsion technique,
fission spectrum measurements,
 12.9
Photographic method as proving
technique, 7.25
Photographic neutron energy
 measurements, Liverpool, 6.25ff
Photographic nonlens implosion
 studies, 16.9
Photographic observation, detonators,
 15.46
Photographic Shop, 3.84, 3.101
Photographic studies, Trinity, 18.2,
 18.28
Photography, 15.48ff
 of implosion, 4.27, 7.57ff
Photometric Assay, 8.74, 8.88, 17.58
Photometric measurements, Trinity,
 18.28
Physical properties of plutonium,
 8.37ff, 17.24ff
Pilot plant, B-10 separation, 4.34
Pinhole cameras, Trinity, 18.28
Piston gauges, Trinity, 18.28
Pit assembly, 15.4, 15.13
Pit Assembly Group, Trinity, 18.22
Plane, choice of, 7.68
Plans for full scale test, 18.2
Plutonium (see also P-240)
 accident, 3.97
 alpha phase, 8.38, 8.45, 17.24ff
 analysis, 8.74ff, 17.50ff
 assay, 17.58
 beta phase, 8.38, 8.45, 17.26ff
 bomb, 10.5ff
 branching ratio, 6.46ff
 chemistry of, 1.86, 8.7
 comparison of neutron number with
 U-235, 6.12, 6.15
comparison with radium, 3.94
delayed neutron and gamma ray
emission, 13.33
fast modulation experiment, 12.25
first critical assembly, 15.12
fission cross sections, 4.12, 6.31,
12.12
gun, 4.14, 4.47, 6.24
hazard, 3.94ff, 9.30
isotopic analysis, 6.81
metallurgy, 4.32ff, 8.36ff, 17.24ff
micrometallurgy, 1.53
multiplication experiments, 12.18ff
physical properties, 8.37ff
poisoning, 4.38ff
processing, 17.61
produced by chain reaction, 1.30
production, 1.60, 4.2, 17.59ff
projectile specifications, 7.18
purification, 4.42ff, 8.11, 8.26ff,
10.15, 17.16ff
purity requirements for gun as-
sembly, 1.43
recovery, 8.34ff
reduction, 8.39
reduction, bomb method, 8.8
spontaneous fission rates, 6.23,
9.1, 12.8
sulfide, 17.57
thermal scattering cross section,
13.32
toxicity, 10.16
uranium as stand in for, 8.16
use of, 7.64
Plutonium Chemistry Group, RaLa,
17.45
Plutonium Purification Group, CM,
17.16ff
Plutonium Recovery Group, 9.32
Plutonium-240 (see also Plutonium)
10.6
content measured, 12.27
discovery of, 4.42ff, 7.29, 8.11
first observation, 6.23
neutron number measurement, 12.5
PMR unit, 14.16
Poisoning, HE, 3.99
Polonium, 17.32ff
extraction of, 8.6
hazard, 9.33
initiators, 4.41, 8.58, 15.37
Joliot effect, 6.20
processing, 17.60ff
purification, 4.41
toxicity, 10.16
used in mock fission sources,
12.11
Polonium Group, CM Division, 17.61
Portable ionization chambers, Trinity,
18.28
Postdetonation, 1.43
Post Operations Division, construc-
tion, 3.121
Post Supply Section, 3.74
Post-shot radiation measurements,
Trinity, 18.28
Powder metallurgy, 4.33
Powder Metallurgy Group, Water
Boiler
specifications, 6.65
Power consumption, 9.19
Preassembly, HE, 15.13
Predetonation, 1.40, 5.43, 12.24
Preliminary experiments to prove
feasibility of bomb, 6.8ff
Preparations, Trinity, 18.13ff
Prescott micro-gas analyzer, 8.92
President's Interim Committee, 20.1
Pressing (see also hot pressing)
HE, 16.12
uranium, 17.12
Pressure switch, gun, 14.15
Primacord systems, RaLa, 15.30
Prime Contractor, University of California, 1.11

