
LA-13685-T
Thesis

An Implicit Smooth Particle

Hydrodynamic Code

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.

Approved for public release;
distribution is unlimited.

This thesis was accepted by the Department of , City, State, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.
The text and illustrations are the independent work of the author and
only the front matter has been edited by the CIC-1 Writing and Editing
Staff to conform with Department of Energy and Los Alamos National
Laboratory publication policies.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither The Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the University of California, the United States Government, or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of
The Regents of the University of California, the United States Government, or any agency
thereof. Los Alamos National Laboratory strongly supports academic freedom and a
researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

An Implicit Smooth Particle
Hydrodynamic Code

Charles E. Knapp

LA-13685-T
Thesis

Issued: January 2000

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545

DEDICATION

This is dedicated to my parents Kenneth and Barbara Knapp.

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico
Albuquerque, New Mexico

May 2000

iv

Table of Contents

List of Figures vii

List of Tables . viii

Abstract -. ix

Chapter I - An Overview & the Goals 1
A. Introduction 1
B. Fluid Methods 2
C. Implicit Methods 6

Chapter II - Basics of Smooth Particle Hydrodynamics 11
A. Introduction To Smooth Particle Hydrodynamics 11
B. The SPH Approximations and the SPH Equations 14
C. The Kernel Function 17
D. The First-Order Derivatives of the Kernel 22
E. The Neighbor Search Routine 24

Chapter III - The New Implicit SPH Code
A. Introduction to the Implicit Code
B. The Analytic Jacobian

B.l. Derivatives for the Implicit SPH Code
B.2. The Second-Order Derivatives of the B-Spline Wij . . .

C. Lower and Upper (LU) Decomposition
D. The Numerical Jacobian
E. Iterative Solvers

E.1. Stationary Methods
E.2. Non-Stationary Methods
E.3. Symmetric Positive-Definite Matrices
E.4. Non-Symmetric Matrices
E.5. Arnoldi Orthogonalization for Non-symmetric Matrices .
E.6. Lanczos Biorthogonalization for Non-symmetric Matrices

F. The Newton-Raphson Iteration
G. Sparse Storage and Computations
H. Preconditioners
I. A Time-step Method for the Implicit Code
J. A Matrix-Free Method
K. The Theta Parameter

. . 26

. . 26

. . 29

. . 29

. . 35

. . 39

. . 40

. . 42

. . 43

. . 45

. . 47

. . 48

. . 49

. . 50

. . 51

. . 53

. . 54

. . 56

. . 57

. . 60

Chapter IV - Test Cases 62
A. Introduction 62
B. A Three-Particle Problem 63

V

C. A Rarefaction Problem 66
D. A Shock-Tube Problem 69
E. A Rayleigh-Taylor Instability 7 1
F. Breaking Dam problem 79
G. ASingleJetofGas. 85
H. Comments and lessons learned 90

Chapter V - Application to a Fusion Problem 94
A. Introduction 94
B. Neutral Plasma Jets Merging onto a Projectile 96
C. The2DRingofJets 103
D. The3DSphereof60jets 107
E. Conclusions of the MTF study 112

Chapter VI - Conclusions 113

Appendix . 117

References . 121

Acknowledgements 129

vi

List of Figures

Fig. I. 1.

Fig. II. 1.

Fig. III. 1.

Fig. IV 1.

Fig. IV. 2.

Fig. IV 3.

Fig. IV. 4.

Fig. IV 5.

Fig. IV 6.

Fig. IV. 7.

Fig. IV 8.

Fig. IV. 9.

SPH Particles 3

The Cubic B-Spline Kernel & its First Derivative 19

Initial Jacobian Matrix for the 1D 3-Particle Problem 38

3 Particles, Runge-Kutta vs. Implicit lD, variable h, at 4 times . . . 64

Rarefaction Problem, Time = 2 ps, Implicit Solution vs. Analytic . . 67

Shock-Tube Problem, Time = 2 ps, Implicit Solution vs. Analytic . . 70

Rayleigh Taylor Problem 74

Rayleigh-Taylor Problem for One e-folding Time 76

Comparison of Explicit code to Cosh for 6000 Particles 78

Breaking Dam Problem 80

Breaking Dam Problem Surge Front Distance vs. Time 83

Breaking Dam Problem Column Height vs. Time 84

Fig. IV 10. Single Jet of Gas, y= 10.0, 30.0, l.e4 Time = 1 ~1s 87

Fig. IV. 11. Implicit & Explicit Time-Step Size vs. Time for Three Values of y . . 89

Fig. V. 1. Initial Setup for Two Jets Impinging on a Projectile 97

Fig. V. 2. Comparison of the Implicit and Explicit Codes for 2 Jets Merging . . 100

Fig. V. 3. Initial Setup for the 2D 24-Jet MTF Problem 103

Fig. V. 4. Maximum Compression for a 2D 24-Jet Case, t = 0.406 ps 105

Fig. V. 5. The Initial Setup for the 60-Jet MTF Concept 108

Fig. V. 6. Maximum Compression for the 3D 60-Jet Case, t = 0.4 ps 110

vii

List of Tables

Table 1 111

. . .
VI11

An Implicit Smooth Particle Hydrodynamic Code

bY

Charles E. Knapp

A. S., Physics, Mesa Jr. College, Grand Junction, Colorado, 1965

B. A., Physics, University of California, Riverside, 1967

M. S., Astro-Geophysics, University of Colorado, Boulder, 1976

Ph. D., Engineering, University of New Mexico, Albuquerque, 2000

ABSTRACT

An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX

has been written and is working. In conjunction with the SPHINX code the new implicit

code models fluids and solids under a wide range of conditions. SPH codes are

Lagrangian, meshless and use particles to model the fluids and solids. The implicit code

makes use of the Krylov iterative techniques for solving large linear-systems and a New-

ton-Raphson method for non-linear corrections. It uses numerical derivatives to construct

the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce

the amount of computation. It is believed that this is the first implicit SPH code to use

Newton-Krylov techniques, and is also the first implicit SPH code to model solids.

A description of SPH and the techniques used in the implicit code are presented.

Then the results of a number of tests cases are discussed, which include a shock tube prob-

lem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem.

The results are shown to be in very good agreement with analytic solutions, experimental

results, and the explicit SPHINX code. In the case of the single jet of gas case it has been

ix

demonstrated that the implicit code can do a problem in much shorter time than the

explicit code. The problem was, however, very unphysical, but it does demonstrate the

potential of the implicit code. It is a first step toward a useful implicit SPH code.

X

Chapter I

An Overview & the Goals

A. Introduction

The goal of the research discussed in this dissertation is to develop a code, which is

an implicit version of the Smooth Particle Hydrodynamic (SPH) approach to modeling

fluid motion, and then to use it to study a select set of examples. The new code has been

developed as an addition to an existing explicit SPH code called SPHINX. The SPHINX

code was developed at Los Alamos National Laboratory [18], [22], [78], [79], [92], [93],

[94], and has the capability to model fluids and solids, using SPH techniques. The desire

is to move the SPHINX code into a new regime where it can use larger time-steps and

model low-speed flow and near-steady-state problems. Ultimately, it is envisioned that

SPHINX will be able to switch automatically between explicit and implicit time-stepping

as conditions change within a given problem, although this is not part of this dissertation.

The number of possible new applications that the implicit code could bring to the

SPHINX code would be numerous. Problems that change slowly with time or are near-

steady-state, such as plastic flow, would be possible. For example, Oran and Boris [64]

discuss the use of implicit methods in their Chapter 3 in which they discuss the modeling

of a laminar flame propagating through a tube of combustible gas, and estimate that the

computation could take up to 3000 years of computer time using conventional explicit

methods. To remain stable, explicit methods are restricted to very small time-steps

because of the need to resolve shock waves and velocities on the order of the sound speed.

Implicit methods only need to model velocities on the order of the speed of the flame,

1

which is typically three orders of magnitude slower than the sound speed, and these meth-

ods could remain numerically stable but would give up some accuracy. That reduces the

computer time to about 3 years. They further claim that another reduction of a factor of

500 can be gained by using adaptive-gridding to avoid gridding up voids, which brings the

computational time down to about two days, which is more reasonable. SPH codes do not

use grids, so that advantage would automatically be built in.

Astronomers want to calculate stellar and galactic models over very long periods

of time, and to run the models many times with different parameters in an effort to fit their

calculations to the observations. Very large time-steps are essential to be able to do this in

one’s lifetime, so implicit methods are commonly used in astronomy. Stellingwerf [76]

[77] enumerated a number of ways for analyzing astrophysical models once the Jacobian

matrix has been constructed. Solving this matrix equation is the crux of the implicit

method. He points out that once the Jacobian is set up, then the “options include (1) for-

ward time integration, (2) relaxation to steady-state, (3) stability of steady-state and time

evolution, (4) numerical stability check, and (5) driven oscillations.” Of course, these

methods can be used in many other fields of numerical modeling besides astronomy.

B. Fluid Methods

Modeling of fluids usually follows one of two basic techniques. One method uses

the fluid equations referenced to the laboratory frame, by defining a fixed mesh or grid and

modeling the fluid flowing through the mesh. This technique uses the fluid equations in

the Eulerian form. The other method fixes the mesh to the fluid and calculates the distor-

2

tion of the mesh as the fluid moves. In this method the mass within each cell of the mesh

remains constant. This technique uses the fluid equations in the Lagrangian form.

The SPI-I technique, which was originally developed for astrophysical work and is

fundamentally a Lagrangian approach, does not define a mesh, but instead models fluids

and solids using particles, with each particle having its own set of physical properties

assigned to it, such as position, velocity, density, internal energy, and more (see Fig. I. 1).

