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ABSTRACT 

An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX 

has been written and is working. In conjunction with the SPHINX code the new implicit 

code models fluids and solids under a wide range of conditions. SPH codes are 

Lagrangian, meshless and use particles to model the fluids and solids. The implicit code 

makes use of the Krylov iterative techniques for solving large linear-systems and a New- 

ton-Raphson method for non-linear corrections. It uses numerical derivatives to construct 

the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce 

the amount of computation. It is believed that this is the first implicit SPH code to use 

Newton-Krylov techniques, and is also the first implicit SPH code to model solids. 

A description of SPH and the techniques used in the implicit code are presented. 

Then the results of a number of tests cases are discussed, which include a shock tube prob- 

lem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. 

The results are shown to be in very good agreement with analytic solutions, experimental 

results, and the explicit SPHINX code. In the case of the single jet of gas case it has been 
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demonstrated that the implicit code can do a problem in much shorter time than the 

explicit code. The problem was, however, very unphysical, but it does demonstrate the 

potential of the implicit code. It is a first step toward a useful implicit SPH code. 
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Chapter I 

An Overview & the Goals 

A. Introduction 

The goal of the research discussed in this dissertation is to develop a code, which is 

an implicit version of the Smooth Particle Hydrodynamic (SPH) approach to modeling 

fluid motion, and then to use it to study a select set of examples. The new code has been 

developed as an addition to an existing explicit SPH code called SPHINX. The SPHINX 

code was developed at Los Alamos National Laboratory [18], [22], [78], [79], [92], [93], 

[94], and has the capability to model fluids and solids, using SPH techniques. The desire 

is to move the SPHINX code into a new regime where it can use larger time-steps and 

model low-speed flow and near-steady-state problems. Ultimately, it is envisioned that 

SPHINX will be able to switch automatically between explicit and implicit time-stepping 

as conditions change within a given problem, although this is not part of this dissertation. 

The number of possible new applications that the implicit code could bring to the 

SPHINX code would be numerous. Problems that change slowly with time or are near- 

steady-state, such as plastic flow, would be possible. For example, Oran and Boris [64] 

discuss the use of implicit methods in their Chapter 3 in which they discuss the modeling 

of a laminar flame propagating through a tube of combustible gas, and estimate that the 

computation could take up to 3000 years of computer time using conventional explicit 

methods. To remain stable, explicit methods are restricted to very small time-steps 

because of the need to resolve shock waves and velocities on the order of the sound speed. 

Implicit methods only need to model velocities on the order of the speed of the flame, 
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which is typically three orders of magnitude slower than the sound speed, and these meth- 

ods could remain numerically stable but would give up some accuracy. That reduces the 

computer time to about 3 years. They further claim that another reduction of a factor of 

500 can be gained by using adaptive-gridding to avoid gridding up voids, which brings the 

computational time down to about two days, which is more reasonable. SPH codes do not 

use grids, so that advantage would automatically be built in. 

Astronomers want to calculate stellar and galactic models over very long periods 

of time, and to run the models many times with different parameters in an effort to fit their 

calculations to the observations. Very large time-steps are essential to be able to do this in 

one’s lifetime, so implicit methods are commonly used in astronomy. Stellingwerf [76] 

[77] enumerated a number of ways for analyzing astrophysical models once the Jacobian 

matrix has been constructed. Solving this matrix equation is the crux of the implicit 

method. He points out that once the Jacobian is set up, then the “options include (1) for- 

ward time integration, (2) relaxation to steady-state, (3) stability of steady-state and time 

evolution, (4) numerical stability check, and (5) driven oscillations.” Of course, these 

methods can be used in many other fields of numerical modeling besides astronomy. 

B. Fluid Methods 

Modeling of fluids usually follows one of two basic techniques. One method uses 

the fluid equations referenced to the laboratory frame, by defining a fixed mesh or grid and 

modeling the fluid flowing through the mesh. This technique uses the fluid equations in 

the Eulerian form. The other method fixes the mesh to the fluid and calculates the distor- 

2 



tion of the mesh as the fluid moves. In this method the mass within each cell of the mesh 

remains constant. This technique uses the fluid equations in the Lagrangian form. 

The SPI-I technique, which was originally developed for astrophysical work and is 

fundamentally a Lagrangian approach, does not define a mesh, but instead models fluids 

and solids using particles, with each particle having its own set of physical properties 

assigned to it, such as position, velocity, density, internal energy, and more (see Fig. I. 1). 

Fig. I. 1. Fig. I. 1. An example of particles (dots) and their circles of influence, which An example of particles (dots) and their circles of influence, which 
may be of different radii and change with time. may be of different radii and change with time. Each particle has a local set of neigh- Each particle has a local set of neigh- 
bors influencing its motion. bors influencing its motion. The particles may have different physical properties such The particles may have different physical properties such 
as position, velocity, density, pressure, internal energy, and more. as position, velocity, density, pressure, internal energy, and more. 

This method starts with the Lagrange form of the fluid equations, and then by 

using two approximations, reduces the partial differential equations (PDEs) to ordinary 

differential equations (ODES). These approximations are referred to as the kernel approx- 

imation and the particle approximation. Each particle has constant mass, which is analo- 

gous to the usual Lagrangian approach in which the mass within each cell of the mesh is 

held constant. Each particle has a sphere or circle of influence and set of neighbors as 
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determined by overlapping circles of influence. For instance, in Fig. I. 1. the circle of the 

medium gray particle has as its neighbors the light gray particles, but the black ones are 

not neighbors because their circles do not overlap with the medium gray particle. The cir- 

cle represents a smoothing function, which is a Gaussian-like function that is highest at the 

particle, or the center of the circle, and falls off radially to zero at the edge of the circle. 

The particles are moved according to the fluid equations, and the smoothing functions 

interpolate the fluid properties between the particles. 

Since the SPH method has no grid of cells, one of its main advantages is that there 

is no mesh tangling, which is a problem for most Lagrangian codes. Also, because there 

is no mesh, empty space does not have to be included in the grid, as is often required in the 

typical Eulerian code, even with the use of such methods as adaptive-gridding. 

The SPH method also has the usual advantage of a Lagrangian code over an 

Eulerian code, in that contact discontinuities between fluids can be tracked. As two or 

more materials mix, they can be tracked because each particle has its own material proper- 

ties. SPH can go beyond that, because particles can become thoroughly mixed, which is 

very difficult for a gridded Lagrangian code to calculate. Another advantage of SPH is 

that it is not much more difficult to write a three-dimensional (3D) code than to write a 

one- or two-dimensional code. Once the 1D code is written, the 2D and 3D parts can be 

added very easily to the same code. 

There are some disadvantages with SPH. It is generally not as accurate as the 

gridded codes. There is an instability that is unique to SPH in the modeling of solids, 

where the particles can unphysically clump together when under tension. This problem is 
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referred to as the tension instability. Non-conservation of angular momentum is another 

problem that has been encountered in SPH. This problem has been addressed success- 

fully by Dilts [22], [23] using a moving-least-square (MLS) method, but it is in general a 

more time-consuming computation than SPH. Another problem encountered in SPH is 

that boundaries are not modeled well. The particles at the edge of objects have no neigh- 

bors outside the object, so their densities are less than those for particles internal to the 

object, and one would like the density to be the same all the way out to the edge. MLS 

can handle this problem quite well also, but again it is a more time-consuming method. 

One other problem encountered in SPH is that the spherical kernels can prove to be 

insufficient for unevenly distributed particles. For example, if the particles are stretched 

or squeezed in one direction more than another, then the particles can move apart so far - 

for example in the horizontal - that the spheres or circles of influence no longer overlap, 

but in the vertical they may be squeezed so tightly that they have many neighbors in the 

vertical but none in the horizontal. The calculation falls apart when particles that should 

be influencing each other are not. Attempts to solve this problem have been tried with 

varying degrees of success. One approach is to use elliptical kernels that stretch out as 

particles move apart. Another approach is to introduce more particles in the gaps as the 

original particles move apart. This approach is referred to as particle-splitting because the 

mass must remain constant, and therefore it has to be split up appropriately among the par- 

ticles. 

The explicit version of SPHINX uses primarily a Runge-Kutta method to do the 

time-stepping for solving the set of ODES. It also has packages to do Leap-Frog and 
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Predictor-Corrector time-stepping, both of which are explicit methods. 

C. Implicit Methods 

The main subject of this dissertation is another time-stepping package, which will 

be the first implicit method, to be added to the SPHINX code. One other implicit SPH 

code has been written, but for astrophysical use by Timmes [86], and it will be discussed 

later in this chapter. The SPHINX code is used primarily for modeling interacting solids 

and fluids, as opposed to astrophysical use, so the new implicit SPH code is believed to be 

the first one to model solids. The new code is also believed to be the first implicit SPH 

code to use Newton-Krylov methods for solving the linear system, which will be dis- 

cussed later in Chapter III. 