Priorities
- construction, 3.122
- procurement, 3.75
- shops, 3.112

Priority, implosion, change in, 4.21

Procurement
- early difficulties, 1.16
- of guns, 7.20ff
- of lens molds, 16.40
- of personnel, 3.46
- of reagents, University of Chicago, 8.9
- of refractories, 8.9ff
- recommendations of Reviewing Committee, 1.90
- special, 3.81

Procurement Group, Ordnance Division, 9.25

Procurement Office, 1.12, 3.69ff, 3.80, 9.23ff, Graph 7

Procurement Officer (see director of procurement office)

Production
- electronic switch, 16.38
- explosives, 16.12ff, 16.15ff
- lenses, S Site, 16.22ff
- of isotopes (see isotopes)
- plutonium, 17.59ff
- radiobarium, radiolanthanum, 8.12
- schedules, Pu-239 and U-235, 1.52, 3.15

Production casting, 16.29

Project A (see Alberta Project)

Project Editor, 3.86

Project Engineers (see G Engineers)

Project Office, 1.19, 1.25

Project Technical Committee, Tinian, 19.13

Project Trinity (see Trinity)

Project Y, selection of site, 1.6ff

Projectile Target and Source Group, Ordnance Engineering Division, 7.32

Promotion policy, enlisted personnel, 3.52ff

Prompt Measurement Group, Trinity, 18.22

Prompt neutrons, 15.7

Prompt period, determination of, 6.70ff

Property Inventory Group, Procurement, 3.80, 9.24

Proving ground, 7.24, 15.36

Proving Ground Group, 7.24

Proximity fuses, 7.69, 7.72

"pumpkin" program, 14.20

Purchase Requests, Procurement, Graph 7

Purchasing Office
- Chicago, 3.73
- Local, 3.47
- Los Angeles, 1.12, 3.59, 3.73, 3.78, 9.27
- New York, 3.73
- Radiation Laboratory, Berkeley, 3.72
- University of California, 1.90
- Purdue University subproject, 1.4, 1.15, 3.125
- Purification Group, Chemistry and Metallurgy Division, 8.18

Purification Program
- plutonium, 4.37ff, 17.16
- recommendations of Reviewing Committee, 1.86
- research at Los Alamos, Chicago, Berkeley, Iowa, 8.4
- U-235, 8.12ff
- Purity analysis, 8.69ff
- Purity of polonium, 17.33
- Purity requirements plutonium, 4.32
Pu-239 and U-235, 1.72
Pyroelectric-gallium-oxide method, 8.74ff, 17.52

Quadruple proportional counter, 17.47
Quality control, explosives, 7.58, 16.12ff
Quartz piezo gauges, Trinity, 18.28

R Division (see Research Division)
Radar devices, gun, 14.15ff
Radar study, Trinity, 18.28
Radiant energy, Trinity, 18.28
Radiative capture, U-235 and Pu-239, 4.12
Radiation hazards, external, 9.34ff
Radiation effects in nuclear explosions, 5.40ff
Radiation Laboratory Purchasing Office, 3.72
Radioactive poisoning, 13.14
Radioactivity Group, 8.58ff, 9.1
capture cross section measurements, 6.40, 12.26
development of thin foils with Radiochemistry Group, 6.89
fission cross section measurement, 6.39
fission process investigation, 6.77
isotopic analysis, 6.79ff
measurement of neutron induced radioactivity, 6.43
measurement of branching ratio, 6.45
miscellaneous experiments, 12.27ff
neutron number measurement P-240, 12.5
spontaneous fission measurement, 6.18ff, 9.1, 12.7ff
U-238 high energies, 6.48
Radioactivity, RaLa, 17.41
Radio altimeters, 7.37