Fig. I. 1. Fig. I. 1. An example of particles (dots) and their circles of influence, which An example of particles (dots) and their circles of influence, which
may be of different radii and change with time. may be of different radii and change with time. Each particle has a local set of neigh- Each particle has a local set of neigh-
bors influencing its motion. bors influencing its motion. The particles may have different physical properties such The particles may have different physical properties such
as position, velocity, density, pressure, internal energy, and more. as position, velocity, density, pressure, internal energy, and more.

This method starts with the Lagrange form of the fluid equations, and then by

using two approximations, reduces the partial differential equations (PDEs) to ordinary

differential equations (ODES). These approximations are referred to as the kernel approx-

imation and the particle approximation. Each particle has constant mass, which is analo-

gous to the usual Lagrangian approach in which the mass within each cell of the mesh is

held constant. Each particle has a sphere or circle of influence and set of neighbors as

3

determined by overlapping circles of influence. For instance, in Fig. I. 1. the circle of the

medium gray particle has as its neighbors the light gray particles, but the black ones are

not neighbors because their circles do not overlap with the medium gray particle. The cir-

cle represents a smoothing function, which is a Gaussian-like function that is highest at the

particle, or the center of the circle, and falls off radially to zero at the edge of the circle.

The particles are moved according to the fluid equations, and the smoothing functions

interpolate the fluid properties between the particles.

Since the SPH method has no grid of cells, one of its main advantages is that there

is no mesh tangling, which is a problem for most Lagrangian codes. Also, because there

is no mesh, empty space does not have to be included in the grid, as is often required in the

typical Eulerian code, even with the use of such methods as adaptive-gridding.

The SPH method also has the usual advantage of a Lagrangian code over an

Eulerian code, in that contact discontinuities between fluids can be tracked. As two or

more materials mix, they can be tracked because each particle has its own material proper-

ties. SPH can go beyond that, because particles can become thoroughly mixed, which is

very difficult for a gridded Lagrangian code to calculate. Another advantage of SPH is

that it is not much more difficult to write a three-dimensional (3D) code than to write a

one- or two-dimensional code. Once the 1D code is written, the 2D and 3D parts can be

added very easily to the same code.

There are some disadvantages with SPH. It is generally not as accurate as the

gridded codes. There is an instability that is unique to SPH in the modeling of solids,

where the particles can unphysically clump together when under tension. This problem is

4

referred to as the tension instability. Non-conservation of angular momentum is another

problem that has been encountered in SPH. This problem has been addressed success-

fully by Dilts [22], [23] using a moving-least-square (MLS) method, but it is in general a

more time-consuming computation than SPH. Another problem encountered in SPH is

that boundaries are not modeled well. The particles at the edge of objects have no neigh-

bors outside the object, so their densities are less than those for particles internal to the

object, and one would like the density to be the same all the way out to the edge. MLS

can handle this problem quite well also, but again it is a more time-consuming method.

One other problem encountered in SPH is that the spherical kernels can prove to be

insufficient for unevenly distributed particles. For example, if the particles are stretched

or squeezed in one direction more than another, then the particles can move apart so far -

for example in the horizontal - that the spheres or circles of influence no longer overlap,

but in the vertical they may be squeezed so tightly that they have many neighbors in the

vertical but none in the horizontal. The calculation falls apart when particles that should

be influencing each other are not. Attempts to solve this problem have been tried with

varying degrees of success. One approach is to use elliptical kernels that stretch out as

particles move apart. Another approach is to introduce more particles in the gaps as the

original particles move apart. This approach is referred to as particle-splitting because the

mass must remain constant, and therefore it has to be split up appropriately among the par-

ticles.

The explicit version of SPHINX uses primarily a Runge-Kutta method to do the

time-stepping for solving the set of ODES. It also has packages to do Leap-Frog and

5

Predictor-Corrector time-stepping, both of which are explicit methods.

C. Implicit Methods

The main subject of this dissertation is another time-stepping package, which will

be the first implicit method, to be added to the SPHINX code. One other implicit SPH

code has been written, but for astrophysical use by Timmes [86], and it will be discussed

later in this chapter. The SPHINX code is used primarily for modeling interacting solids

and fluids, as opposed to astrophysical use, so the new implicit SPH code is believed to be

the first one to model solids. The new code is also believed to be the first implicit SPH

code to use Newton-Krylov methods for solving the linear system, which will be dis-

cussed later in Chapter III.

Implicit codes are used mainly because they are usually unconditionally stable

with any time-step size. They do lose accuracy with increased time-step size, but the

solutions do not become unstable; that is, they do not go off to infinity, or go to zero and

stay there, or oscillate wildly (see Oran and Boris [64], page 94) as explicit codes do if the

time-step size exceeds a limit known as the Courant condition. The Courant condition

basically says that the spatial-step size divided by the time-step (which can be thought of

as a velocity) should be greater than the greatest velocity expected in the fluid being mod-

eled. Typically the largest velocities of interest are sound waves, but when modeling low-

velocity flow, these velocities are of little interest and are usually ignored. The Courant

condition requires an explicit code to take such tiny time-steps to remain stable that the

code can take much too long to solve the problem.

The implicit code is not restricted by the Courant condition to remain stable, but,

6

to help maintain accuracy of the desired features of a problem, the time-step should still be

as close as is practical to that prescribed by the Courant condition associated with the

physics of interest. What is “practical” is decided by a trade-off between the amount of

computer time to run the problem with the desired accuracy on the implicit code, as com-

pared to the run time and accuracy of the explicit code. That is, if one is willing to give up

some accuracy in exchange for shorter total run time, then the implicit code may be the

one to use. One would like to run the implicit code with a large enough time-step so that

the total computer time would beat the total run-time of the explicit code and still maintain

an acceptable accuracy, which is often the case if the problem is near a steady-state solu-

tion, or the problem is not changing much over large periods of time. The choice of time-

step for the implicit code has not been well defined yet, but it would ideally be based on

the desired accuracy. A first attempt is discussed in Chapter III, Section I.

The main disadvantage of an implicit code is that it requires the solution to a huge

number of simultaneous equations or a linear system, and hence requires the formation of

a very large matrix. Inversion of the matrix has been the conventional method for finding

a solution, and so implicit methods are typically computationally intensive. The large

matrix can grow to take up most of the memory of ‘any computer because the user will

want more resolution and details included. More modern methods of solving linear sys-

tems use iterative methods rather than actually inverting the large matrices. The iterative

methods do help speed up implicit codes. but they are still computationally intensive per

time-step as compared to explicit codes. Iterative methods have become the subject of a

major effort in research of numerical methods and the topic of a large body of journal arti-

7

cles and textbooks. Some conventional and iterative methods will be discussed in Chap-

ter III.

To the knowledge of the author, only one other implicit SPH code has been writ-

ten, and that is by Dr. Francis X. Timmes [86]. His code was developed for astrophysical

use and includes self-gravity between particles. It uses the momentum equation and the

energy equation, but not the continuity equation. He calculates densities by a summation

method. The neighbor search routine in his code is different from that used in SPHINX in

that, for a given particle, its neighbor particles are determined by whether or not the other

particles fall within the radius of its sphere of influence, as opposed to overlapping spheres

of influence. By implication then, given two particles with different smoothing lengths,

the one with the larger radius may influence the other but not vice versa. Because equal

and opposite action is not maintained between particles, energy is not necessarily con-

served. However, Dr. Timmes claims that this problem can be minimized.

An example of the way neighbors are counted in Timmes’ code can be seen in

Fig I. 1. The two particles in the lower left have different size circles. The one with the

smaller circle falls within the larger circle, so it is a neighbor of the one with the larger cir-

cle. But since the particle (the dot) with the larger circle does not fall within the smaller

circle, it is not a neighbor of that particle. One way to maintain equal and opposite reac-

tion between particles, in Timmes’ method, would be to keep the circles all of equal

radius. The radii, or smoothing lengths, could still change, but they would have to change

equally for all particles, which is probably a reasonable approach for many problems.

Timmes does, however, use variable smoothing lengths or radii.

8

The new implicit code, which is the focus of this research, has a number of differ-

ences. First, the continuity equation is included as an option to the user. Second, parti-

cles are counted as neighbors if their spheres of influence overlap. This feature has the

effect that any two particles have an equal and opposite reaction on each other, which

allows for conservation of energy. Other differences include the use of iterative tech-

niques, also known as Krylov methods, for solving the linear system. Also, a version of

the implicit code has been written that makes use of matrix-free methods within the itera-

tive techniques. This version has only been partially successful, but the method will be

discussed in more detail in Chapter III.

The development of the new implicit code for SPHINX has involved five major

stages. The first stage was to develop a code based on the analytic derivation of the

implicit form of the SPH fluid equations. This set of equations involves a Jacobian matrix

of derivatives. The first version of the implicit code, following Timmes’ approach, used

the Lower and Upper (LU) decomposition method to factor the matrix, and used a fourth-

order Rosenbrock solver. The second stage replaced the analytic Jacobian matrix with a

numerical Jacobian. The third stage replaced the LU decomposition with a selection of

Krylov solvers. The fourth stage attempted a modification to the Krylov solvers to make

them matrix-free. The modification replaces the step in the iterative solver where the

matrix-vector multiply appears with an approximation that involves only vector opera-

tions. This stage was not completely successful. The fifth stage involved adding a New-

ton-Raphson iteration to improve the nonlinear convergence and going to sparse storage

and sparse calculations. The implicit method is covered in more detail in Chapter III.