Implicit codes are used mainly because they are usually unconditionally stable 

with any time-step size. They do lose accuracy with increased time-step size, but the 

solutions do not become unstable; that is, they do not go off to infinity, or go to zero and 

stay there, or oscillate wildly (see Oran and Boris [64], page 94) as explicit codes do if the 

time-step size exceeds a limit known as the Courant condition. The Courant condition 

basically says that the spatial-step size divided by the time-step (which can be thought of 

as a velocity) should be greater than the greatest velocity expected in the fluid being mod- 

eled. Typically the largest velocities of interest are sound waves, but when modeling low- 

velocity flow, these velocities are of little interest and are usually ignored. The Courant 

condition requires an explicit code to take such tiny time-steps to remain stable that the 

code can take much too long to solve the problem. 

The implicit code is not restricted by the Courant condition to remain stable, but, 
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to help maintain accuracy of the desired features of a problem, the time-step should still be 

as close as is practical to that prescribed by the Courant condition associated with the 

physics of interest. What is “practical” is decided by a trade-off between the amount of 

computer time to run the problem with the desired accuracy on the implicit code, as com- 

pared to the run time and accuracy of the explicit code. That is, if one is willing to give up 

some accuracy in exchange for shorter total run time, then the implicit code may be the 

one to use. One would like to run the implicit code with a large enough time-step so that 

the total computer time would beat the total run-time of the explicit code and still maintain 

an acceptable accuracy, which is often the case if the problem is near a steady-state solu- 

tion, or the problem is not changing much over large periods of time. The choice of time- 

step for the implicit code has not been well defined yet, but it would ideally be based on 

the desired accuracy. A first attempt is discussed in Chapter III, Section I. 

The main disadvantage of an implicit code is that it requires the solution to a huge 

number of simultaneous equations or a linear system, and hence requires the formation of 

a very large matrix. Inversion of the matrix has been the conventional method for finding 

a solution, and so implicit methods are typically computationally intensive. The large 

matrix can grow to take up most of the memory of ‘any computer because the user will 

want more resolution and details included. More modern methods of solving linear sys- 

tems use iterative methods rather than actually inverting the large matrices. The iterative 

methods do help speed up implicit codes. but they are still computationally intensive per 

time-step as compared to explicit codes. Iterative methods have become the subject of a 

major effort in research of numerical methods and the topic of a large body of journal arti- 
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cles and textbooks. Some conventional and iterative methods will be discussed in Chap- 

ter III. 

To the knowledge of the author, only one other implicit SPH code has been writ- 

ten, and that is by Dr. Francis X. Timmes [86]. His code was developed for astrophysical 

use and includes self-gravity between particles. It uses the momentum equation and the 

energy equation, but not the continuity equation. He calculates densities by a summation 

method. The neighbor search routine in his code is different from that used in SPHINX in 

that, for a given particle, its neighbor particles are determined by whether or not the other 

particles fall within the radius of its sphere of influence, as opposed to overlapping spheres 

of influence. By implication then, given two particles with different smoothing lengths, 

the one with the larger radius may influence the other but not vice versa. Because equal 

and opposite action is not maintained between particles, energy is not necessarily con- 

served. However, Dr. Timmes claims that this problem can be minimized. 

An example of the way neighbors are counted in Timmes’ code can be seen in 

Fig I. 1. The two particles in the lower left have different size circles. The one with the 

smaller circle falls within the larger circle, so it is a neighbor of the one with the larger cir- 

cle. But since the particle (the dot) with the larger circle does not fall within the smaller 

circle, it is not a neighbor of that particle. One way to maintain equal and opposite reac- 

tion between particles, in Timmes’ method, would be to keep the circles all of equal 

radius. The radii, or smoothing lengths, could still change, but they would have to change 

equally for all particles, which is probably a reasonable approach for many problems. 

Timmes does, however, use variable smoothing lengths or radii. 
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The new implicit code, which is the focus of this research, has a number of differ- 

ences. First, the continuity equation is included as an option to the user. Second, parti- 

cles are counted as neighbors if their spheres of influence overlap. This feature has the 

effect that any two particles have an equal and opposite reaction on each other, which 

allows for conservation of energy. Other differences include the use of iterative tech- 

niques, also known as Krylov methods, for solving the linear system. Also, a version of 

the implicit code has been written that makes use of matrix-free methods within the itera- 

tive techniques. This version has only been partially successful, but the method will be 

discussed in more detail in Chapter III. 

The development of the new implicit code for SPHINX has involved five major 

stages. The first stage was to develop a code based on the analytic derivation of the 

implicit form of the SPH fluid equations. This set of equations involves a Jacobian matrix 

of derivatives. The first version of the implicit code, following Timmes’ approach, used 

the Lower and Upper (LU) decomposition method to factor the matrix, and used a fourth- 

order Rosenbrock solver. The second stage replaced the analytic Jacobian matrix with a 

numerical Jacobian. The third stage replaced the LU decomposition with a selection of 

Krylov solvers. The fourth stage attempted a modification to the Krylov solvers to make 

them matrix-free. The modification replaces the step in the iterative solver where the 

matrix-vector multiply appears with an approximation that involves only vector opera- 

tions. This stage was not completely successful. The fifth stage involved adding a New- 

ton-Raphson iteration to improve the nonlinear convergence and going to sparse storage 

and sparse calculations. The implicit method is covered in more detail in Chapter III. 
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Presented in Chapter II are the basic concepts, assumptions, and mathematics used 

in SPH. The implicit approach is presented in Chapter III. The last two chapters discuss 

a set of examples on which both the implicit and explicit codes have been tested. Chapter 

IV includes a three-particle problem, a rarefaction problem, a shock-tube problem, a Ray- ~ 

leigh-Taylor instability problem, a breaking dam problem, and a single expanding jet of 

gas. Chapter V discusses a set of problems involving neutral plasma jets in 2D and 3D, 

that have application to nuclear fusion. 
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Chapter II 

Basics of Smooth Particle Hydrodynamics 

A. Introduction To Smooth Particle Hydrodynamics 

Smooth Particle Hydrodynamics (SPH) is a relatively new numerical approach to 

simulating hydrodynamic problems on the computer. SPH was introduced by Lucy 

(1977) [51], Gingold & Monaghan (1977) [30], and Monaghan (1982) [58], and has been 

improved on by a growing community of users since then (see Benz [lo], Hernquist & 

Katz [34], Swegle et al. [82], Libersky & Randles [49]). It was used initially by the astro- 

physical community to model galaxies and star formation [30], [34], [57], [73], [86]. 

With the inclusion of material-strength models it has also been found to be useful for mod- 

eling solids [48]. It has been used to model projectiles, solid or fluid, impacting targets of 

various kinds to study cratering, damage, and breakup [39], [79], [93]. SPH has also been 

found to be useful for modeling fracturing of solids such as rock with granular boundaries 

[ll], [52], [83]. Several good reviews exist by Benz [lo], Monaghan [59], and Wingate 

[92]. The current discussion, however, will be restricted mainly to fluids. 

As briefly discussed in Chapter I, fluid dynamic problems are usually solved 

numerically, and the fluid equations are typically cast into one of two common frames of 

reference. One is the lab frame and the other is the fluid frame of reference. The result- 

ing sets of equations are known, respectively, as the Eulerian and Lagrangian forms. One 

form can be converted into the other with an appropriate coordinate transformation. 

Many different ways of solving these equations numerically have been developed. Both 

formulations generally use a grid or mesh which divides space into cells. The codes for 

11 



either method can be written in one, two, or three dimensions, each dimension adding 

increasing complexity because the phenomena occurring at each boundary of each cell 

have to be taken into account. 

The Eulerian method keeps track of the fluid as it flows in and out of the different 

boundaries of each cell. The cells are fixed in space and do not move. It is a rigid grid. 

One disadvantage of this approach is that, if there is more than one fluid, it is difficult to 

keep track of the two fluids as they mix. There are ways to handle this problem but they 

can make the code very complicated. One example is known as Front or Interface Track- 

ing [33], [64], which will not be covered in this dissertation. 

The Lagrangian method overcomes the mixing problem by not allowing the fluid 

to leave the cell in which it starts, but rather the cells move and deform to account for the 

fluid motion. The mass in each cell remains constant, but the density can change as the 

cell size changes, depending on the pressures and temperatures in each cell. The interface 

between two fluids is easy to keep track of as long as the cells do not become too distorted. 

The cells typically start out in a regular grid or pattern but can soon become highly 

deformed and even tangled, which is a serious problem with this method. The codes are 

usually programmed to stop running or redo the mesh at this point because the results 

often become unphysical under these conditions. 

The SPH method is a Lagrangian approach and is derived from the Lagrangian 

equations, but each cell can be thought of as having been reduced to a point, which is 

referred to as a particle, and the mass of each particle is constant. As a result, the SPH 

approach is mesh free, because it has no grid of cells. A lucid discussion of the SPH the- 

ory can be found in the Ph. D.. dissertation by Fulk [27]. 
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Each particle has the various fluid properties associated with it, and the particles 

are moved in time according to the fluid equations. Each particle has a position (x, y, z), a 

velocity v = (v,, vY v,), a mass m, internal energy e, and a smoothing length h assigned to 

it; from these, pressure P, temperature T, density p, etc. are computed for each particle. 