Radio assay, 8.74, 8.88
Radiobarium, 8.12, 15.28, 17.42
Radiochemistry Group, 4.41, 8.53ff, 17.31ff
construction of mock fission sources, 12.11
construction of radon plant, 6.21
initiators, 15.39ff
RaLa, 17.45
uranium purification, 8.18
water boiler, 6.65, 17.37ff
Radiochemistry program, 1.73
Radio Corporation of America, 7.37
Radiographic examination of tamper, 15.14
Radiographic studies, RaLa, 15.28ff
Radio informer tests, 14.16
Radiolanthanum, 8.12, 8.68, 15.28, 17.42 (see also RaLa)
investigation of gamma radiation, 12.28
Radio proximity fuses, 7.13, 7.36
Radium, compared with plutonium as poison, 3.94
Radon in initiators, 4.41, 8.58
Radon-beryllium source, used in neutron number measurements, 6.16
Radon plant, 4.44, 6.21
RaLa, 5.63, 10.15, 17.41ff
Chemistry Building, 17.3
health hazards, 9.34
program, 15.28ff
use of, 7.61, 15.22
RaLa Group, CM Division, 17.5ff, 17.45
RaLa Group, G Division, 15.28ff
measurement of multiplication rate, 12.25
Ratio of neutron numbers of U-235 and Pu-239
by Cyclotron Group, 6.14ff
by Electrostatic Generator Group, 6.12ff
Ratio of radiative capture of fission
(see branching ratio)
Raytheon Company, 16.38
Reactor, controlled, (see Water Boiler)
Reagents, high purity, procurement of, 8.8
Receipt for active material, Trinity, 18.21
Recorder, mechanical, 6.83ff
Recording of betatron, cloud chamber, 15.23
Records Group, Procurement, 3.80
Recovery Group, Chemistry and Metallurgy Division
continuous extraction apparatus, 17.7
ether extraction method, 17.38
RaLa, 17.45
test shot recovery (of active materials) 17.8
Recovery, 7.56
experiments, 15.17
methods, 7.62, 17.22
program, 16.33ff
schemes, 18.9
yields, 17.7
Recruiting, shop personnel, 9.38ff
Redesigning Fat Man, 19.7
Reduction of plutonium, 8.39ff, 17.25
Reduction to practice, patent cases, 3.128
Refractories, heavy element, 4.32
procurement, production and research, 8.8ff
research, 8.51
Rehearsal test, Trinity, 18.10ff
Rehearsals, Trinity, 18.20
Remelting
plutonium, 8.44, 17.25
uranium, 17.11
Remote control apparatus, 17.38
17.41ff
Remote pressure barograph recorders, Trinity, 18.28
Remote seismographic observation, Trinity, 18.28
Reports, Los Alamos, editing, 3.86
reproduction and distribution, 3.84
Research Division, 9.2ff, 10.3, 10.13, 11.5, 12.1ff
Research and Development Section, S Site, 16.19
Research, health, 3.90ff
Research, meaning of, 1.52ff
Resistance wire method, 15.33
Results of rehearsal test, 18.12
of Trinity test, 18.28ff
Reviewing Committee, 8.4
members, 1.26
report of, 1.82ff
Rice Institute
cloud chamber data on energy of neutrons, 6.25ff
subproject, 1.4
work on fission spectrum, 1.61
Risk of explosion, Tinian, 19.16, 19.20
Rolling uranium, 17.12
Roosevelt letter, 3.19
Rossi experiment, 6.70ff, 12.25
Rotating mirror
camera, detonator tests, 15.46
photography, 16.9
Rotating prism cameras, 7.57
Rotating pyramid technique, 16.9
S Site, 7.59ff, 16.12ff, 16.15ff
Safety aspects, Trinity, 18.15
calculations for K-25 diffusion plants, 13.18
in delivery, 19.3
DP site, 17.62ff
explosives, 16.14
features, Water Boiler, 6.65
plutonium, 3.95, 17.23
polonium, 17.33
precautions, active materials, 15.4
tests, 15.10ff
Safety Committee, 3.88, 9.37
Safety Engineer, 9.37
Safety Group, 9.37
Safing, weapon
 Fat Man, 19.20
 Little Boy, 19.16
Salary policy, 3.56ff, 3.37ff, 9.22
Salton Sea Naval Air Station (see Sandy Beach)
SAM Laboratories, personnel, 9.20