9

Presented in Chapter II are the basic concepts, assumptions, and mathematics used

in SPH. The implicit approach is presented in Chapter III. The last two chapters discuss

a set of examples on which both the implicit and explicit codes have been tested. Chapter

IV includes a three-particle problem, a rarefaction problem, a shock-tube problem, a Ray- ~

leigh-Taylor instability problem, a breaking dam problem, and a single expanding jet of

gas. Chapter V discusses a set of problems involving neutral plasma jets in 2D and 3D,

that have application to nuclear fusion.

10

Chapter II

Basics of Smooth Particle Hydrodynamics

A. Introduction To Smooth Particle Hydrodynamics

Smooth Particle Hydrodynamics (SPH) is a relatively new numerical approach to

simulating hydrodynamic problems on the computer. SPH was introduced by Lucy

(1977) [51], Gingold & Monaghan (1977) [30], and Monaghan (1982) [58], and has been

improved on by a growing community of users since then (see Benz [lo], Hernquist &

Katz [34], Swegle et al. [82], Libersky & Randles [49]). It was used initially by the astro-

physical community to model galaxies and star formation [30], [34], [57], [73], [86].

With the inclusion of material-strength models it has also been found to be useful for mod-

eling solids [48]. It has been used to model projectiles, solid or fluid, impacting targets of

various kinds to study cratering, damage, and breakup [39], [79], [93]. SPH has also been

found to be useful for modeling fracturing of solids such as rock with granular boundaries

[ll], [52], [83]. Several good reviews exist by Benz [lo], Monaghan [59], and Wingate

[92]. The current discussion, however, will be restricted mainly to fluids.

As briefly discussed in Chapter I, fluid dynamic problems are usually solved

numerically, and the fluid equations are typically cast into one of two common frames of

reference. One is the lab frame and the other is the fluid frame of reference. The result-

ing sets of equations are known, respectively, as the Eulerian and Lagrangian forms. One

form can be converted into the other with an appropriate coordinate transformation.

Many different ways of solving these equations numerically have been developed. Both

formulations generally use a grid or mesh which divides space into cells. The codes for

11

either method can be written in one, two, or three dimensions, each dimension adding

increasing complexity because the phenomena occurring at each boundary of each cell

have to be taken into account.

The Eulerian method keeps track of the fluid as it flows in and out of the different

boundaries of each cell. The cells are fixed in space and do not move. It is a rigid grid.

One disadvantage of this approach is that, if there is more than one fluid, it is difficult to

keep track of the two fluids as they mix. There are ways to handle this problem but they

can make the code very complicated. One example is known as Front or Interface Track-

ing [33], [64], which will not be covered in this dissertation.

The Lagrangian method overcomes the mixing problem by not allowing the fluid

to leave the cell in which it starts, but rather the cells move and deform to account for the

fluid motion. The mass in each cell remains constant, but the density can change as the

cell size changes, depending on the pressures and temperatures in each cell. The interface

between two fluids is easy to keep track of as long as the cells do not become too distorted.

The cells typically start out in a regular grid or pattern but can soon become highly

deformed and even tangled, which is a serious problem with this method. The codes are

usually programmed to stop running or redo the mesh at this point because the results

often become unphysical under these conditions.

The SPH method is a Lagrangian approach and is derived from the Lagrangian

equations, but each cell can be thought of as having been reduced to a point, which is

referred to as a particle, and the mass of each particle is constant. As a result, the SPH

approach is mesh free, because it has no grid of cells. A lucid discussion of the SPH the-

ory can be found in the Ph. D.. dissertation by Fulk [27].

12

Each particle has the various fluid properties associated with it, and the particles

are moved in time according to the fluid equations. Each particle has a position (x, y, z), a

velocity v = (v,, vY v,), a mass m, internal energy e, and a smoothing length h assigned to

it; from these, pressure P, temperature T, density p, etc. are computed for each particle.

Each particle has a set of SPH equations that are derived from the usual Lagrangian fluid

equations:

The Momentum Equation VP,

The Continuity Equation 4
z

= -(p)Vw,

The Energy Equation d”,
dt

VW.

(2 2

Each particle also has a sphere of influence defined by a kernel function that deter-

mines how strongly each particle interacts with its neighbors as a function of distance

between them. The kernel function is a bell-shaped function and is commonly made up

of B-spline functions with compact support on the particle’s sphere of influence. The

Gaussian function has also been used as a kernel.

Some of the advantages of the SPH approach are the following:

1. There is no mesh tangling.

2. It is almost as easy to write a 2D or 3D code as it is a 1D code, which is not true for

some approaches.

3. Different types of fluids are easy to track as they mix because each particle has its own

material identity.

4. Empty space does not have to be zoned up as is often required in Eulerian mesh codes.

5. Fracturing and breaking up of solid objects can be modeled.

13

B. The SPH Approximations and the SPH Equations

The approximations used to reduce the Lagrangian fluid equations from PDEs to

ODES are the kernel anproximation and the particle annroximation. The kernel approxi-

mation, also called the kernel estimate, is based on using a bell-shaped interpolating func-

tion N and is used in the same manner as the Dirac delta function. Either can be used to

approximate an arbitrary function. The particle approximation divides the fluid into parti-

cles, which in general are much larger than atoms or molecules.

Any function A(r) can be written as a superposition of delta functions &r-r’):

A(r) = jA(r’)G(r-r’)dr’ , (2 -4)

and following Monaghan [59], the interpolating function, or kernel, is used similarly

where W(lr-r’l, h) + S(r-r’) as h -+ 0, where h determines the width of the function:

(A(r)) = IA(r’) W(r-r’, h)dr’ , (2 -5)

where the angle brackets indicate an approximation. By multiplying the fluid equations

by W(lrl, h) and integrating, the kernel approximation is formed.

To evaluate the integral, the particle approximation is used. Assume the fluid is

divided into particles with masses ml, mN, and volume elements (mj / pj), then the con-

tribution to Eq. (2 .5) by thejth particle can be represented as:

A(r’j) W(r-v’j, h)mj
P(r’j> ’

(2 5)

and summing over all such terms will approximate the integral in Eq. (2 .5). The kernel

W has units of inverse volume, so that, when multiplied by the mass over density, the units

cancel. Hence the units of term (2 .6) are those of A(r). Thus, using the particle approx-

14

imation, Eq. (2 .5) becomes a summation over all particles:

(A(r)) = i -fk (A(rlj)) W(r-rljt h).
j = 1 p(r’.i)

(2.7)

The fluid equations are the momentum equation, the continuity equation, and the

internal energy equation. The momentum eouation, Eq. (2 . l), can be rewritten as,

$7 = -@VP = - v(;)-.!Lvp, (2 3)

and then approximating the operands of the gradients for the kernel approximation:

-& -V(;)-;v(P). (2.9)

Replacing the averages with Eq. (2 .7), and using a more brief notation W(Iri-rjl, h) = Wg,

where the subscripts indicate that WG is a function of both particles i andj:

pi = -Vi ~~ ($)jWij m(+)iVi ~~ (P>jWij .
j=l j j=l j

(2 .lO)

The gradients operate only on the quantities for particle i, and WV is the only thing within

the summations that is a function of i, so the gradients operate only on the kernels, hence:

gi z -C'"j[(fj), + (s)J’i wij *
i

(2 .ll)

The continuitv eauation Eq. (2 .2) can be rewritten as, and approximated by:

dP
dt = -(p>V~v = -V.(pv)+v.Vp=-V.(pv)+v.V(p). (2.12)

Then using the SPH approximation Eq. (2 .7):

dPi Nm. N m.

dt
=-Vi* ~~(PV)jWij+Vi’ViC “(P)jWij) (2.13)

j=l’j j=l’j

15

which simplifies to:

li= imjc Vi-Vj) ' Vi Wij
j=l

(2.14)

The enerev eauation Eq. (2 .3) follows the continuity equation fairly closely:

* iii = -($) VW - - p ‘I.V.(pv)-v.Vp]=-; [V.(pv)-v.V(p)] - (p>p (1
(2.15)

P

Making the kernel and particle approximations:

dei -
dt

N m.
Vi l C $(PV)jWij- N mj vi l vi C -(p)jwij 7

j=l .i j=l’j 1
and simplifying;

l?lj (Vi- Vj> l ViWij f (2.17)

(2.16)

There have been a number of forms of the three SPH equations derived using dif-

ferent approximations (for a list, see [28] or [95]). Another form of the momentum equa-

tion seems a bit contrived, but it has proven to be the most robust form and is the one used

in SPHINX. It starts with Eq. (2 .l) and adds a term with the gradient of a constant,

which is, of course, zero, and it is always valid to add zero to an equation.

2 = -(l+-@V(l) =-(#7(P) -@7(l).

Then the gradients are replaced by the SPH approximations.

~i~-(~)i~~l~ (P)jWij- ’ Vi ~ “‘c’)wij) (p)i j= lpj
which simplifies to:

zi ZZ -Tmj(‘$)Vi Wij *

(2.18)

(2.19)

(2 .20)

16

An alternative way to derive the energy equation is to allow the pressure to have

spatial gradients. Then the following treatment yields a somewhat different result:

de=
dt

v*v = -v.($v)+v.v(~)=-v.(~v)+v.v(~~ * (2.21)

zi =-bi ’ iz(Fv)j wij-vi l vijl;(F)j wij] 7

and simplifying;

~i=j~~(~~ (vi-Vj)' Vi Wij.

(2.22)

(2.23)

According to Monaghan [59], either Eq. (2 .17) or Eq. (2 .23) is satisfactory for ideal

gases, but for metallic equations of state, the latter has slightly better energy conservation.