Each particle has a set of SPH equations that are derived from the usual Lagrangian fluid 

equations: 

The Momentum Equation VP, 

The Continuity Equation 4 
z 

= -(p)Vw, 

The Energy Equation d”, 
dt 

VW. 

(2 2 

Each particle also has a sphere of influence defined by a kernel function that deter- 

mines how strongly each particle interacts with its neighbors as a function of distance 

between them. The kernel function is a bell-shaped function and is commonly made up 

of B-spline functions with compact support on the particle’s sphere of influence. The 

Gaussian function has also been used as a kernel. 

Some of the advantages of the SPH approach are the following: 

1. There is no mesh tangling. 

2. It is almost as easy to write a 2D or 3D code as it is a 1D code, which is not true for 

some approaches. 

3. Different types of fluids are easy to track as they mix because each particle has its own 

material identity. 

4. Empty space does not have to be zoned up as is often required in Eulerian mesh codes. 

5. Fracturing and breaking up of solid objects can be modeled. 
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B. The SPH Approximations and the SPH Equations 

The approximations used to reduce the Lagrangian fluid equations from PDEs to 

ODES are the kernel anproximation and the particle annroximation. The kernel approxi- 

mation, also called the kernel estimate, is based on using a bell-shaped interpolating func- 

tion N and is used in the same manner as the Dirac delta function. Either can be used to 

approximate an arbitrary function. The particle approximation divides the fluid into parti- 

cles, which in general are much larger than atoms or molecules. 

Any function A(r) can be written as a superposition of delta functions &r-r’): 

A(r) = jA(r’)G(r-r’)dr’ , (2 -4) 

and following Monaghan [59], the interpolating function, or kernel, is used similarly 

where W(lr-r’l, h) + S(r-r’) as h -+ 0, where h determines the width of the function: 

(A(r)) = IA(r’) W(r-r’, h)dr’ , (2 -5) 

where the angle brackets indicate an approximation. By multiplying the fluid equations 

by W(lrl, h) and integrating, the kernel approximation is formed. 

To evaluate the integral, the particle approximation is used. Assume the fluid is 

divided into particles with masses ml, . . . . mN, and volume elements (mj / pj), then the con- 

tribution to Eq. (2 .5) by thejth particle can be represented as: 

A(r’j) W(r-v’j, h)mj 
P(r’j> ’ 

(2 5) 

and summing over all such terms will approximate the integral in Eq. (2 .5). The kernel 

W has units of inverse volume, so that, when multiplied by the mass over density, the units 

cancel. Hence the units of term (2 .6) are those of A(r). Thus, using the particle approx- 
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imation, Eq. (2 .5) becomes a summation over all particles: 

(A(r)) = i -fk (A(rlj)) W(r-rljt h). 
j = 1 p(r’.i) 

(2.7) 

The fluid equations are the momentum equation, the continuity equation, and the 

internal energy equation. The momentum eouation, Eq. (2 . l), can be rewritten as, 

$7 = -@VP = - v(;)-.!Lvp, (2 3) 

and then approximating the operands of the gradients for the kernel approximation: 

-& -V(;)-;v(P). (2.9) 

Replacing the averages with Eq. (2 .7), and using a more brief notation W(Iri-rjl, h) = Wg, 

where the subscripts indicate that WG is a function of both particles i andj: 

pi = -Vi ~~ ($)jWij m(+)iVi ~~ (P>jWij . 
j=l j j=l j 

(2 .lO) 

The gradients operate only on the quantities for particle i, and WV is the only thing within 

the summations that is a function of i, so the gradients operate only on the kernels, hence: 

gi z -C'"j[(fj), + (s)J’i wij * 
i 

(2 .ll) 

The continuitv eauation Eq. (2 .2) can be rewritten as, and approximated by: 

dP 
dt = -(p>V~v = -V.(pv)+v.Vp=-V.(pv)+v.V(p). (2.12) 

Then using the SPH approximation Eq. (2 .7): 

dPi Nm. N m. 

dt 
=-Vi* ~~(PV)jWij+Vi’ViC “(P)jWij ) (2.13) 

j=l’j j=l’j 
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which simplifies to: 

li= imjc Vi-Vj) ' Vi Wij 
j=l 

(2.14) 

The enerev eauation Eq. (2 .3) follows the continuity equation fairly closely: 

* iii = -($) VW - - p ‘I.V.(pv)-v.Vp]=-; [V.(pv)-v.V(p)] - (p>p ( 1 
(2.15) 

P 

Making the kernel and particle approximations: 

dei - 
dt 

N m. 
Vi l C $(PV)jWij- N mj vi l vi C -(p)jwij 7 

j=l .i j=l’j 1 
and simplifying; 

l?lj (Vi- Vj> l ViWij f (2.17) 

(2.16) 

There have been a number of forms of the three SPH equations derived using dif- 

ferent approximations (for a list, see [28] or [95]). Another form of the momentum equa- 

tion seems a bit contrived, but it has proven to be the most robust form and is the one used 

in SPHINX. It starts with Eq. (2 .l) and adds a term with the gradient of a constant, 

which is, of course, zero, and it is always valid to add zero to an equation. 

2 = -(l+-@V(l) =-(#7(P) -@7(l). 

Then the gradients are replaced by the SPH approximations. 

~i~-(~)i~~l~ (P)jWij- ’ Vi ~ “‘c’)wij) (p)i j= lpj 
which simplifies to: 

zi ZZ -Tmj(‘$)Vi Wij * 

(2.18) 

(2.19) 

(2 .20) 
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An alternative way to derive the energy equation is to allow the pressure to have 

spatial gradients. Then the following treatment yields a somewhat different result: 

de= 
dt 

v*v = -v.($v)+v.v(~)=-v.(~v)+v.v(~~ * (2.21) 

zi =-bi ’ iz(Fv)j wij-vi l vijl;(F)j wij] 7 

and simplifying; 

~i=j~~(~~ (vi-Vj)' Vi Wij. 

(2.22) 

(2.23) 

According to Monaghan [59], either Eq. (2 .17) or Eq. (2 .23) is satisfactory for ideal 

gases, but for metallic equations of state, the latter has slightly better energy conservation. 

The continuity equation is sometimes omitted and replaced with a summation 

using Eq. (2 .7), in which A(r) is replaced with p(r): 

(2 .24) 

This summation is an approximation of the density of the ith particle and is in agreement 

with the kernel and particle approximations. 

C. The Kernel Function 

The basic equations for the SPHINX code consist of three conservation laws, Eqs. 

(2 .20), (2 .14), and (2 .17), sometimes (2 .24), and a kernel function that determines how 

strongly each pair of particles interacts. Each particle i interacts only with its neighbor 

particles j that fall within a certain radius or sphere of influence. 

17 



The sphere of influence is an interpolating kernel function, usually a bell-shaped 

function, and determines the pressures acting on neighboring particles. It can be any of a 

number of functions such as a Gaussian or B-spline. Other kernels are discussed in the 

papers by Fulk [28] and Monaghan [56] and [58]. The kernel function is denoted as 

W(r, h), where r is the distance between particle i and its neighbor particle j, and has a 

smoothing length h, which determines the width of the function. That is, r = ri - rj, where 

ri and r- are the position vectors of the particles i andj. The interpolating kernel function 

is required to have the following properties: 

1. it is a symmetric, or even, function about r = 0, and reduces to a Dirac delta function in 

the limit as h approaches zero, 

lim Wb-1, h) = &b-l), 
k--SO 

(2 .25) 

2. it is normalized to one, 

~WCb-l, h)dr = 1, (2 .26) 

3. and while the following is not a requirement, the function usually has compact support 

to limit the number of neighbors, and for the SPHINX code it is assumed to be zero 

outside of Irl = 2h, 

W((lrl >2h), h) = 0. (2.27) 

So the radius of the sphere of influence for each particle is twice its smoothing length h, 

and the smoothing length does not have to be the same for all particles. In SPHINX, h is 

often allowed to vary with density. In this case, the average smoothing length between 

two particles i andj is used in the kernel: h = (hi + hj) / 2. Note: the circles of Fig. I. 1 are 

of radius h, so when they just touch, the particles are 2h apart, or 2h when h is variable. 
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The interpolating kernel function for the SPHINX code is a cubic B-spline curve 

of the form shown in the following Eq. (2 .28) (see also Fig II. 1) and is a function of the 

distance TV E Irl between the particles i andj with positions (Xi, yi, ZJ and (Xj, Yj, Zj>* 

C(l-~U$+~LL~), for(05uij< 1) 

Wij = C~(2 - Uij)3, for( 1 5 Uij < 2) , where (2.28) 

0, fOr(Uij2 2) 

7 . .  