Sandia, 9.13
Sandia Canyon, 15.36
Sandy Beach, 14.17
Santa Fe office, 1.19
Sawmill Site (see S Site)
Scaler, 6.83ff
electronics, 15.50
Scaling circuit, 6.86ff
Scattering cross-sections, 1.64, 10.13
Scattering experiments, 5.4, 6.49ff, 12.15ff
Scattering, inelastic, 4.13
Schedule
 combat delivery, 19.15, 19.19
 Trinity, 18.13ff
Scheduling
 of construction, 3.122
 of experiments, Trinity, 18.18ff
Schlieren method, Trinity, 18.28
Schools, 3.25ff
Scientific Panel of President's Interim Committee, 20.1
Seabees, 19.9
Second Air Force, 18.3ff
Security
 policy and administration, 3.32ff
 policy of colloquium, 3.11
 responsibility of Director, 1.6ff
 Tinian, 19.21
 Trinity, 18.15, 18.27
 University of California, 3.17
Security restrictions
 business office, 3.59
 patent office, 3.124
 military personnel, 3.51
 personnel, 3.36
 procurement, 3.77
SED (see Special Engineering Detachment)
Seismograph Measurements, Trinity, 18.28
Selective Service (see also draft deferment)
 New Mexico State Director of,
 3.44
Separation methods, RaLa, 17.44
Sequence circuit, cloud chamber, 15.25
Serber lectures, theoretical background, 1.27ff
Service and Supplies Section,
 Procurement, 3.80
Service Group, Chemistry and Metallurgy Division, 8.72, 9.32, 17.1
Services Group, Trinity, 18.14
"718" radio altimeter, 7.37
Shadow cone method, scattering measurements, 6.49ff
Shallow explosion experiments, 14.19
Shaped charges for assembly, 13.16
Shielding techniques, magnetic method, 15.19
Shipping Group, Procurement, 9.28
Shock-operated jet, 15.17
Shock wave
contributing factor to damage, 5.58
expansion measurements, Trinity, 18.28
stability of convergent, 11.9, 11.11
transmission time, Trinity, 18.28
velocities, electric method, 15.32
Shock waves, theory of, 1.3
Shops, 3.100ff, 9.38ff (see also
C Shop, V Shop)
and explosives, 16.14
man-hours, Graph 9
Sigma Building construction, 17.3
Signal Corps, 7.37
Silver coating, plutonium, 17.28
Sintering uranium powder, 17.14
Site for
Alberta Project, 19.9
Trinity test, 7.62, 18.3
Water Boiler, 6.60
Y, 1.10
Site Map, App. 3
Site, S (see S Site)
Site X (see Oak Ridge)
Site Y, early organization, 1.10
(see also Project Y)
Slab shots, 16.10
Small scale test, Trinity, 18.10ff
Soldiers (see military, Special
Engineer Detachment)
Sources, standardized by D-D sub
group, 6.78
Special Engineer Detachment, 3.45,
3.47ff, Graph 2, 3
Specifications, gun projectile, 7.18
Specifications, nuclear, for bomb,
4.4ff
Spectrochemical methods, 8.8, 8.74ff,
17.51ff
Spectrographic measurements, Trinity,
18.28
Spectrum of fission neutrons, 6.25ff
Spectrum, impurity, 17.51
Sphere multiplication, 11.5ff, 12.18ff
experiments, 10.3, 13.31
Sphere studies, 16.9
Spheres, plutonium, 17.27
Spherical charges, small, X-raying,
15.14
Spiral ionization chamber, 6.56
Spontaneous combustion protection,
17.14
Spontaneous fission measurements,
4.43, 6.18ff, 10.13, 12.7ff
Pu-239, 6.23
Pu-240, 12.5
Spontaneous fission rate, Clinton
plutonium, 9.1
Staff members defined, 3.10
Standard Oil of Indiana, B-10 plant,
4.34
Standards subgroup of D-D Group
calibrated radon beryllium source,
6.16
standardized natural sources, 6.78
Stanford University Group, 1.15, 3.125
ion chamber experiments on energy
of neutrons, 6.25ff
subproject, 1.4
work on fission spectrum, 1.61
Stationary bomb reduction technique,
17.10
plutonium, 8.43, 17.24
uranium, 8.22ff
Stockroom, Trinity, 18.13