The continuity equation is sometimes omitted and replaced with a summation

using Eq. (2 .7), in which A(r) is replaced with p(r):

(2 .24)

This summation is an approximation of the density of the ith particle and is in agreement

with the kernel and particle approximations.

C. The Kernel Function

The basic equations for the SPHINX code consist of three conservation laws, Eqs.

(2 .20), (2 .14), and (2 .17), sometimes (2 .24), and a kernel function that determines how

strongly each pair of particles interacts. Each particle i interacts only with its neighbor

particles j that fall within a certain radius or sphere of influence.

17

The sphere of influence is an interpolating kernel function, usually a bell-shaped

function, and determines the pressures acting on neighboring particles. It can be any of a

number of functions such as a Gaussian or B-spline. Other kernels are discussed in the

papers by Fulk [28] and Monaghan [56] and [58]. The kernel function is denoted as

W(r, h), where r is the distance between particle i and its neighbor particle j, and has a

smoothing length h, which determines the width of the function. That is, r = ri - rj, where

ri and r- are the position vectors of the particles i andj. The interpolating kernel function

is required to have the following properties:

1. it is a symmetric, or even, function about r = 0, and reduces to a Dirac delta function in

the limit as h approaches zero,

lim Wb-1, h) = &b-l),
k--SO

(2 .25)

2. it is normalized to one,

~WCb-l, h)dr = 1, (2 .26)

3. and while the following is not a requirement, the function usually has compact support

to limit the number of neighbors, and for the SPHINX code it is assumed to be zero

outside of Irl = 2h,

W((lrl >2h), h) = 0. (2.27)

So the radius of the sphere of influence for each particle is twice its smoothing length h,

and the smoothing length does not have to be the same for all particles. In SPHINX, h is

often allowed to vary with density. In this case, the average smoothing length between

two particles i andj is used in the kernel: h = (hi + hj) / 2. Note: the circles of Fig. I. 1 are

of radius h, so when they just touch, the particles are 2h apart, or 2h when h is variable.

18

The interpolating kernel function for the SPHINX code is a cubic B-spline curve

of the form shown in the following Eq. (2 .28) (see also Fig II. 1) and is a function of the

distance TV E Irl between the particles i andj with positions (Xi, yi, ZJ and (Xj, Yj, Zj>*

C(l-~U$+~LL~), for(05uij< 1)

Wij = C~(2 - Uij)3, for(1 5 Uij < 2) , where (2.28)

0, fOr(Uij2 2)

7 . .

EJ u..=-,
1.1 h and (Xi-Xj)2 + (Yi-Yj)2 + (Zi-Zj)2 ; (2.29)

and the positive root of Eq. (2 .29) is assumed for yi . C is a constant for normalizing the

area under Wti to one, and is different for each of the three dimensions; that is,

2 forlD: C=z , 10 for2D: C=-
7nh2 ’

andfor3D: C=--& . (2.30)

The Cubic B-Spline Kernel & its First Derivative
0.8

I

0.6

0.4

0.2

0.0 I I I I I I

x/h x/h
Fig II. 1 The cubic B-spline kernel Wij (left) is an even function, and its first deriv-

ative (right) is odd. The’kernel has zero slope at the origin and for x > 2h. Since x is
always positive, only the right half of these functions is actually used in the calculations.

0.5

0.0

-0.5

19

From the above equations one can see that Wti is a function of yij and that i and j

can be swapped in Eq. (2.29) without affecting the value of rti . The same is true for We ,

because WV is symmetric, which can also be seen in Fig. II. 1. The first derivative of We,

however, is an odd function, so there is a sign change for the derivatives when i and j are

swapped, as is discussed in Section D, Chapter II. The index i runs from 0 to N-l, where

N is the total number of particles and the index j runs over the number of neighbors for

particle i. (The code described here is written in the programing language C, so the indi-

ces conveniently start at zero.)

For a 3D implicit SPH code there are eight ODES per particle to describe their

motions, derived from three conservation laws. (A 2D code requires six ODES per parti-

cle, and a 1D code requires 4 ODES per particle.) These are the rate equations of the par-

ticle’s xi, yi, zi positions, the x y z velocities (vf , VT, vi), the density pi, and the internal

energy ei. The eight dependent variables are xi, yi, zi, vf , vy , vi” , pi, and ei , and the inde-

pendent variable is time t.

The rate equations for position in the 3D implicit SPH code consist of three veloc-

ity equations that describe the motion of the particles:

dxi
-& =v;, dYi

dt= vy 7
dzi
z

= v; . (2 .31)

The rate equation of the velocity, also known as the momentum equation, can be

expressed in a number of ways. In the terminology of the SPHINX code they are of the

form known as “Hydro-form 2” (Wingate and Stellingwerf, 1995 [95]), and are the same

as Eq. (2 .20) but with artificial viscosity terms added. The momentum equation is a vec-

tor equation, so for the ith particle there is a rate equation for each velocity component:

20

dv;
dt

(2.32)

dv; - =- pi+$
dt

.
Pi Pj

(2.33)

(2.34)

The summations are over all particles j that are neighbors of particle i. Particle i is

always included in its own neighbor list. The pressures of the ith and jth particles are

given by Pi and Pj. Their densities are pi and Pj, and the masses are mi and mj. The I$ is

the artificial viscosity (for a definition see Monaghan [59] and [62]), which is assumed to

be zero for the discussion of the analytic Jacobian in Chapter III. The derivatives of WV

are discussed later (Section D of Chapter II, & Section B.2 of Chapter III).

The rate equation for density pi of particle i, Eq. (2 .14) is derived from the mass

continuity equation, and its expanded SPH form is:

dPi Pi m.- (VT
aw.. aw..

dt = j Jpj = i
-,;)-&3+(“y +YgJ +($ -v;p

i J hi i 1
(2.35)

The rate equation for the internal energy ei of particle i in the SPH form used in the

SPHINX code (referred to as “Energy form 3”) is:

aw.. aw.. aw..
(v; -v,“)~~~+(v; -v?)-“~ +(vf -I$)~‘~

i J ayi i

One more equation is needed for closure, and that is usually the Equation of State

(EOS) for calculating the pressure as a function of the densities and internal energies.

The EOS can be formulated from any of a number of different models. For the derivation

21

of the analytic Jacobian of Chapter III, the perfect gas model is assumed and is given by:

Pi E (y- l)f?ipi (2.37)

where y is the ratio of specific heats.

D. The First-Order Derivatives of the Kernel

For the explicit code, only the first-order spatial derivatives of the kernel are

needed. For the implicit code both the first-order and second-order are needed, but the

second-order spatial derivatives will be discussed in Chapter III. The kernel Wti is given

by Eq. (2 .28), and the spatial derivatives of WG are needed for Eqs. (2 .32) through (2 .36).

The derivatives of WV are partial derivatives because it is a function of the three position

variables (xi, yi, zi). As noted from Eqs. (2 .28) and (2 .29), Wti is a not a function of

velocity, density, or energy. The first-order derivatives can be evaluated by first finding

the derivatives of yij from Eq. (2 .29).

arij Ay.. - = k.(Xi _ xj) E 9, similar-y: 2 = 2, and arij _ AZ..
axi

- - -Y,
B ZJ Z B

azi - y..
ZJ

(2.38)

where AXE = (xi - Xj> and similarly for Ayi;i = oli - yj> and &e = (zi - zj>. Then the deriva-

tives of uij, from Eq. (2 .29), are:

au..
ZJ

axi
au, _ 1 'Yij and auij l&ij
- =--7 c3yi h Yij

-Z-P*
azi -h 7..

(2.39)
B

Hence, the derivatives of the first two parts of Wii, Eq. (2 .28) (labeled W aq and W ‘i) with

respect to Xi, yi, and zi are:

22

aW:j -
aXi

for (0 I ujj < l), (2.40)

- =
aXi

- ~ ~, (2 - uii)2~ij,

v

aW?j - =
hi

- ~ (3 - 9~U, A~ij,

aW\j - =
ayi

-~~(2-~ij)~Ayij’
d

dW?j - =
azi

-~(3m~u,)dz,.

i3W?j - =
azi

-$2-uij)2Azij,
ij

for (1 I uij < 2), (2.41)

for (0 I uti < l), (2.42)

for (1 < uij < 2), (2.43)

for (0 < ujj < l), (2.44)

for (1 2 uij < 2). (2.45)

Swapping i and j in Eqs. (2 .40) through (2 .45) shows that the derivatives with

respect to the jth particle are anti-symmetric; the negative sign comes from the A term in
aw.. aw..

each equation: that is, -‘I = -v
axi axj

and similarly for the y and z first-order derivatives.

So only the three first-order derivatives for the ith particle need to be calculated, and those

for the jth particle are found by negating those for the ith particle. The relationship

between WV and the first-order derivatives are given here:

WV = Wji 7 (2.46)

aWti/ilxi = -dW+lxj,

i3Wg/i3yi = -i3W&3yj,

i3Wg/iki = -ilW+kj.

(2.47)

(2 .48)

(2.49)

23

E. The Neighbor Search Routine

Typically the most time-consuming aspect of an SPH code is the neighbor search-

ing, and a great deal of effort has gone into finding the most efficient method. There are a

number of different neighbor search routines used in the field of SPH, Fulk [27] Section

2.3.10. For the SPHINX code, two particles are defined as neighbors if they have overlap-

ping spheres of influence,’ that is, the distance between them is less than the sum of their

smoothing lengths.