EJ u..=-, 
1.1 h and (Xi-Xj)2 + (Yi-Yj)2 + (Zi-Zj)2 ; (2.29) 

and the positive root of Eq. (2 .29) is assumed for yi . C is a constant for normalizing the 

area under Wti to one, and is different for each of the three dimensions; that is, 

2 forlD: C=z , 10 for2D: C=- 
7nh2 ’ 

andfor3D: C=--& . (2.30) 

The Cubic B-Spline Kernel & its First Derivative 
0.8 

I 

0.6 
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0.2 

0.0 I I I I I I 

x/h x/h 
Fig II. 1 The cubic B-spline kernel Wij (left) is an even function, and its first deriv- 

ative (right) is odd. The’kernel has zero slope at the origin and for x > 2h. Since x is 
always positive, only the right half of these functions is actually used in the calculations. 

0.5 

0.0 

-0.5 
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From the above equations one can see that Wti is a function of yij and that i and j 

can be swapped in Eq. (2.29) without affecting the value of rti . The same is true for We , 

because WV is symmetric, which can also be seen in Fig. II. 1. The first derivative of We, 

however, is an odd function, so there is a sign change for the derivatives when i and j are 

swapped, as is discussed in Section D, Chapter II. The index i runs from 0 to N-l, where 

N is the total number of particles and the index j runs over the number of neighbors for 

particle i. (The code described here is written in the programing language C, so the indi- 

ces conveniently start at zero.) 

For a 3D implicit SPH code there are eight ODES per particle to describe their 

motions, derived from three conservation laws. (A 2D code requires six ODES per parti- 

cle, and a 1D code requires 4 ODES per particle.) These are the rate equations of the par- 

ticle’s xi, yi, zi positions, the x y z velocities (vf , VT, vi ), the density pi, and the internal 

energy ei. The eight dependent variables are xi, yi, zi, vf , vy , vi” , pi, and ei , and the inde- 

pendent variable is time t. 

The rate equations for position in the 3D implicit SPH code consist of three veloc- 

ity equations that describe the motion of the particles: 

dxi 
-& =v;, dYi 

dt= vy 7 
dzi 
z 

= v; . (2 .31) 

The rate equation of the velocity, also known as the momentum equation, can be 

expressed in a number of ways. In the terminology of the SPHINX code they are of the 

form known as “Hydro-form 2” (Wingate and Stellingwerf, 1995 [95]), and are the same 

as Eq. (2 .20) but with artificial viscosity terms added. The momentum equation is a vec- 

tor equation, so for the ith particle there is a rate equation for each velocity component: 
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dv; 
dt 

(2.32) 

dv; - =- pi+$ 
dt 

. 
Pi Pj 

(2.33) 

(2.34) 

The summations are over all particles j that are neighbors of particle i. Particle i is 

always included in its own neighbor list. The pressures of the ith and jth particles are 

given by Pi and Pj. Their densities are pi and Pj, and the masses are mi and mj. The I$ is 

the artificial viscosity (for a definition see Monaghan [59] and [62]), which is assumed to 

be zero for the discussion of the analytic Jacobian in Chapter III. The derivatives of WV 

are discussed later (Section D of Chapter II, & Section B.2 of Chapter III). 

The rate equation for density pi of particle i, Eq. (2 .14) is derived from the mass 

continuity equation, and its expanded SPH form is: 

dPi Pi m.- (VT 
aw.. aw.. 

dt = j Jpj = i 
-,;)-&3+(“y +YgJ +($ -v;p 

i J hi i 1 
(2.35) 

The rate equation for the internal energy ei of particle i in the SPH form used in the 

SPHINX code (referred to as “Energy form 3”) is: 

aw.. aw.. aw.. 
(v; -v,“)~~~+(v; -v?)-“~ +(vf -I$)~‘~ 

i J ayi i 

One more equation is needed for closure, and that is usually the Equation of State 

(EOS) for calculating the pressure as a function of the densities and internal energies. 

The EOS can be formulated from any of a number of different models. For the derivation 
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of the analytic Jacobian of Chapter III, the perfect gas model is assumed and is given by: 

Pi E (y- l)f?ipi (2.37) 

where y is the ratio of specific heats. 

D. The First-Order Derivatives of the Kernel 

For the explicit code, only the first-order spatial derivatives of the kernel are 

needed. For the implicit code both the first-order and second-order are needed, but the 

second-order spatial derivatives will be discussed in Chapter III. The kernel Wti is given 

by Eq. (2 .28), and the spatial derivatives of WG are needed for Eqs. (2 .32) through (2 .36). 

The derivatives of WV are partial derivatives because it is a function of the three position 

variables (xi, yi, zi). As noted from Eqs. (2 .28) and (2 .29), Wti is a not a function of 

velocity, density, or energy. The first-order derivatives can be evaluated by first finding 

the derivatives of yij from Eq. (2 .29). 

arij Ay.. - = k.(Xi _ xj) E 9, similar-y: 2 = 2, and arij _ AZ.. 
axi 

- - -Y, 
B ZJ Z B 

azi - y.. 
ZJ 

(2.38) 

where AXE = (xi - Xj> and similarly for Ayi;i = oli - yj> and &e = (zi - zj>. Then the deriva- 

tives of uij, from Eq. (2 .29), are: 

au.. 
ZJ 

axi 
au, _ 1 'Yij and auij l&ij 
- =--7 c3yi h Yij 

-Z-P* 
azi -h 7.. 

(2.39) 
B 

Hence, the derivatives of the first two parts of Wii, Eq. (2 .28) (labeled W aq and W ‘i) with 

respect to Xi, yi, and zi are: 
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aW:j - 
aXi 

for (0 I ujj < l), (2.40) 

- = 
aXi 

- ~ ~, (2 - uii)2~ij, 

v 

aW?j - = 
hi 

- ~ (3 - 9~U, A~ij, 

aW\j - = 
ayi 

-~~(2-~ij)~Ayij’ 
d 

dW?j - = 
azi 

-~(3m~u,)dz,. 

i3W?j - = 
azi 

-$2-uij)2Azij, 
ij 

for (1 I uij < 2), (2.41) 

for (0 I uti < l), (2.42) 

for (1 < uij < 2), (2.43) 

for (0 < ujj < l), (2.44) 

for (1 2 uij < 2). (2.45) 

Swapping i and j in Eqs. (2 .40) through (2 .45) shows that the derivatives with 

respect to the jth particle are anti-symmetric; the negative sign comes from the A term in 
aw.. aw.. 

each equation: that is, -‘I = -v 
axi axj 

and similarly for the y and z first-order derivatives. 

So only the three first-order derivatives for the ith particle need to be calculated, and those 

for the jth particle are found by negating those for the ith particle. The relationship 

between WV and the first-order derivatives are given here: 

WV = Wji 7 (2.46) 

aWti/ilxi = -dW+lxj, 

i3Wg/i3yi = -i3W&3yj, 

i3Wg/iki = -ilW+kj. 

(2.47) 

(2 .48) 

(2.49) 
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E. The Neighbor Search Routine 

Typically the most time-consuming aspect of an SPH code is the neighbor search- 

ing, and a great deal of effort has gone into finding the most efficient method. There are a 

number of different neighbor search routines used in the field of SPH, Fulk [27] Section 

2.3.10. For the SPHINX code, two particles are defined as neighbors if they have overlap- 

ping spheres of influence,’ that is, the distance between them is less than the sum of their 

smoothing lengths. 

The simplest known search scheme is the N-squared routine. Let the total number 

of particles be N, then each particle i is compared with particles i through N. In other 

words, the 0th particle will be compared to all the other particles, but the next particle will 

be compared to all the other particles except the Oth, and the next particle will be com- 

pared to all but the 0th and 1st particles, and so on. Each particle is included in its own 

neighbor list because, for instance, its own mass has to be included in the calculation of its 

density along with its other neighbors. The number of operations for this is proportional 

to N x N, hence its name. 

The neighbor search most often used, and the default in the SPHINX code, is an 

octree search for 3D, a quadtree search for 2D, and a bitree search for lD, (see Hernquist 

and Katz [34]). It takes on the order of N log (N) operations to find the neighbors of each 

particle, which is more efficient than the N-squared method. Depending on the dimension 

of the problem, each axis is divided in two. For 3D, using the octree method, space is 

divided into eight equal cubes; then each of those can be divided into eight and so on. If 

there are no particles or just one particle in a subcube, then it is not divided any further. 
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This procedure can be viewed as forming a tree of finer and finer branching until each par- 

ticle is isolated in its own cube. Thus each particle becomes a leaf on the tree. Then by 

traversing the tree the neighbors can be found by looking at the hierarchy of the branches. 

For a given particle its neighbors will be found along one branch and not the others, elimi- 

nating a search through most of the particles. 

A third method, known as a linked-list, or cells method, is generated by placing a 

temporary grid, with a cell spacing of about 2h, on the space or volume of the problem. If 

h is constant for all particles, then the neighbors of particle i will be in either its cell or the 

immediately adjacent cells. Depending on the dimension of the problem, the number of 

cells is 3, 9, or 27 for lD, 2D, or 3D respectively. A single pass through all the particles 

can assign each particle to a cell, and all the particles within a cell are linked together. 