Stockrooms established, 3.75
Stone and Webster Corporation,
construction, 3.117
Student shops, 3.102
Subsurface explosion experiments,
14.20
Sulfide, 17.57
determination, 8.74, 8.84
Sulphur threshold detectors, Trinity, 18.28
Sundt, M. M. Co., construction, 3.117
Super, 1.46, 5.44ff, 8.94ff, 10.12, 13.1ff
Super Experimentation Group, 13.20
Supercritical assembly, 15.7
Supernatants, 17.18ff
Supervisor, construction, 3.118ff
Supplies, Tinian, 19.9
Surface explosions, 14.18ff
Surrender negotiations, 19.21
Sweep circuits, electronic, 15.50
Switch, detonators, 15.43, 16.38
Szilard-Chalmers reaction, 8.59
T Division (see Theoretical Division)
TA project (see British Project)
Table of codes, Tinian, 19.21
Table of Organization, Special Engineer Detachment, 3.52
Tamper, 1.33
assembly, 9.9
choice of materials, 5.37ff, 6.49ff
design of, 5.25, 5.40ff
effect of, 1.37
experiments, measurement of scattering, 1.67
high power boiler, 13.29
virtues of, 5.38
Tamper materials, 4.13
capture cross section measurement, 6.41
nuclear properties, contributions of Bohr, 2.6
radiographic examination of, 15.14
scattering measurement, 12.16ff
Tamper testing, 14.9
Tantalum, neutron capture, 12.26
Target case, gun assembly, 14.10
Target date, Trinity, 18.13
"Taylor instability," 2.9
T-D cross sections measured, 5.50, 13.21
T-D reactions, 5.48
Tech area maintenance group, 3.119
Technical Board, 9.4
Technical construction, Graph 8
Technical and Scheduling Conference, 9.5ff, 9.7
Temperature effects, 19.3
Tennessee Eastman, U-235 purification, 8.12
Test, implosion, 7.62
Test, nuclear explosion, 18.1ff
Test program
arming and fusing, 14.15ff
X units, 19.8
Test, Trinity, 18.2ff
rehearsal, 18.10ff
Testing methods, lenses, 16.25
Testing tampers, 14.9
Tests, 16.39
arming and fusing, 7.37ff
bomb delivery, 19.3
bomb models, 7.67ff
early considerations, 1.52
electronic switch, 16.38
explosives, 16.12ff
fuse, 7.69
gun, 14.11ff
Tinian, 19.14
Tetrafluoride, plutonium, 17.24
Theoretical aspects of implosion, 4.22
Theoretical background, lectures by Serber, 1.27ff
Theoretical Division, 9.2ff
calculations for scattering experiments, 5.60, 6.52
data from electric method, 15.32
Feynman experiment with B-10 boron isotope, 5.61
implosion studies, 5.19ff, 5.60, 7.63, 10.5ff, 11.3ff
program, 5.1ff, 5.60ff, 11.1ff
safety calculations, 5.64
Water Boiler calculation, 5.60, 6.59
Theoretical Division Progress Report, 11.18
Theoretical Group of F Division, 13.3
Theoretical prediction of critical mass of Water Boiler, 4.48
Theoretical program, 1.54
Theoretical work on super, 13.4
Thermal cross section measurements, 13.32
Thermonuclear bomb (see Super) reaction, 1.46, 5.45
reaction in deuterium, 1.3
reaction of earth's atmosphere, 1.48
recommendations of Reviewing Committee, 1.85
Thin Man, 7.71ff
Thorium fission detector, experiment with, 6.13
Tickling dragon's tail (see dragon) Time expander, Trinity, 18.28
Time for fission, 6.9
Time schedule, Alberta Project, 19.7
Time schedules for production of Pu-239 and U-235, 1.52
Timing circuits, 6.87
Timing difficulties, detonators, 15.42ff
Timing results, magnetic method, 15.22
Tinian, 10.3, 19.9, 19.21
TNT dermatitis, 3.99
Tolerance levels, Health Group, 3.99
Tolerance limits, 17.50
in plutonium, 8.69ff
Torpex, 16.12, 16.23
flash bombs, Trinity, 18.28
Total radiation measurements, Trinity, 18.28
Town Council (see Community Council)