The simplest known search scheme is the N-squared routine. Let the total number

of particles be N, then each particle i is compared with particles i through N. In other

words, the 0th particle will be compared to all the other particles, but the next particle will

be compared to all the other particles except the Oth, and the next particle will be com-

pared to all but the 0th and 1st particles, and so on. Each particle is included in its own

neighbor list because, for instance, its own mass has to be included in the calculation of its

density along with its other neighbors. The number of operations for this is proportional

to N x N, hence its name.

The neighbor search most often used, and the default in the SPHINX code, is an

octree search for 3D, a quadtree search for 2D, and a bitree search for lD, (see Hernquist

and Katz [34]). It takes on the order of N log (N) operations to find the neighbors of each

particle, which is more efficient than the N-squared method. Depending on the dimension

of the problem, each axis is divided in two. For 3D, using the octree method, space is

divided into eight equal cubes; then each of those can be divided into eight and so on. If

there are no particles or just one particle in a subcube, then it is not divided any further.

24

This procedure can be viewed as forming a tree of finer and finer branching until each par-

ticle is isolated in its own cube. Thus each particle becomes a leaf on the tree. Then by

traversing the tree the neighbors can be found by looking at the hierarchy of the branches.

For a given particle its neighbors will be found along one branch and not the others, elimi-

nating a search through most of the particles.

A third method, known as a linked-list, or cells method, is generated by placing a

temporary grid, with a cell spacing of about 2h, on the space or volume of the problem. If

h is constant for all particles, then the neighbors of particle i will be in either its cell or the

immediately adjacent cells. Depending on the dimension of the problem, the number of

cells is 3, 9, or 27 for lD, 2D, or 3D respectively. A single pass through all the particles

can assign each particle to a cell, and all the particles within a cell are linked together.

Then the neighbors for particle i are determined by searching only through the linked par-

ticles of its associated cells. If the average number of neighbors is N, , then the number

of operations would be on the order of N, N, and if N >> N, then its efficiency can

approach that of order N. If, however, h is variable, then the choice of the cell size

becomes more difficult, and this method can become less efficient than the octree method.

The octree is usually the method of choice when h is variable.

25

Chapter III

The New Implicit SPH Code

A. Introduction to the Implicit Code

If the fluid problem being modeled does not have rapidly changing properties and

is not being dominated by shock waves, but the time-steps determined by the Courant con-

dition are still very short because of the sound speed of the fluid, then by using an implicit

code, larger time-steps can generally be taken to get through the problem in a reasonable

amount of time. An explicit code has to use the time-steps dictated by the Courant condi-

tion or else the solutions may become unstable. Most implicit schemes, however, can be

shown to be unconditionally stable for any time-step size. They do lose accuracy, with

increased time-step size, but remain stable. The main disadvantage of an implicit code is

that it is computationally intensive because a huge linear system or matrix needs to be

solved. There is a trade-off region, above which the time-step size versus total computing

time makes it more advantageous to use an implicit code, and below which it is more

advantageous to use an explicit code.

Using the implicit SPH method, the number of equations for a problem of N parti-

cles in dimension D is (D+l)2N, hence a large number of simultaneous equations must be

solved. For a 3D problem of N particles, there are 8N equations and 8N dependent vari-

ables. To solve the SN fluid equations implicitly leads to the computation of a Jacobian

matrix of partial derivatives, which are the derivatives of the 8N equations with respect to

the SN dependent variables. The result is an 8N x 8N matrix in 3D, or a 6N x 6N in 2D,

or a 4N x 4N matrix in 1D. This matrix is very large when N is several hundred to over a

26

million particles, no matter what the dimension is. These are the numbers of particles the

explicit SPHINX code is capable of handling, depending on the type of computer used.

Thus the implicit method is computationally intensive and is best for problems for which

large time-steps are possible.

Various techniques have been developed for implicit calculations to shorten the

computational time and save on computer memory. For a sparse matrix, such as the one

generated by the implicit SPH code, sparse techniques have been developed in which only

the non-zero elements of the matrix are stored, and matrix-vector products can still be per-

formed within these sparse constructs. Along with the storage issues, sparse computa-

tions can be done if it is known a priori where the non-zero elements are going to be, thus

saving on computer time. Another way to shorten the computational time is to use itera-

tive techniques to obtain an approximate solution to inverting the matrix. Another

method for saving memory is known as the matrix-free method in which all matrix-vector

products are replaced by terms from a Taylor expansion, obviating the need to form the

matrix at all; the matrix-vector product is replaced by a sum of vector operations.

For a set of linear ODES with constant coefficients, the matrix equation to be

solved is of the general form, following Press et al. [66]

Y’=-A*Y, (3 .l>

where A is a matrix, Y is the state vector, and the prime indicates a derivative with respect

to the independent variable, time. Using n to represent the current time-step number, an

example of exnlicit time differencing is:

Y’rl = (Y,+1 - Y,) /At, (3 2)

27

or solving for Y,+l at the new time-step At

Y n+l = Y,+AtY’, = (I-AtA)*Y,, (3 *3)

where Eq. (3 .l) has been used to replace Y’, . The quantity in the parentheses is a

matrix, where I is a unit matrix, and this matrix does not need to be inverted to solve the

system of equations.

On the other hand, an example of imnlicit time differencing is:

y’n+ 1 z (Y,+~ - Y,) /At, (3 .4)

Y n+l = Yn+AtY’n+l = (I+AtA)+Y,, (3 *5)

where Y’,+i was replaced, as before, by Eq. (3 .l) and Eq. (3 .5) is solved for Y,+t . The

quantity in the parentheses is a matrix that is to be inverted. Modern iterative techniques,

however, avoid actually inverting the matrix. Instead they solve the linear system:

(I+AtA)*Y,+, =Y, (3 .6)

by guessing at a solution for Y,+r and iterating on it until Eq. (3 .6) is satisfied to within

some tolerance.

For a set of nonlinear ODES, things have to be handled differently. Let f(Y) be an

arbitrary vector function of the vector Y, which may be nonlinear. For SPH, f(Y) would

represent the right-hand sides of the velocity, momentum, continuity, and energy equa-

tions. Then a general nonlinear set of equations can be represented as:

Y’ = f(Y), (3 -7)

where the prime indicates a time derivative. After implicit differencing, Eq. (3 .8), one

can linearize f(Yn+l) by keeping the first two terms of the Taylor expansion, Eq. (3 .9), and

28

then collecting the Y,+r terms, Eq. (3 .lO):

Y n+l G Y, + At f(Y,+,), (3 .f9

G Y, + At [f(Y,) + aflay], l (Y,+~ - ~~11, (3 .9) ”

= Y, + At [I - At aflay]-l l f(Y,), (3 SO)

Y n+l = Y,+J-l*Y’,,=Y,+dY (3 .ll)

where J = [I/At - af/aY] is a Jacobian matrix containing partial derivatives of f(Y) with

respect to the dependent variables. This is the Jacobian of the residuals, which will be

discussed later in sections F and K of this chapter. The Jacobian has diagonal elements

consisting of a unit matrix divided by the time-step, which makes the diagonal, in general,

non-zero. As the time-step is decreased, the matrix becomes more diagonally dominant,

which makes the matrix easier to invert.

The last term of Eq. (3 .l 1) is an inverse-matrix vector multiply and can be

regarded as dY, which is added to Y, to update to Y,+r. So dY = J-l l Y’, is the usual

form for the inverse matrix problem. Various methods have been developed for inverting

matrices. To get started on the implicit SPH code, the first attempt was just to try the LU

decomposition method, and the Jacobian was derived analytically.

B. The Analytic Jacobian

B.l. Derivatives for the Implicit SPH Code

The implicit version of the SPH code requires the computation of the Jacobian

matrix. The 3D Jacobian is a matrix of the derivatives of all 8N equations, Eqs. (2 .31)

29

through (2 .36), with respect to all 8N dependent variables. The derivation of the equa-

tions to fill the 8N x 8N Jacobian matrix is the subject of this section.

In the following equations, the time derivatives of Eqs. (2 .31) through (2 .36)

(which are total derivatives) are denoted by a dot above the variable on the left-hand side

of the equation. The subscripts i andj are used to denote a pair of particles. The index i

represents a particular particle and in that sense is considered fixed. The index j will

range over all the neighbors of particle i and is represented as a summation in the equa-

tions. Another index, k, needs to be introduced at this point to indicate with respect to

which of the 8N dependent variables the derivative is being taken. The new index runs

from 0 to N-l. Like index i, the index k is considered fixed in the sense that each Jacobian

element is the derivative with respect to only the kth dependent variable. For an example

matrix of a 1D 3-particle problem see Fig. III. 1, at the end of this section.

The following derivatives have been taken with respect to the kth dependent vari-

able, and it is found that, except for k = i or k = j, the derivatives are zero; that is because

the kth variable does not appear in the equations except when k = i or k = j. The deriva-

tives are also zero when a pair of particles are not neighbors. Taking the derivatives of Eq.

(2 .3 1) is simple since only the components of vi appear in the equations. Hence all deriv-

atives are zero, except for those with respect to the appropriate component of the velocity,

and those derivatives always equal 1. Thus,

hi
1,

aPi -= 1,
aii = -= 1,

aVizi aViEi aVtzi

and all others are zero.