Then the neighbors for particle i are determined by searching only through the linked par- 

ticles of its associated cells. If the average number of neighbors is N, , then the number 

of operations would be on the order of N, N, and if N >> N, then its efficiency can 

approach that of order N. If, however, h is variable, then the choice of the cell size 

becomes more difficult, and this method can become less efficient than the octree method. 

The octree is usually the method of choice when h is variable. 
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Chapter III 

The New Implicit SPH Code 

A. Introduction to the Implicit Code 

If the fluid problem being modeled does not have rapidly changing properties and 

is not being dominated by shock waves, but the time-steps determined by the Courant con- 

dition are still very short because of the sound speed of the fluid, then by using an implicit 

code, larger time-steps can generally be taken to get through the problem in a reasonable 

amount of time. An explicit code has to use the time-steps dictated by the Courant condi- 

tion or else the solutions may become unstable. Most implicit schemes, however, can be 

shown to be unconditionally stable for any time-step size. They do lose accuracy, with 

increased time-step size, but remain stable. The main disadvantage of an implicit code is 

that it is computationally intensive because a huge linear system or matrix needs to be 

solved. There is a trade-off region, above which the time-step size versus total computing 

time makes it more advantageous to use an implicit code, and below which it is more 

advantageous to use an explicit code. 

Using the implicit SPH method, the number of equations for a problem of N parti- 

cles in dimension D is (D+l)2N, hence a large number of simultaneous equations must be 

solved. For a 3D problem of N particles, there are 8N equations and 8N dependent vari- 

ables. To solve the SN fluid equations implicitly leads to the computation of a Jacobian 

matrix of partial derivatives, which are the derivatives of the 8N equations with respect to 

the SN dependent variables. The result is an 8N x 8N matrix in 3D, or a 6N x 6N in 2D, 

or a 4N x 4N matrix in 1D. This matrix is very large when N is several hundred to over a 
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million particles, no matter what the dimension is. These are the numbers of particles the 

explicit SPHINX code is capable of handling, depending on the type of computer used. 

Thus the implicit method is computationally intensive and is best for problems for which 

large time-steps are possible. 

Various techniques have been developed for implicit calculations to shorten the 

computational time and save on computer memory. For a sparse matrix, such as the one 

generated by the implicit SPH code, sparse techniques have been developed in which only 

the non-zero elements of the matrix are stored, and matrix-vector products can still be per- 

formed within these sparse constructs. Along with the storage issues, sparse computa- 

tions can be done if it is known a priori where the non-zero elements are going to be, thus 

saving on computer time. Another way to shorten the computational time is to use itera- 

tive techniques to obtain an approximate solution to inverting the matrix. Another 

method for saving memory is known as the matrix-free method in which all matrix-vector 

products are replaced by terms from a Taylor expansion, obviating the need to form the 

matrix at all; the matrix-vector product is replaced by a sum of vector operations. 

For a set of linear ODES with constant coefficients, the matrix equation to be 

solved is of the general form, following Press et al. [66] 

Y’=-A*Y, (3 .l> 

where A is a matrix, Y is the state vector, and the prime indicates a derivative with respect 

to the independent variable, time. Using n to represent the current time-step number, an 

example of exnlicit time differencing is: 

Y’rl = (Y,+1 - Y,) /At, (3 2) 
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or solving for Y,+l at the new time-step At 

Y n+l = Y,+AtY’, = (I-AtA)*Y,, (3 *3) 

where Eq. (3 .l) has been used to replace Y’, . The quantity in the parentheses is a 

matrix, where I is a unit matrix, and this matrix does not need to be inverted to solve the 

system of equations. 

On the other hand, an example of imnlicit time differencing is: 

y’n+ 1 z (Y,+~ - Y,) /At, (3 .4) 

Y n+l = Yn+AtY’n+l = (I+AtA)+Y,, (3 *5) 

where Y’,+i was replaced, as before, by Eq. (3 .l) and Eq. (3 .5) is solved for Y,+t . The 

quantity in the parentheses is a matrix that is to be inverted. Modern iterative techniques, 

however, avoid actually inverting the matrix. Instead they solve the linear system: 

(I+AtA)*Y,+, =Y, (3 .6) 

by guessing at a solution for Y,+r and iterating on it until Eq. (3 .6) is satisfied to within 

some tolerance. 

For a set of nonlinear ODES, things have to be handled differently. Let f(Y) be an 

arbitrary vector function of the vector Y, which may be nonlinear. For SPH, f(Y) would 

represent the right-hand sides of the velocity, momentum, continuity, and energy equa- 

tions. Then a general nonlinear set of equations can be represented as: 

Y’ = f(Y), (3 -7) 

where the prime indicates a time derivative. After implicit differencing, Eq. (3 .8), one 

can linearize f(Yn+l) by keeping the first two terms of the Taylor expansion, Eq. (3 .9), and 
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then collecting the Y,+r terms, Eq. (3 .lO): 

Y n+l G Y, + At f(Y,+,), (3 .f9 

G Y, + At [f(Y,) + aflay], l (Y,+~ - ~~11, (3 .9) ” 

= Y, + At [I - At aflay]-l l f(Y,), (3 SO) 

Y n+l = Y,+J-l*Y’,,=Y,+dY (3 .ll) 

where J = [I/At - af/aY] is a Jacobian matrix containing partial derivatives of f(Y) with 

respect to the dependent variables. This is the Jacobian of the residuals, which will be 

discussed later in sections F and K of this chapter. The Jacobian has diagonal elements 

consisting of a unit matrix divided by the time-step, which makes the diagonal, in general, 

non-zero. As the time-step is decreased, the matrix becomes more diagonally dominant, 

which makes the matrix easier to invert. 

The last term of Eq. (3 .l 1) is an inverse-matrix vector multiply and can be 

regarded as dY, which is added to Y, to update to Y,+r. So dY = J-l l Y’, is the usual 

form for the inverse matrix problem. Various methods have been developed for inverting 

matrices. To get started on the implicit SPH code, the first attempt was just to try the LU 

decomposition method, and the Jacobian was derived analytically. 

B. The Analytic Jacobian 

B.l. Derivatives for the Implicit SPH Code 

The implicit version of the SPH code requires the computation of the Jacobian 

matrix. The 3D Jacobian is a matrix of the derivatives of all 8N equations, Eqs. (2 .31) 
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through (2 .36), with respect to all 8N dependent variables. The derivation of the equa- 

tions to fill the 8N x 8N Jacobian matrix is the subject of this section. 

In the following equations, the time derivatives of Eqs. (2 .31) through (2 .36) 

(which are total derivatives) are denoted by a dot above the variable on the left-hand side 

of the equation. The subscripts i andj are used to denote a pair of particles. The index i 

represents a particular particle and in that sense is considered fixed. The index j will 

range over all the neighbors of particle i and is represented as a summation in the equa- 

tions. Another index, k, needs to be introduced at this point to indicate with respect to 

which of the 8N dependent variables the derivative is being taken. The new index runs 

from 0 to N-l. Like index i, the index k is considered fixed in the sense that each Jacobian 

element is the derivative with respect to only the kth dependent variable. For an example 

matrix of a 1D 3-particle problem see Fig. III. 1, at the end of this section. 

The following derivatives have been taken with respect to the kth dependent vari- 

able, and it is found that, except for k = i or k = j, the derivatives are zero; that is because 

the kth variable does not appear in the equations except when k = i or k = j. The deriva- 

tives are also zero when a pair of particles are not neighbors. Taking the derivatives of Eq. 

(2 .3 1) is simple since only the components of vi appear in the equations. Hence all deriv- 

atives are zero, except for those with respect to the appropriate component of the velocity, 

and those derivatives always equal 1. Thus, 

hi 
1, 

aPi -= 1, 
aii = -= 1, 

aVizi aViEi aVtzi 

and all others are zero. 

(3 .12) 

For the derivatives of Eqs. (2 .31) through (2 .36) there are summations, over the 
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neighbors of particle i, and it has been found that for k = i the summation survives in the 

derivative. These terms show up in 8 x 8 blocks along the diagonal of the Jacobian matrix 

(see Fig. III. 1). But for k =j only one term survives from each summation. These terms 

show up in 8 x 8 blocks off the diagonal and represent the terms due to interaction with the 

neighboring particles. Since most of the particles will have only a small number of neigh- 

bors relative to the total number of particles N, most of the off-diagonal 8 x 8 blocks will 

be filled with zeros. Therefore, the Jacobian will be a sparse matrix. Timmes estimates 

[86] that a typical Jacobian will have only 1.12% non-zero elements. 

a. The derivatives of Gx i , Eq. (2 .32), with respect to the kth dependent-variables follow: 

a+: 
c = -~mjp)$& ?fL = -mk(~)g!&., (3.13) 

ax, =j 

ali: =--& = -~TIz~(~)~$~&, $ = -mk(%)&y (3.14 

ali; 
k=i = -Tmj(z)&. 
aZ $ = -mk 

5+pk a2yk ( 1 -- 
pipk azkaxi’ (3 *15) 

alj; 
-= 0, 
av; 

alj; 
- = 0, 
av; 

a+; 
- = 0. 
av; 

(3 .16) 

Of Eqs. (3 .13) to (3 .15), the three equations with the summations contribute to the blocks 

along the diagonal, and the other three contribute to the off-diagonal blocks. Note too the 

latter three equations have k subscripts, since k is considered a fixed number andj is not. 