Toxicology of plutonium (see hazard) Tr (see Trinity)
Transformers, Trinity, 18.28
Transportation, Trinity, 18.13
Travel reimbursement, 3.63
Travel restrictions on personnel, 3.36
Trial run, Trinity, 18.10ff
Trifluoride (see boron trifluoride) Triggering devices, 7.33ff
Trinity, 18.1ff
description of explosion, 10.20
11.18ff, 18.25ff
hemispheres, 17.28
location plan, App. 4
Trinity Project, 9.12, 16.3, 18.1ff
Trinity test, 10.17ff, 11.1, 11.9, 11.13ff
chemical compounds, 13.19
health hazards, 9.35
lens molds, 10.10, 16.40
measurement of gamma ray and neutron intensity, 13.33
Patent Office, 3.128
photographic group, 15.48
rehearsal shot, 10.18
Research Division, 12.2
schedule, 9.26, 10.11ff
site, 10.17
Tritium, 5.47ff
experimental production, 5.56
20th Air Force, 19.7
Two chamber method, Trinity, 18.28
UH10, UH30, UH60, 15.6ff
Ultra-centrifuge technique, 16.9
Underground or underwater explosion, 7.39, 13.9, 14.18ff
US Engineers (see Manhattan District) US Engineers, Albuquerque District, 1.23, 3.117
US Patent Office, 3.127
University, Los Alamos, 20.1
University of California
Business office, 3.59ff
Business Officer, 1.12
cerium sulfide, 8.9
chemical and metallurgical research, 3.14
cornerstone, 3.118ff
effect of security regulations, 3.17
employees, Tinian, 19.12
extraction of polonium, 8.6
group, 1.15
insurance, 3.68
isotopic analysis, neutron assay
method, 6.79
Joule-Thompson liquefier, 8.94
library, loans from, 3.83
plutonium chemistry, 8.7, 8.75
prime contractor, 1.11
purchasing office, 1.90
purchasing policy, 3.70
purification research, 8.4
salary policy, 3.56ff
spontaneous fission measurements, 4.43, 6.18
subproject, 1.4
work done at, 1.2
work on capture cross section, 1.64
work on fission cross section, 1.62
University of Chicago, 1.1 (see also
Metallurgical Laboratory)
absolute neutron number measurement, 6.16ff
analytical method, 8.73ff
chemistry of plutonium, 1.86
conferences, 1.4
group, 1.15
integral experiments, 1.66
liaison with, 3.13
measurement of absorption cross section, 6.44
measurement of capture and scattering cross sections, 1.54
microchemistry and micrometallurgy, 1.70
micrometallurgy of plutonium, 1.52
plutonium chemistry, 8.7ff
refractories, 8.9ff
subproject, 1.4
University of Illinois
betatron, 15.23ff
Cockcroft-Walton accelerator, 1.17, 6.5
University of Michigan, 7.36, 7.69, 7.72
radar device, 14.16
radio proximity fuse, 7.13ff
University of Minnesota
group, 1.15
photographic emulsion technique, 6.26
scattering cross section determination, 1.64, 6.34
subproject, 1.4
work on fission spectrum, 1.61
University of New Mexico subproject, 7.11
University of Wisconsin
group, 1.15
subproject, 1.4
van de Graaffs, 1.17, 6.4
work on cross sections, 6.29
work on fission cross sections, 1.62
work on scattering cross sections, 1.64
Uranium (see also U-233, -235, -238, -239)
alloys, 8.25
analysis, 8.74, 8.78, 17.50ff
isotopic analysis, 6.79ff
machining, 9.51
metallurgy, 4.29, 8.18ff, 17.9ff
plastic compacts, 8.21
projectile specifications, 7.18
purification, 8.15ff, 17.4ff
recovery, 17.4ff
reduction methods, 8.22ff
safety tests, 15.10ff
stand in for plutonium, 8.16ff
unseparated as tamper, 6.55