(3 .12)

For the derivatives of Eqs. (2 .31) through (2 .36) there are summations, over the

30

neighbors of particle i, and it has been found that for k = i the summation survives in the

derivative. These terms show up in 8 x 8 blocks along the diagonal of the Jacobian matrix

(see Fig. III. 1). But for k =j only one term survives from each summation. These terms

show up in 8 x 8 blocks off the diagonal and represent the terms due to interaction with the

neighboring particles. Since most of the particles will have only a small number of neigh-

bors relative to the total number of particles N, most of the off-diagonal 8 x 8 blocks will

be filled with zeros. Therefore, the Jacobian will be a sparse matrix. Timmes estimates

[86] that a typical Jacobian will have only 1.12% non-zero elements.

a. The derivatives of Gx i , Eq. (2 .32), with respect to the kth dependent-variables follow:

a+:
c = -~mjp)$& ?fL = -mk(~)g!&., (3.13)

ax, =j

ali: =--& = -~TIz~(~)~$~&, $ = -mk(%)&y (3.14

ali;
k=i = -Tmj(z)&.
aZ $ = -mk

5+pk a2yk (1 --
pipk azkaxi’ (3 *15)

alj;
-= 0,
av;

alj;
- = 0,
av;

a+;
- = 0.
av;

(3 .16)

Of Eqs. (3 .13) to (3 .15), the three equations with the summations contribute to the blocks

along the diagonal, and the other three contribute to the off-diagonal blocks. Note too the

latter three equations have k subscripts, since k is considered a fixed number andj is not.

Because the pressure is a function of the density and energy, the next two sets of

derivatives use the perfect gas law, Eq. (2 .37). When this EOS is used, pi cancels in one

31

term within the parenthesis of Eq. (2 .32) and pj cancels in the other term, so the derivative

with respect to Pk=i is different than when taken with respect to pk=j. Again, note that for

the case of k = j, only the one term, k = j, survives from the summation:

a+; ei awik ~ =
aPk=i (y- ‘)mkpz 7 c3*17)

k i

ad;
~ =
aek=i

(3 .18)

b. The 8 derivatives of I’; , Eq. (2 .33), are similar:

ad;
- = 0,
av;

a$
- = 0,
av;

a$ - = 0,
aV;

(3 .19)

(3 .20)

(3 .21)

(3 .22)

ei ayk
aPk= j

= (Y- ljrnk"G 7 (3 .23)
Pk

a,;; - =
de

k=i

ad; “k awik - = -(y-l)-?& .
aek= j

(3 .24)
i 1

Evaluation of Eqs. (3 .19) to (3 .21) at k = i and k =j is simple and is analogous to that shown

in Eqs. (3 .13) to (3 .15), but for Eqs. (3 .23) and (3 .24) the results are different again.

32

c. The 8 derivatives of 1’4 , Eq. (2 .34), are also similar:

aljf - = 0,
av;

alif
- = 0,
av;

alj; - = 0,
aV;

(3 .25)

(3 .26)

(3 .27)

(3 .28)

ei awik
= (Y- l)“kTF ’ (3 .29)

Pk

- =
de k=i

a+; mk awik - = -(y-l)--az .
aek= j i i

(3 .30)

d. The 8 derivatives of pi, Eq. (2 .35), are the following.

-=
axk

d2Wij
(vj: -v:‘)-

J aykazi
) (3 .32)

(3 .33)

The next three derivatives differ in sign depending on whether k = i or k = j,

because the vz term is positive and the VT term is negative.

33

aPi
- =
aVi=j

’ (3 .34)

alji
- =
avz=j

’ (3 .35)

aPi
- =
avi=j

. (3 .36)

The derivative with respect to density also differs depending on whether k = i or

k =j, because pi is in the numerator and Pj is in the denominator of Eq. (2 .35).

aPi - = apk =i
aOi - =
apk= j

awik
-I()=&- +(vf

i
. (3 .38)

The derivative with respect to energy is zero for both k = i and k = j, because ek

does not appear in Eq. (2 .35).

(3 .39)

e. The remaining set of Jacobian derivatives consists of the 8 derivatives of pi ,

Eq. (2 .36). For brevity, let Avi = (vf - VT) , and similarly for the y and z components.

itIf+ 8 c- x a2w.. a2w..
-=
axk j mjPiPj

Avti &+ Av!
a2Wij

~+Av?----- (3 .40)
k I ’ axkayi ’ axkazi

ilki
-= c
aYk j

as. -L= l?
azk

c-
a2w.. a’w..

j mjPiPj
Av”- lJ +Av?-

a2Wij
’ azkaxi

lJ -&I!.-----
’ azkayi ’ ikkazi

.

34

(3 .41)

(3 .42)

The next three derivatives differ in sign depending on whether k = i or k = j,

because the VT term is positive and the vJ term is negative.

= c ’ ’ av”, =i
(3 .43)

j a&j

ati
=

ih’, =i
c pi i3Wij

mjpipj ayi 1 I 7
j a&j ’

(3 .44)

-= c ’
(3 .45)

j

Because the pressure is a function of the density and the energy, the next two deriv-

atives use the perfect gas law, Eq. (2 .37). When this is done, pi cancels and so the deriv-

ative with respect to Pk=i is zero but with respect to Pk=j is non-zero. It iS the opposite for

the derivative with respect to kk.

aii - = 0,
aPk=i

(3 .46)

at, (Y - l)ei
apk=j = -mk pk

x awij aw, ilWij
Avti ax. +AviyF +a~$;~ > (3 .47)

1 i i

hi

aek=i
= (,q)+‘~ Av;$+Av,:~+Av;~ , (3 .48)

j i Yi 1

(3 .49)

B.2. The Second-Order Derivatives of the B-Spline WV

The implicit version of the SPH code requires 1st and 2nd-order derivatives of W+

Eq. (2.28), with respect to the three spatial dependent variables. The first-order deriva-

35

tives were described in Chapter II, Section D.

A study of the second-order derivatives shows that there are six basic forms needed,

and the others can be found from them with just a sign change. The six basic forms are:

a2Wij i12Wij d2Wij a2Wij d2Wij a2Wij

i3xiaxi ’ i3xiayi ’ f3xiazi ’ h$Yi ’ ayidzi ’ az,az,*
(3 .50)

The relationship between these six and the others is shown below (the first-order deriva-

tives are also included from Chapter II Section D for completeness).

WY = Wji 9 (3 .51)

dWGlaxi = -i3W&hj, (3 .52)

dWgfdyi = -i3Wvlayj, (3 .53)

aWilazi = -aW+zj, (3 .54)

a2Wy/axiaxi = d2Wv/dxjdxj = -i32Wilaxiaxj,

l12WY/ayidyi = a2Wti/ayjayj = -d2Wildyi3yj,

a2Wq/aziazi = d2Wg/3zjdzj = -a2Wti/13zidzj,

(3 .55)

(3 .56)

(3 .57)

a2WG/axiilyi = a2Wti/dxjdyj = -a2WGlaxidyj = -a2W+hjayi, (3 .58)

a2wq/axiazi = a2Wg/dxjdzj = -a2We/axidzj = -i12Wvfaxjazi, (3 5%

a2wi/ayiazi = a2wi/dyjazj = -a2Wj/ayiazj = -a2W++3zi. (3-W

Because the cubic B-splines of WV form a continuous function out to the second deriva-

tive, the order in which the partials are taken does not make a difference.

The six second-order derivatives for both Wag,and W bij follow. The derivative of

Wa+ is a special case when i =j, because the derivative of AX = Xi - Xj with respect to Xi is

zero, not one. A useful notation for the derivative of AX is dAX/dxi = (1 - 6~).

36

~ = ~~~~ + (rU-4h)(l -S,)J,

d2Wbij -=-
axiaxi

for (0 4 ui < l), (3 .61)

) for (1 I uij < 2), (3 .62)

~ = ~~~~+(~ij-~h)(l-,ij~}, for (0 < uij < l), (3 .63)

) for (1 I uij < 2), (3 .64)

for (0 2 uij < l), (3 .65)

) for (1 I uij < 2), (3 .66)

a2Waij 9 CAxAy -=--
axiayi 4 h3Gj ’

for (1 4 uv < 2), (3 .67)

1+(2-Uij)~)
ij

for (1 I uij < 2), (3 .68)

a2Waij 9 CAxAz - = --
axiazi 4 h3cj ’

for (0 4 ug < l), (3 .69)

- = 3 =(2-uij) a2Wbij
axiazi 4 h2$

for (1 < uij < 2), (3 .70)

a2Waij 9 CAyAz - =-- for (0 2 uij < l), (3 .71)

. for (1 4 uti < 2). (3 .72)

Initial Jacobian Matrix for the 1D 3-Particle Problem

X0

Go"

PO

e0

Xl

;1"

Pl

%

x2

if

rjz

e2

I--

l-

i-

5-

I-

I-

a a a a ----
ax, av; ape ae,

+ l

l . I *

+ 1

s +

+ e +

+

+

0 2 4

a a a a -- --
ax1 avf ap1 ae,

I I

+ l l

l

+

+ +

+ +

+

+

1 + .

l

l

I I I I
6 8 10 12

a a a a ----
ax2 av; ap2 ae,

I I

+ + +

+

l

+ l

l . * .

+ *

l +

Fig. III. 1. This is a simple 12 x 12 Jacobian spot matrix for a 1D 3-particle
problem, showing a dot wherever there is a non-zero element. Down the left side are
indicated the time-derivative equations (note the dot over each variable) of which the
partial derivatives are taken. The partial derivatives for each dependent variable are
indicated across the top of the matrix. The two horizontal and two vertical bars are
placed in the matrix to show how each particle contributes a 4 x 4 block of elements
along the diagonal of the matrix and two 4 x 4 off-diagonal blocks for each neighbor
with which it interacts. Particles 0 and 2 are not interacting, so their off-diagonal
blocks are filled with zeros. The off-diagonal blocks are symmetric about the diagonal,
but the matrix itself is non-symmetric.