Because the pressure is a function of the density and energy, the next two sets of 

derivatives use the perfect gas law, Eq. (2 .37). When this EOS is used, pi cancels in one 
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term within the parenthesis of Eq. (2 .32) and pj cancels in the other term, so the derivative 

with respect to Pk=i is different than when taken with respect to pk=j. Again, note that for 

the case of k = j, only the one term, k = j, survives from the summation: 

a+; ei awik ~ = 
aPk=i (y- ‘)mkpz 7 c3*17) 

k i 

ad; 
~ = 
aek=i 

(3 .18) 

b. The 8 derivatives of I’; , Eq. (2 .33), are similar: 

ad; 
- = 0, 
av; 

a$ 
- = 0, 
av; 

a$ - = 0, 
aV; 

(3 .19) 

(3 .20) 

(3 .21) 

(3 .22) 

ei ayk 
aPk= j 

= (Y- ljrnk"G 7 (3 .23) 
Pk 

a,;; - = 
de 

k=i 

ad; “k awik - = -(y-l)-?& . 
aek= j 

(3 .24) 
i 1 

Evaluation of Eqs. (3 .19) to (3 .21) at k = i and k =j is simple and is analogous to that shown 

in Eqs. (3 .13) to (3 .15), but for Eqs. (3 .23) and (3 .24) the results are different again. 
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c. The 8 derivatives of 1’4 , Eq. (2 .34), are also similar: 

aljf - = 0, 
av; 

alif 
- = 0, 
av; 

alj; - = 0, 
aV; 

(3 .25) 

(3 .26) 

(3 .27) 

(3 .28) 

ei awik 
= (Y- l)“kTF ’ (3 .29) 

Pk 

- = 
de k=i 

a+; mk awik - = -(y-l)--az . 
aek= j i i 

(3 .30) 

d. The 8 derivatives of pi, Eq. (2 .35), are the following. 

-= 
axk 

d2Wij 
(vj: -v:‘)- 

J aykazi 
) (3 .32) 

(3 .33) 

The next three derivatives differ in sign depending on whether k = i or k = j, 

because the vz term is positive and the VT term is negative. 
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aPi 
- = 
aVi=j 

’ (3 .34) 

alji 
- = 
avz=j 

’ (3 .35) 

aPi 
- = 
avi=j 

. (3 .36) 

The derivative with respect to density also differs depending on whether k = i or 

k =j, because pi is in the numerator and Pj is in the denominator of Eq. (2 .35). 

aPi - = apk =i 
aOi - = 
apk= j 

awik 
-I()=&- +(vf 

i 
. (3 .38) 

The derivative with respect to energy is zero for both k = i and k = j, because ek 

does not appear in Eq. (2 .35). 

(3 .39) 

e. The remaining set of Jacobian derivatives consists of the 8 derivatives of pi , 

Eq. (2 .36). For brevity, let Avi = (vf - VT ) , and similarly for the y and z components. 

itIf+ 8 c- x a2w.. a2w.. 
-= 
axk j mjPiPj 

Avti &+ Av! 
a2Wij 

~+Av?----- (3 .40) 
k I ’ axkayi ’ axkazi 

ilki 
-= c 
aYk j 

as. -L= l? 
azk 

c- 
a2w.. a’w.. 

j mjPiPj 
Av”- lJ +Av?- 

a2Wij 
’ azkaxi 

lJ -&I!.----- 
’ azkayi ’ ikkazi 

. 
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The next three derivatives differ in sign depending on whether k = i or k = j, 

because the VT term is positive and the vJ term is negative. 

= c ’ ’ av”, =i 
(3 .43) 

j a&j 

ati 
= 

ih’, =i 
c pi i3Wij 

mjpipj ayi 1 I 7 
j a&j ’ 

(3 .44) 

-= c ’ 
(3 .45) 

j 

Because the pressure is a function of the density and the energy, the next two deriv- 

atives use the perfect gas law, Eq. (2 .37). When this is done, pi cancels and so the deriv- 

ative with respect to Pk=i is zero but with respect to Pk=j is non-zero. It iS the opposite for 

the derivative with respect to kk. 

aii - = 0, 
aPk=i 

(3 .46) 

at, (Y - l)ei 
apk=j = -mk pk 

x awij aw, ilWij 
Avti ax. +AviyF +a~$;~ > (3 .47) 

1 i i 

hi 

aek=i 
= (,q)+‘~ Av;$+Av,:~+Av;~ , (3 .48) 

j i Yi 1 

(3 .49) 

B.2. The Second-Order Derivatives of the B-Spline WV 

The implicit version of the SPH code requires 1st and 2nd-order derivatives of W+ 

Eq. (2.28), with respect to the three spatial dependent variables. The first-order deriva- 
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tives were described in Chapter II, Section D. 

A study of the second-order derivatives shows that there are six basic forms needed, 

and the others can be found from them with just a sign change. The six basic forms are: 

a2Wij i12Wij d2Wij a2Wij d2Wij a2Wij 

i3xiaxi ’ i3xiayi ’ f3xiazi ’ h$Yi ’ ayidzi ’ az,az,* 
(3 .50) 

The relationship between these six and the others is shown below (the first-order deriva- 

tives are also included from Chapter II Section D for completeness). 

WY = Wji 9 (3 .51) 

dWGlaxi = -i3W&hj, (3 .52) 

dWgfdyi = -i3Wvlayj, (3 .53) 

aWilazi = -aW+zj, (3 .54) 

a2Wy/axiaxi = d2Wv/dxjdxj = -i32Wilaxiaxj, 

l12WY/ayidyi = a2Wti/ayjayj = -d2Wildyi3yj, 

a2Wq/aziazi = d2Wg/3zjdzj = -a2Wti/13zidzj, 

(3 .55) 

(3 .56) 

(3 .57) 

a2WG/axiilyi = a2Wti/dxjdyj = -a2WGlaxidyj = -a2W+hjayi, (3 .58) 

a2wq/axiazi = a2Wg/dxjdzj = -a2We/axidzj = -i12Wvfaxjazi, (3 5% 

a2wi/ayiazi = a2wi/dyjazj = -a2Wj/ayiazj = -a2W++3zi. (3-W 

Because the cubic B-splines of WV form a continuous function out to the second deriva- 

tive, the order in which the partials are taken does not make a difference. 

The six second-order derivatives for both Wag,and W bij follow. The derivative of 

Wa+ is a special case when i =j, because the derivative of AX = Xi - Xj with respect to Xi is 

zero, not one. A useful notation for the derivative of AX is dAX/dxi = (1 - 6~). 
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~ = ~~~~ + (rU-4h)(l -S,)J, 

d2Wbij -=- 
axiaxi 

for (0 4 ui < l), (3 .61) 

) for (1 I uij < 2), (3 .62) 

~ = ~~~~+(~ij-~h)(l-,ij~}, for (0 < uij < l), (3 .63) 

) for (1 I uij < 2), (3 .64) 

for (0 2 uij < l), (3 .65) 

) for (1 I uij < 2), (3 .66) 

a2Waij 9 CAxAy -=-- 
axiayi 4 h3Gj ’ 

for (1 4 uv < 2), (3 .67) 

1+(2-Uij)~ ) 
ij 

for (1 I uij < 2), (3 .68) 

a2Waij 9 CAxAz - = -- 
axiazi 4 h3cj ’ 

for (0 4 ug < l), (3 .69) 

- = 3 =(2-uij) a2Wbij 
axiazi 4 h2$ 

for (1 < uij < 2), (3 .70) 

a2Waij 9 CAyAz - =-- for (0 2 uij < l), (3 .71) 

. for (1 4 uti < 2). (3 .72) 



Initial Jacobian Matrix for the 1D 3-Particle Problem 
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Fig. III. 1. This is a simple 12 x 12 Jacobian spot matrix for a 1D 3-particle 
problem, showing a dot wherever there is a non-zero element. Down the left side are 
indicated the time-derivative equations (note the dot over each variable) of which the 
partial derivatives are taken. The partial derivatives for each dependent variable are 
indicated across the top of the matrix. The two horizontal and two vertical bars are 
placed in the matrix to show how each particle contributes a 4 x 4 block of elements 
along the diagonal of the matrix and two 4 x 4 off-diagonal blocks for each neighbor 
with which it interacts. Particles 0 and 2 are not interacting, so their off-diagonal 
blocks are filled with zeros. The off-diagonal blocks are symmetric about the diagonal, 
but the matrix itself is non-symmetric. 
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C. Lower and Upper (LU) Decomposition 

The implicit SPH method leads to (D+1)2 equations per particle, and thus for N 

particles, there are (D+1)2N simultaneous equations to be solved. In 3D there are 8N 

equations and 8N dependent variables. Methods that actually manipulate the matrix are 

known as direct methods. The Lower and Upper (LU) decomposition method with 

back-substitution is a direct method. It decomposes a matrix A into an upper and a lower 

triangular matrix. The problem then becomes Ax = LUx = b, and by setting y = Ux, the 

problem is split into two parts. First solve Ly = b to find the vector y by forward substitu- 

tion. Then solve Ux = y for the vector x using back-substitution. 