Uranium-233
absorption cross section, 13.32
fission cross section, 12.12
half-life measured, 12.28
neutron number measurement, 12.4

Uranium-235
beta stage, scattering measurements, 12.15
branching ratio, 6.44ff
chemistry, 8.12
comparison of neutron number with Pu-239, 6.12, 6.15
fast modulation experiment, 12.25
fission cross sections, 4.12, 5.15, 12.12ff
fissions, 1.30
gun, 10.2ff, 14.5ff (see also Little Boy)
multiplication experiments, 12.18ff
receipts, Graph 12
relative fission cross section
measurements U-235 and Pu-239, 6.31
thermal scattering cross sections, 13.32

Uranium-238
branching ratio, 6.48
fissions, 1.29

Uranium-239, 1.30

Uranium fluoride, 17.4, 17.6
Uranium hydride (see hydride)
Uranium hydrogen mixtures (see UH10 etc.)

Uranium Metallurgy Group, Chemistry and Metallurgy Division, 17.7ff

Urgency ratings, Procurement Office, 9.26

Urine sample
determination of plutonium, 17.51
determination of uranium, 17.54

V Shop, 3.101ff, 9.38ff, Graph 9, 10
V Site construction, 7.73

van de Graaff
rebuilding program, 6.36
University of Wisconsin, 1.17, 6.4
van de Graaff Group, neutron number measurements, 12.3

Velocity selector
equipment, 6.38
experiments, contribution of Bohr, 2.6

Ventilating system, DP Site, 17.63
Vertical cloud chamber, 15.23
Visible radiation, Super, effects of, 13.12

Visitors, Trinity, 18.24
Vitrified magnesia, 17.30
Volumetric assay, 17.58
Volumetric methods, 17.57

W-47 (see Wendover)
WAC (see Women's Army Corps)

War Production Board, procurement priorities, 3.75

Warehouse of Procurement Office, 9.28

Warren Grove, N. J., 7.39
Washington Liaison Office
draft deferment, 3.44
personnel procurement, 3.46
purchasing through, 3.78, 9.26
overseas communications, 19.21

Water baffle recovery, 16.36

Water Boiler, 13.25ff
calculation of critical mass, 5.15ff
calculation of thermal neutrons, 5.14
chemistry, 8.12, 8.61ff, 17.37ff
development, 10.13
early discussion of, 1.69
first successful operation, 4.48
health hazards, 9.34
problems, 5.15ff
Water Boiler Group, 15.4, 6.57ff, 13.1
experiments, 6.70ff
sphere multiplication experiments, 12.23, 13.31
Water Delivery Group, 14.17, 14.20
Water immersion, 17.13
Water safety tests, 15.10ff
Weapon Physics Division (see G Division)
Weapons Committee, 7.44ff, 9.6, 9.10, 19.5, 19.7
Weather Division, AAF, 18.17
Weather, Trinity, 18.17, 18.23, 18.28
Welding problem, V Shop, 3.107
Wendover Army Base, 19.2ff
Wendover Field, 9.13, 9.16ff, 14.13ff, 16.39
Wendover tests, Photographic Group, 15.48
West Area, DP Site, 17.61ff
Wet purification
plutonium, 8.28ff, 17.18ff
uranium, 8.17ff
Wisconsin (see University of Wisconsin)
Women's Army Corps, 3.47ff
personnel, Graph 2, 3
Workmen's Compensation, New Mexico, 3.68
Workshop, library, 3.84
X Division (see Explosives Division)
X-ray examination of charges, 16.10
X-ray Method Group, G Division, 15.14ff
X-ray photography, flash, 16.9
X-units, Fat Man, 19.8
Y-12 plant, 17.4
U-235 receipts, Graph 12
Yield (see energy release)
Yield, purification, 17.18ff
Yorktown Naval Mine Depot, 19.7
Z Division, 9.13, 19.7
Zirconium determination, 17.54