38

C. Lower and Upper (LU) Decomposition

The implicit SPH method leads to (D+1)2 equations per particle, and thus for N

particles, there are (D+1)2N simultaneous equations to be solved. In 3D there are 8N

equations and 8N dependent variables. Methods that actually manipulate the matrix are

known as direct methods. The Lower and Upper (LU) decomposition method with

back-substitution is a direct method. It decomposes a matrix A into an upper and a lower

triangular matrix. The problem then becomes Ax = LUx = b, and by setting y = Ux, the

problem is split into two parts. First solve Ly = b to find the vector y by forward substitu-

tion. Then solve Ux = y for the vector x using back-substitution.

The LU decomposition method has the advantage over Gaussian elimination in

that the vector b is not altered in the process. For Gaussian elimination each row manipu-

lation alters the vector b by scaling its elements and adding them or swapping them

around. Once A has been decomposed into the matrices L and U, however, a sequence of

different vectors b could be run for a variety of conditions. Both methods perform about

the same number of operations, and so they take about the same amount of time to run, but

LU can be used over again with different bs. Both of these methods, however, require

fewer operations than the Gauss-Jordan elimination technique (see Press et al. [66], Sec-

tions 2.1 to 2.3).

The LU decomposition coding used in the implicit code was modified from that

developed by Press et al. [66] which was used in conjunction with a fourth-order Rosen-

brock method, found in Section 16.6 of the same reference. Rosenbrock methods are a

generalized implicit Runge-Kutta technique and are also known as Kaps-Rentrop meth-

39

ods. Rosenbrock developed the theory [70] and Kaps and Rentrop [40] were the first to

implement the technique as a practical code. The Rosenbrock method as implemented

reuses the LU factorization by making four different estimates of the solution, with each

subsequent estimate modified by the previous ones, and then the four estimates are aver-

aged together appropriately to obtain fourth-order accuracy. Following an example in

Press et al. [66], the LU decomposition method, with back-substitution coupled with the

Rosenbrock method, has been implemented in the implicit code and is working, but its run

time and memory usage are not very competitive with the explicit code.

D. The Numerical Jacobian

Each term in the Jacobian can be approximated numerically by using the definition

of a derivative. To use a numerical Jacobian instead of the analytic technique, described

in Section B of this chapter, a number of significant advantages are realized. By approxi-

mating the derivatives using existing software packages in the SPHINX code, all the exist-

ing physics packages become available to the new implicit code automatically, as well as

any new ones to be added in the future. This advantage also automatically includes any

new kernel routines or neighbor-search routines. There is a new moving least-squares

(MLS) package being added by Dilts [22], [23] for calculating the interpolants more

exactly than the standard SPH approach. This package is also automatically available to

the new implicit time-stepping code. In addition, the coding for the numerical Jacobian is

much simpler to implement and hence easier to debug than the analytic Jacobian because

it is making use of existing code that has been independently and previously tested.

40

The SPH equations (2 .3 1) to (2.36) are of the general form given by dY/dt = f(Y),

where f(Y) represents the right-hand sides and is a vector function of the state vector Y.

The state vector contains all the dependent variables (position, velocity, density, and inter-

nal energy) for each of the particles. The right-hand side f(Y) is evaluated, at the “cur-

rent” time, to obtain the rate of change for each of the dependent variables (velocity,

acceleration, and the time derivatives of density dpldt and energy deldt). The Jacobian

matrix involves the derivative of f(Y) with respect to each of the elements Y, of the state

vector Y. The numerical approximation for the Jacobian derivatives is given by:

f(Y)-f(Y +&Yk)
3

k
(3 .73)

where E is a small perturbation weighted by the kth element of Y. The bold notation Yk

represents a vector of zeros except for the one element Yk in the kth position. In the defi-

nition of a derivative, E in the limit should go to zero; on the computer, however, it is a

small number, chosen mainly by consideration of the precision being used on the

computer. For instance, in double precision, which carries digits out to fifteen places,

E = 10m7 works well. Weighted by Yk, E perturbs the sixth digit of each value, one at a

time, in the state vector Y, irrespective of the magnitude of the value. That is, some of the

values in the vector Y, such as the energy, are going to be very large, and others, such as

position, can be near zero. So weighting E by Yk perturbs each value by the same percent-

age. For single precision computations with eight digits of accuracy, E = lop4 would

probably be a good choice, since that would perturb the fourth to the last digit of each

value in the vector Y.

The existing explicit SPHINX code has the function As(Y), which calculates the

41

right-hand sides of the SPH equations. To form the numerical derivative, rhs(Y) is first

run using the unperturbed values of Y, and all the resulting time derivatives for each parti-

cle are stored in a vector function f,. Then one element in the state vector Y is perturbed

by EYE, and rhs(Y+&Yk) is run again. Differencing the values of the vector f, with those

of the perturbed f(Y+&Yk), and dividing by &Yk, gives one column of the Jacobian matrix.

Then the perturbed element of Y is set back to its original value, the next element of Y is

perturbed, and the differencing is done all over again. Each repetition of this process cal-

culates another column of the Jacobian.

In this fashion the numerical Jacobian matrix of the implicit code is built up during

each time-step, and this approach now replaces the analytically derived Jacobian equations

of Section B of this chapter. The next step is to find the solution to the inverse problem.

E. Iterative Solvers

Since the LU decomposition method is very time consuming, it has been replaced

by iterative solvers. Iterative solvers are algorithms that solve a linear system Ax = b by

starting with a guess to the solution and then iterating on it until a desired accuracy has

been reached without actually inverting the matrix. The iterative methods can signifi-

cantly shorten the computational time over directly inverting the matrix if they converge

quickly. Convergence can be accelerated by a judicious choice of a preconditioner

matrix. Iterative methods also have another advantage over direct methods in that a direct

method cannot be stopped part way through and have any useful results. Direct methods

have to be run to completion each time, where iterative solvers can usually be stopped

42

after a few iterations and the result is an approximate solution, which can be useful,

depending on the accuracy desired.

If x and b are vectors and A is a non-singular matrix to be inverted, the general

problem is of the form x = A-’ b, where A and b are given and x is the unknown. Instead

of inverting A, the iterative methods solve Ax - b = 0 approximately, by guessing at a

solution, x,, and then iterating on x until a vector of residual errors R is near zero, where

R - Ax-b G 0. (3 .74)

In other words, the intercepts, or zero crossings, of each of the equations in the linear sys-

tem is being sought.

E.l. Stationary Methods

The earliest iterative solvers, for solving Ax = b, are referred to as stationary meth-

ods [7], [41]. These are iterative methods that can be written in the form xk+l = Mx, + C,

where M and c are modifications to A and b, and do not depend on the previous iteration

count k. The most popular methods are the Jacobi, the Gauss-Seidel, and the Successive

Overrelaxation methods. These methods are based on splitting the matrix A into parts:

A-D+E+F, (3 .75)

where, using a modified notation of Saad [71], D is the diagonal of A, and E and F are the

two triangular parts of A below and above the diagonal. Equation (3 .75) is not an LU

decomposition but a simple splitting of the matrix. These methods are usually not as effi-

cient as the Krylov methods but can serve as preconditioners in the Krylov methods.

The Jacobi method makes use of the fact that it is trivial to invert the diagonal and

43

uses an iterative equation of the form:

xk+l = D-l {b - (E + F)xk}, (3 .76)

So, starting with an initial guess of x,, then x1 can be obtained using (3 .76). Then, using

x1 as the next guess, x2 is obtained, and so on until the desired accuracy is reached. The

matrix D-l (E + F) is known as the iteration matrix and remains unchanged with each iter-

ation, hence the term stationary.

The Gauss-Seidel method is based on the fact that the triangular matrix (D+E) is

straightforward to invert; it is simply a back-substitution process. This method uses an

iteration equation of the form:

JQ+~ = (D+E)-1 {b - Fxk}, (3 .77)

The Successive Overrelaxation (SOR) method splits the matrix A differently. If

Eq, (3 .75) is multiplied by an extrapolation factor pi), and then the diagonal D is added and

subtracted, to give the following splitting of A:

aA = (D+coE) + [OF - (1-o)D],

then the iteration equation is given by:

x~+~ = (D+oE)-’ {cob - [oF - (1-o)D]xk}, (3 .79)

The value of o is 0 < ci) < 2. If o is outside this region, this method goes unstable, and if

o = 1, the method just reduces to the Gauss-Seidel method. For the region 0 < o < 1, it

should be called underrelaxation, but traditionally the whole span of zero to two is referred

to as overrelaxation. The choice of o can have a significant effect on the rate of conver-

44

gence and hence shorten the number of iterations, but the optimal value is not easy to find

and varies with the problem. One method is to vary o slightly and see if it improves the

rate of convergence. This variation can be done by dithering o while the code is running

or by making several runs with different values of cu. Once an optimal ci) has been deter-

mined, then it is best to leave it constant to make the code run economically.

Each of the above methods has an iteration matrix that remains unchanged with

each iteration and is, therefore, called a stationary method. For an excellent discussion of

the above methods see Strang [81], or Golub & Van Loan [32].

E.2. Non-Stationary Methods

In the 1950s the Conjugate Gradient (CG) method and related methods referred to

as non-stationary methods were developed (See Barrett et al. [7], Golub & Van Loan [32],

Kelley [41], Saad [71], and Strang [Sl]). “Non-stationary” means that with each iteration

the information for doing the computation changes. These methods have no iteration

matrix but rather are based on the orthogonalization of the residual vectors and a minimi-

zation of the residual at each iteration. The early methods, such as the CG method, could

only be guaranteed to converge if A was a symmetric positive-definite matrix.