The LU decomposition method has the advantage over Gaussian elimination in 

that the vector b is not altered in the process. For Gaussian elimination each row manipu- 

lation alters the vector b by scaling its elements and adding them or swapping them 

around. Once A has been decomposed into the matrices L and U, however, a sequence of 

different vectors b could be run for a variety of conditions. Both methods perform about 

the same number of operations, and so they take about the same amount of time to run, but 

LU can be used over again with different bs. Both of these methods, however, require 

fewer operations than the Gauss-Jordan elimination technique (see Press et al. [66], Sec- 

tions 2.1 to 2.3). 

The LU decomposition coding used in the implicit code was modified from that 

developed by Press et al. [66] which was used in conjunction with a fourth-order Rosen- 

brock method, found in Section 16.6 of the same reference. Rosenbrock methods are a 

generalized implicit Runge-Kutta technique and are also known as Kaps-Rentrop meth- 
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ods. Rosenbrock developed the theory [70] and Kaps and Rentrop [40] were the first to 

implement the technique as a practical code. The Rosenbrock method as implemented 

reuses the LU factorization by making four different estimates of the solution, with each 

subsequent estimate modified by the previous ones, and then the four estimates are aver- 

aged together appropriately to obtain fourth-order accuracy. Following an example in 

Press et al. [66], the LU decomposition method, with back-substitution coupled with the 

Rosenbrock method, has been implemented in the implicit code and is working, but its run 

time and memory usage are not very competitive with the explicit code. 

D. The Numerical Jacobian 

Each term in the Jacobian can be approximated numerically by using the definition 

of a derivative. To use a numerical Jacobian instead of the analytic technique, described 

in Section B of this chapter, a number of significant advantages are realized. By approxi- 

mating the derivatives using existing software packages in the SPHINX code, all the exist- 

ing physics packages become available to the new implicit code automatically, as well as 

any new ones to be added in the future. This advantage also automatically includes any 

new kernel routines or neighbor-search routines. There is a new moving least-squares 

(MLS) package being added by Dilts [22], [23] for calculating the interpolants more 

exactly than the standard SPH approach. This package is also automatically available to 

the new implicit time-stepping code. In addition, the coding for the numerical Jacobian is 

much simpler to implement and hence easier to debug than the analytic Jacobian because 

it is making use of existing code that has been independently and previously tested. 
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The SPH equations (2 .3 1) to (2.36) are of the general form given by dY/dt = f(Y), 

where f(Y) represents the right-hand sides and is a vector function of the state vector Y. 

The state vector contains all the dependent variables (position, velocity, density, and inter- 

nal energy) for each of the particles. The right-hand side f(Y) is evaluated, at the “cur- 

rent” time, to obtain the rate of change for each of the dependent variables (velocity, 

acceleration, and the time derivatives of density dpldt and energy deldt). The Jacobian 

matrix involves the derivative of f(Y) with respect to each of the elements Y, of the state 

vector Y. The numerical approximation for the Jacobian derivatives is given by: 

f(Y)-f(Y +&Yk) 
3 

k 
(3 .73) 

where E is a small perturbation weighted by the kth element of Y. The bold notation Yk 

represents a vector of zeros except for the one element Yk in the kth position. In the defi- 

nition of a derivative, E in the limit should go to zero; on the computer, however, it is a 

small number, chosen mainly by consideration of the precision being used on the 

computer. For instance, in double precision, which carries digits out to fifteen places, 

E = 10m7 works well. Weighted by Yk, E perturbs the sixth digit of each value, one at a 

time, in the state vector Y, irrespective of the magnitude of the value. That is, some of the 

values in the vector Y, such as the energy, are going to be very large, and others, such as 

position, can be near zero. So weighting E by Yk perturbs each value by the same percent- 

age. For single precision computations with eight digits of accuracy, E = lop4 would 

probably be a good choice, since that would perturb the fourth to the last digit of each 

value in the vector Y. 

The existing explicit SPHINX code has the function As(Y), which calculates the 
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right-hand sides of the SPH equations. To form the numerical derivative, rhs(Y) is first 

run using the unperturbed values of Y, and all the resulting time derivatives for each parti- 

cle are stored in a vector function f,. Then one element in the state vector Y is perturbed 

by EYE, and rhs(Y+&Yk) is run again. Differencing the values of the vector f, with those 

of the perturbed f(Y+&Yk), and dividing by &Yk, gives one column of the Jacobian matrix. 

Then the perturbed element of Y is set back to its original value, the next element of Y is 

perturbed, and the differencing is done all over again. Each repetition of this process cal- 

culates another column of the Jacobian. 

In this fashion the numerical Jacobian matrix of the implicit code is built up during 

each time-step, and this approach now replaces the analytically derived Jacobian equations 

of Section B of this chapter. The next step is to find the solution to the inverse problem. 

E. Iterative Solvers 

Since the LU decomposition method is very time consuming, it has been replaced 

by iterative solvers. Iterative solvers are algorithms that solve a linear system Ax = b by 

starting with a guess to the solution and then iterating on it until a desired accuracy has 

been reached without actually inverting the matrix. The iterative methods can signifi- 

cantly shorten the computational time over directly inverting the matrix if they converge 

quickly. Convergence can be accelerated by a judicious choice of a preconditioner 

matrix. Iterative methods also have another advantage over direct methods in that a direct 

method cannot be stopped part way through and have any useful results. Direct methods 

have to be run to completion each time, where iterative solvers can usually be stopped 
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after a few iterations and the result is an approximate solution, which can be useful, 

depending on the accuracy desired. 

If x and b are vectors and A is a non-singular matrix to be inverted, the general 

problem is of the form x = A-’ b, where A and b are given and x is the unknown. Instead 

of inverting A, the iterative methods solve Ax - b = 0 approximately, by guessing at a 

solution, x,, and then iterating on x until a vector of residual errors R is near zero, where 

R - Ax-b G 0. (3 .74) 

In other words, the intercepts, or zero crossings, of each of the equations in the linear sys- 

tem is being sought. 

E.l. Stationary Methods 

The earliest iterative solvers, for solving Ax = b, are referred to as stationary meth- 

ods [7], [41]. These are iterative methods that can be written in the form xk+l = Mx, + C, 

where M and c are modifications to A and b, and do not depend on the previous iteration 

count k. The most popular methods are the Jacobi, the Gauss-Seidel, and the Successive 

Overrelaxation methods. These methods are based on splitting the matrix A into parts: 

A-D+E+F, (3 .75) 

where, using a modified notation of Saad [71], D is the diagonal of A, and E and F are the 

two triangular parts of A below and above the diagonal. Equation (3 .75) is not an LU 

decomposition but a simple splitting of the matrix. These methods are usually not as effi- 

cient as the Krylov methods but can serve as preconditioners in the Krylov methods. 

The Jacobi method makes use of the fact that it is trivial to invert the diagonal and 
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uses an iterative equation of the form: 

xk+l = D-l {b - (E + F)xk}, (3 .76) 

So, starting with an initial guess of x,, then x1 can be obtained using (3 .76). Then, using 

x1 as the next guess, x2 is obtained, and so on until the desired accuracy is reached. The 

matrix D-l (E + F) is known as the iteration matrix and remains unchanged with each iter- 

ation, hence the term stationary. 

The Gauss-Seidel method is based on the fact that the triangular matrix (D+E) is 

straightforward to invert; it is simply a back-substitution process. This method uses an 

iteration equation of the form: 

JQ+~ = (D+E)-1 {b - Fxk}, (3 .77) 

The Successive Overrelaxation (SOR) method splits the matrix A differently. If 

Eq, (3 .75) is multiplied by an extrapolation factor pi), and then the diagonal D is added and 

subtracted, to give the following splitting of A: 

aA = (D+coE) + [OF - (1-o)D], 

then the iteration equation is given by: 

x~+~ = (D+oE)-’ {cob - [oF - (1-o)D]xk}, (3 .79) 

The value of o is 0 < ci) < 2. If o is outside this region, this method goes unstable, and if 

o = 1, the method just reduces to the Gauss-Seidel method. For the region 0 < o < 1, it 

should be called underrelaxation, but traditionally the whole span of zero to two is referred 

to as overrelaxation. The choice of o can have a significant effect on the rate of conver- 
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gence and hence shorten the number of iterations, but the optimal value is not easy to find 

and varies with the problem. One method is to vary o slightly and see if it improves the 

rate of convergence. This variation can be done by dithering o while the code is running 

or by making several runs with different values of cu. Once an optimal ci) has been deter- 

mined, then it is best to leave it constant to make the code run economically. 