Lanczos had proposed a biorthogonal method to handle non-symmetric matrices in

his 1950s papers [45] and [47], but the idea lay unused for over twenty years. In 1986 a

method known as the Generalized Minimal Residual (GMRES) method was introduced

that could handle non-symmetric matrices. Since then, a number of methods for handling

non-symmetric matrices have been developed. For several texts books on the subject see

Barrett et al. [7], Cullum & Willoughby [19], Golub & Van Loan [32], Kelley [41], Saad

45

[71], and Zlatev [97]. Some of the more successful iterative methods for non-symmetric

matrices are:

(GMRES) - Generalized Minimal Residual,

(BiCGSTAB) - BiConjugate Gradient Stabilized,

W-W - Conjugate Gradient Squared,

(QMR) - Quasi-Minimal Residual.

These methods can be real ‘race horses’ compared to the direct method of LU

decomposition, but they can also be unpredictable. Usually one or more will converge in

much less time than that required by the LU decomposition method. One technique that

has been used to try to assure convergence by Barrett [8] is to run several of the methods in

parallel, and when one converges, computation on that time-step is stopped, and the code

moves on to the next time-step.

The non-stationary iterative methods for solving R - Ax - b g 0, are based on

generating a sequence of orthogonal residual vectors Ri that are also the gradients of qua-

dratic functions, which, when minimized, lead to a solution x of the linear system. Since

the residual vectors are orthogonal, it follows that they are linearly independent. These

methods are also known as Krylov methods because the residuals are projections onto vec-

tors of a Krylov subspace, which is defined as a span or a set of vectors: Kk = {R, , AR,

, A2R,, . . . , AkMIRo}. The y o f 11 ow one of four orthogonalization procedures put forth by

Gram-Schmidt [8 11, Householder [38], Lanczos [45], or Arnoldi [6]. Projection is analo-

gous to finding the projection of a vector onto a plane, except that it is an N-Vector pro-

jected onto an N-space, or Krylov space.

46

E.3. Symmetric Positive-Definite Matrices

The Conjugate Gradient (CG) method typifies the fundamentals of the non-stationary

iterative methods, and the others are generally variations pf this one. The CG method

requires that the matrix A be symmetric and positive-definite for a minimum of Eq. (3 .80)

below to exist. Orthogonalization is done using the Lanczos method for symmetric matrices.

Following Kelley [41], Chapter 2, the Lanczos method reduces a real symmetric

matrix A to a tridiagonal matrix T, and the columns form an orthonormal basis for the pro-

jection of b onto the Krylov subspace. The residual vectors are each made orthogonal to

the previous residuals and to the Krylov subspace. It is then very straightforward to factor

the tridiagonal matrix into a triangular and diagonal matrix T= LDLT. For a tridiagonal

matrix, the triangular matrix L consists of only the main diagonal and the first subdiagonal

below it. The problem, .then, is reduced to solving LDLTx = b, which is done in three

steps. First, find y from Ly = b, which is simple since L has only two diagonals. The

second step is to solve for z from Dz = y, which is even easier since D is just a diagonal

matrix. Third, solve for x from LTx = z.

The minimization is accomplished by taking the gradient of the polynomial:

t)(x) = (l/2) xT A x - xT b. (3 .80)

If the vectors x and b and the matrix A are all multiplied out, the result is a polynomial.

Setting the gradient of the polynomial to zero yields the linear system being solved and the

extremum of Eq. (3 .80),

VW4 = Ax-b = 0. (3 .Sl)

47

Thus, minimizing $(x) is the same as finding the solution to the linear system. The mini-

mum of Eq. (3 .80) can be found by the Least Squares procedure.

E.4. Non-Symmetric Matrices

If A is non-symmetric, one way to handle that is to multiply A by its transpose AT,

because the product AAT or ATA is symmetric and positive-definite, assuming A is

non-singular. Using the first product leads to a method called the Conjugate Gradient on

the Normal Equations (CGNE), where x is redefined as x = ATy, and then two problems

are solved. First (AAT)y = b is solved for y using the CG method, and then x = ATy is

computed. The second product, ATA, leads to the method called the Conjugate Gradient

on the Normal equations Residual (CGNR) where both sides of the linear system are mul-

tiplied from the left by the transpose of A, that is, (ATA)x = ATb, and the equation is

solved using the CG method. Both of these methods, however, converge rather slowly.

Also, the transpose has to be generated.

More efficient techniques have now been developed to solve R E Ax - b G 0,

when A is non-symmetric, and they have taken two major branches, one based on Arnoldi

orthogonalization and the other on non-symmetric Lanczos biorthogonalization. The

Arnoldi process is used in the GMRES iterative technique and was introduced by Saad &

Schultz [72]. The Lanczos biorthogonalization process has led to the iterative techniques

BiCG, BiCGSTAB, CGS, and QMR. The Arnoldi process is the easier of the two to ana-

lyze, so GMRES has been more extensively studied than the others. A good comparison

of the various methods is found in the book by Barrett et al. [7]. The general conclusion

they reached is that GMRES is the more robust in that it will converge eventually, but it

48

uses up a lot of memory. The others may converge much faster and use less memory, but

it is possible they might not converge.

ES. Arnoldi Orthogonalization for Non-symmetric Matrices

The Arnoldi process [6] uses the Gram-Schmidt orthogonalization method coupled

with ideas of Hestenes and Stiefel [35] and allows the solution for non-symmetric matri-

ces. Instead of reducing A to a tridiagonal matrix T, it is reduced to Hessenberg form, in

which the elements of the matrix are all zero below the first subdiagonal. (A tridiagonal

matrix is also in Hessenberg form, but it is the result of starting from a symmetric matrix.)

The Generalized Minimal Residual (GMRES) is a method for handling non-sym-

metric matrices, and is based on the Arnoldi procedure. For GMRES the Gram-Schmidt

orthogonalization is commonly used, although the Householder method is also used. The

Gram-Schmidt method, however, is better for parallelization, [7] p. 2 1.

The main problem with this technique is that the entire sequence of orthogonal

vectors for each iteration needs to be saved, which can require a large amount of memory.

Because the solution is not formed for each iteration, the residual can be minimized with-

out it. Restarting the procedure, by forming the approximate solution and starting over

after some number of iterations m, can alleviate this problem. It can be difficult, however,

to decide what value of m to use. The GMRES method may be somewhat slower and use

more memory than the following methods, but it is commonly used because it is consid-

ered to converge more reliably.

49

E.6. Lanczos Biorthogonalization for Non-symmetric Matrices

Lanczos proposed a method for handling non-symmetric matrices that uses two

orthogonal bases and two Krylov subspaces, one for a sequence on A and the other on AT.

The two sequences are made mutually orthogonal, instead of orthogonalizing each

sequence. The resulting method is called Bi-orthogonal Conjugate Gradient (BiCG) (also

known as BCG in some texts), but this method proved to have unreliable convergence.

More stable convergence can be obtained, however, by using a different update on the AT

sequence, and this method is called Bi-Conjugate Gradient STABilized (BiCGSTAB).

The Conjugate Gradient Squared (CGS) method is a modification such that the

sequence for the transpose AT does need to be found, and therefore it can converge about

twice as fast as BiCG. It was put forth by Sonneveld in 1989 [75]. Some claim in the lit-

erature that this method is more likely to have convergence problems than BiCG.

The Quasi-Minimal Residual (QMR) algorithm was introduced by Freund and

Nachtigal [26] in 1991, and uses a “look ahead” technique to stabilize the BiCG method.

It also converges more smoothly.

For the implicit version of the SPHINX code, the GMRES, the CGS, and the

BiCGSTAB methods have been written and tested and are working. These Krylov solvers

have been compared to the versions in the commercial code MATLAB, which is an excel-

lent code for matrix manipulation. The CGS method has converged a little faster than the

GMRES and BiCGSTAB methods for the SPH matrices tried to date. For the type of

matrices generated from the implicit code, the CGS method has proven to be very reliable

and hence has become the one most used for this dissertation.

50

	Table of Contents
	List of Figures
	Fig. I. 1.
	Fig II. 1
	Fig. III. 1.

	ABSTRACT
	Chapter I
An Overview & the Goals
	A. Introduction
	B. Fluid Methods
	C. Implicit Methods

	Chapter II
Basics of Smooth Particle Hydrodynamics
	A. Introduction To Smooth Particle Hydrodynamics
	B. The SPH Approximations and the SPH Equations
	C. The Kernel Function
	D. The First-Order Derivatives of the Kernel
	E. The Neighbor Search Routine

	Chapter III
The New Implicit SPH Code
	A. Introduction to the Implicit Code
	B. The Analytic Jacobian
	B.l. Derivatives for the Implicit SPH Code
	B.2. The Second-Order Derivatives of the B-Spline WV

	C. Lower and Upper (LU) Decomposition
	D. The Numerical Jacobian
	E. Iterative Solvers
	E.l. Stationary Methods
	E.2. Non-Stationary Methods
	E.3. Symmetric Positive-Definite Matrices
	E.4. Non-Symmetric Matrices
	ES. Arnoldi Orthogonalization for Non-symmetric Matrices
	E.6. Lanczos Biorthogonalization for Non-symmetric Matrices
	E.4. Non-Symmetric Matrices
	ES. Arnoldi Orthogonalization for Non-symmetric Matrices
	E.6. Lanczos Biorthogonalization for Non-symmetric Matrices