Each of the above methods has an iteration matrix that remains unchanged with 

each iteration and is, therefore, called a stationary method. For an excellent discussion of 

the above methods see Strang [81], or Golub & Van Loan [32]. 

E.2. Non-Stationary Methods 

In the 1950s the Conjugate Gradient (CG) method and related methods referred to 

as non-stationary methods were developed (See Barrett et al. [7], Golub & Van Loan [32], 

Kelley [41], Saad [71], and Strang [Sl]). “Non-stationary” means that with each iteration 

the information for doing the computation changes. These methods have no iteration 

matrix but rather are based on the orthogonalization of the residual vectors and a minimi- 

zation of the residual at each iteration. The early methods, such as the CG method, could 

only be guaranteed to converge if A was a symmetric positive-definite matrix. 

Lanczos had proposed a biorthogonal method to handle non-symmetric matrices in 

his 1950s papers [45] and [47], but the idea lay unused for over twenty years. In 1986 a 

method known as the Generalized Minimal Residual (GMRES) method was introduced 

that could handle non-symmetric matrices. Since then, a number of methods for handling 

non-symmetric matrices have been developed. For several texts books on the subject see 

Barrett et al. [7], Cullum & Willoughby [19], Golub & Van Loan [32], Kelley [41], Saad 
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[71], and Zlatev [97]. Some of the more successful iterative methods for non-symmetric 

matrices are: 

(GMRES) - Generalized Minimal Residual, 

(BiCGSTAB) - BiConjugate Gradient Stabilized, 

W-W - Conjugate Gradient Squared, 

(QMR) - Quasi-Minimal Residual. 

These methods can be real ‘race horses’ compared to the direct method of LU 

decomposition, but they can also be unpredictable. Usually one or more will converge in 

much less time than that required by the LU decomposition method. One technique that 

has been used to try to assure convergence by Barrett [8] is to run several of the methods in 

parallel, and when one converges, computation on that time-step is stopped, and the code 

moves on to the next time-step. 

The non-stationary iterative methods for solving R - Ax - b g 0, are based on 

generating a sequence of orthogonal residual vectors Ri that are also the gradients of qua- 

dratic functions, which, when minimized, lead to a solution x of the linear system. Since 

the residual vectors are orthogonal, it follows that they are linearly independent. These 

methods are also known as Krylov methods because the residuals are projections onto vec- 

tors of a Krylov subspace, which is defined as a span or a set of vectors: Kk = {R, , AR, 

, A2R,, . . . , AkMIRo}. The y o f 11 ow one of four orthogonalization procedures put forth by 

Gram-Schmidt [8 11, Householder [38], Lanczos [45], or Arnoldi [6]. Projection is analo- 

gous to finding the projection of a vector onto a plane, except that it is an N-Vector pro- 

jected onto an N-space, or Krylov space. 
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E.3. Symmetric Positive-Definite Matrices 

The Conjugate Gradient (CG) method typifies the fundamentals of the non-stationary 

iterative methods, and the others are generally variations pf this one. The CG method 

requires that the matrix A be symmetric and positive-definite for a minimum of Eq. (3 .80) 

below to exist. Orthogonalization is done using the Lanczos method for symmetric matrices. 

Following Kelley [41], Chapter 2, the Lanczos method reduces a real symmetric 

matrix A to a tridiagonal matrix T, and the columns form an orthonormal basis for the pro- 

jection of b onto the Krylov subspace. The residual vectors are each made orthogonal to 

the previous residuals and to the Krylov subspace. It is then very straightforward to factor 

the tridiagonal matrix into a triangular and diagonal matrix T= LDLT. For a tridiagonal 

matrix, the triangular matrix L consists of only the main diagonal and the first subdiagonal 

below it. The problem, .then, is reduced to solving LDLTx = b, which is done in three 

steps. First, find y from Ly = b, which is simple since L has only two diagonals. The 

second step is to solve for z from Dz = y, which is even easier since D is just a diagonal 

matrix. Third, solve for x from LTx = z. 

The minimization is accomplished by taking the gradient of the polynomial: 

t)(x) = (l/2) xT A x - xT b. (3 .80) 

If the vectors x and b and the matrix A are all multiplied out, the result is a polynomial. 

Setting the gradient of the polynomial to zero yields the linear system being solved and the 

extremum of Eq. (3 .80), 

VW4 = Ax-b = 0. (3 .Sl) 
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Thus, minimizing $(x) is the same as finding the solution to the linear system. The mini- 

mum of Eq. (3 .80) can be found by the Least Squares procedure. 

E.4. Non-Symmetric Matrices 

If A is non-symmetric, one way to handle that is to multiply A by its transpose AT, 

because the product AAT or ATA is symmetric and positive-definite, assuming A is 

non-singular. Using the first product leads to a method called the Conjugate Gradient on 

the Normal Equations (CGNE), where x is redefined as x = ATy, and then two problems 

are solved. First (AAT)y = b is solved for y using the CG method, and then x = ATy is 

computed. The second product, ATA, leads to the method called the Conjugate Gradient 

on the Normal equations Residual (CGNR) where both sides of the linear system are mul- 

tiplied from the left by the transpose of A, that is, (ATA)x = ATb, and the equation is 

solved using the CG method. Both of these methods, however, converge rather slowly. 

Also, the transpose has to be generated. 

More efficient techniques have now been developed to solve R E Ax - b G 0, 

when A is non-symmetric, and they have taken two major branches, one based on Arnoldi 

orthogonalization and the other on non-symmetric Lanczos biorthogonalization. The 

Arnoldi process is used in the GMRES iterative technique and was introduced by Saad & 

Schultz [72]. The Lanczos biorthogonalization process has led to the iterative techniques 

BiCG, BiCGSTAB, CGS, and QMR. The Arnoldi process is the easier of the two to ana- 

lyze, so GMRES has been more extensively studied than the others. A good comparison 

of the various methods is found in the book by Barrett et al. [7]. The general conclusion 

they reached is that GMRES is the more robust in that it will converge eventually, but it 
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uses up a lot of memory. The others may converge much faster and use less memory, but 

it is possible they might not converge. 

ES. Arnoldi Orthogonalization for Non-symmetric Matrices 

The Arnoldi process [6] uses the Gram-Schmidt orthogonalization method coupled 

with ideas of Hestenes and Stiefel [35] and allows the solution for non-symmetric matri- 

ces. Instead of reducing A to a tridiagonal matrix T, it is reduced to Hessenberg form, in 

which the elements of the matrix are all zero below the first subdiagonal. (A tridiagonal 

matrix is also in Hessenberg form, but it is the result of starting from a symmetric matrix.) 

The Generalized Minimal Residual (GMRES) is a method for handling non-sym- 

metric matrices, and is based on the Arnoldi procedure. For GMRES the Gram-Schmidt 

orthogonalization is commonly used, although the Householder method is also used. The 

Gram-Schmidt method, however, is better for parallelization, [7] p. 2 1. 

The main problem with this technique is that the entire sequence of orthogonal 

vectors for each iteration needs to be saved, which can require a large amount of memory. 

Because the solution is not formed for each iteration, the residual can be minimized with- 

out it. Restarting the procedure, by forming the approximate solution and starting over 

after some number of iterations m, can alleviate this problem. It can be difficult, however, 

to decide what value of m to use. The GMRES method may be somewhat slower and use 

more memory than the following methods, but it is commonly used because it is consid- 

ered to converge more reliably. 

49 



E.6. Lanczos Biorthogonalization for Non-symmetric Matrices 

Lanczos proposed a method for handling non-symmetric matrices that uses two 

orthogonal bases and two Krylov subspaces, one for a sequence on A and the other on AT. 

The two sequences are made mutually orthogonal, instead of orthogonalizing each 

sequence. The resulting method is called Bi-orthogonal Conjugate Gradient (BiCG) (also 

known as BCG in some texts), but this method proved to have unreliable convergence. 

More stable convergence can be obtained, however, by using a different update on the AT 

sequence, and this method is called Bi-Conjugate Gradient STABilized (BiCGSTAB). 

The Conjugate Gradient Squared (CGS) method is a modification such that the 

sequence for the transpose AT does need to be found, and therefore it can converge about 

twice as fast as BiCG. It was put forth by Sonneveld in 1989 [75]. Some claim in the lit- 

erature that this method is more likely to have convergence problems than BiCG. 

The Quasi-Minimal Residual (QMR) algorithm was introduced by Freund and 

Nachtigal [26] in 1991, and uses a “look ahead” technique to stabilize the BiCG method. 

It also converges more smoothly. 

For the implicit version of the SPHINX code, the GMRES, the CGS, and the 

BiCGSTAB methods have been written and tested and are working. These Krylov solvers 

have been compared to the versions in the commercial code MATLAB, which is an excel- 

lent code for matrix manipulation. The CGS method has converged a little faster than the 

GMRES and BiCGSTAB methods for the SPH matrices tried to date. For the type of 

matrices generated from the implicit code, the CGS method has proven to be very reliable 

and hence has become the one most used for this dissertation. 
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