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ABSTRACT

A mothod is desofibed for solution of parabolic differentisl equations
by calculating routines involving stepwise integration in both variables, The

main features of the method arise from mahipulations introduced to avoid ine

stabilities that generally mppear when partial differential eqdations are oone
verted into difference equdtions.
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ON THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS OF PARABOLIC -TYPE

I, THE EQUATION, The equation

(1) oF o QF‘)* G,

St FP oy 9 '3;
where t and y are indepandent variables, F is tho dependent variable and p,q,G are
given, smooth functions 'df t,y and F, is in essence the heat flow equation for a
system in which only ons space coordinate enters (e.ge by reason of symmetry), in
which the thermal conduotivity and the specific heat capacity depend on tims,
position and temperaturs, and with a distributed heat production at a rate also
dependent on time, position and tempere.tufe.

If pq >0 (which will be henceforth assumed), we have the well known stability
property of parabolic equations, namely that & solutlion free of sinularities at one
time t is free of singulerities at all later times,

This report concerns numerical methods of solving (1) by integration procedures
which are stepwise in both indepondent variables, It is clear in principle that if
F is ¥nowm at tire ¢ for all y in a certail.n domain and suitable boundary oconditions
are applied at the boundaries of the domin, equation (1) then permits determination
of F at a slightly later time t ¢ At and' that this process can be repeated, That theo
establishment of satisfactory calculating routines for doing this is not a trivial

problem will be apparent from Section II below,

I1. THE EXPLICIT DIFFERENCE SYSTEN., Let us choose a reotangular mesh of points

(;Q,t“), where [z 0,1,2,0e%¢5 n = 0,1,2,%%¢¢, in the y-t plane. Without loss of
generality, we may assumo that fhe spaé‘ing of the points is uniform in both directions,
because the variables y,t can be subjest to transi‘bnmtiana without departing from the
assumed form of (1), The actual distribution of mesh points, before this transformae-
tion, may have been fixed by considerations 'oi‘ desired acouracy, rapidity of varia-
tion of p,q and G with y and t, end perhaps other caloulating routines in an overall

physical problem of which equation (1) is only a part. The spacings will be denoted by

At endAye The value of any function, say F(y,t),at mesh point (a,tn) will be de=-
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noted by F,'E for brovi'by.' ‘S'irﬁl-ar.ly c}Ek‘- denotes the value of q at a point midway
between (% tn) and (%&i,tn); equivalently, to the degx;ee of approximation we shall

use, is the mean of % and 22*1.

Yt |
A system of difference equations approximabing to (1) is

1 bl 1o o %Pl@u /&)' %é_(_‘f‘@-l) b o8
@Fx . e ar? 2

(1),

Tne conditions for stability of t'nis systexn has been discussed by one of us

Although the differontisl equation is stauble in the sense that small irregularitioes

introduced at one tims becorr: reduced as tlmﬁ goes on, unless new irregularlities are
introduced by the "heat producbion" term G, the difference equations may be unstable;
that is, under some oirouinstgncés irregularities may be amplified and grow withou#
1imit as time goes on; a solution of (2) does not in general approach a solution of
(1) as the mesh is made finer and finer unless a certain restristion (equation (3)
below) is applied to the relation between Ay and At at each stage of the limiting
PIrOC235 ¢ o | e

The argument may be sumarized as follows: For a sufficliently fine mosh we may
treat p,. q and G as constant ;ver é. x;ogiotl ythtﬂa.t is small but nevertheless contains
many mesh poiants, If F at a giﬁn time t is sxpanrded in a Fourier series in y,
woe may regard F(y,t) as a s\xperposition c;f functions, each depending on y through
a i‘g.c*;or elﬂy, where,é? is real, and on t through a factor ed"t, where o (dcpending
f.m/g) may be omplex(‘z). The relation between oL and /gis found by substituting

sucsh a funation into (£) and oanco'llinf; out common factors, It is

[N

Leotures (wpublished) deliwered by J. vonNeumamm at Los Alamos in February, 1947,

(2)

It is, of course, the rcal part of such a functisn that is of interest. Tt follows
that the boundedness of the funotion to bs expanded, over the rangs of y involved,
for given t, allows us to restriot consideration to functions with A roal (Fourier
sorles or integral in y)e The real and imaginary parts of O~ yield an exponential
growth or decay in timo and a time dependence of ithe phase of the einussii in y,
respectively. Nelther of these gan bo sxcluded on a priori grounds, socl will in
general be complexe
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O‘-At
e 142 '%;y [oos Sﬂéy) - 1] .

(As noted above, we ars treating p and q ‘as constants.)
The conditiom for s‘ce.bi.liity (oondi.tion that all disturbances got smaller as t inoreases)
18 clsarly that the roal part of o~ should be nogative for all real /é, or that the

-

quantity eo"‘)t (which is seen to be real from the above equation) should lie between
<1 and $1, From the abov» equation it is seen that ed'At cannot excead $1, and the

requirament that it be g‘re"a.t:erbthan ~1 for all r‘ealﬂleads to the condition

(3) 2 paq -?Zt-—qz <1 for stability, because the squars bracket in the above equation

y)
ranges from O to -2 as ‘,<7 is varind,
Inequality (3) plac;s savere rostrictions on the cholce of a moesh for numeriecal
caloulation. It is linear in At and quadratic in Ay, Therefore, if Ay is chosen

vory small in tho interest of accuracy, OF must be chosen wvery very small in the

interest of stabilitye. It oan happen that a prohibitively large nwsber of steps
At would be required to complate the calculation by equation (2) over the desired

domain of values of t.

11I. THE IMPLICIT DIFFSRENCE SYSTEM, One of us has shovm(s) that the above diffie-

oulty disappears if in place of (2) we write

: 1 $1 n nél _ pnél
nl _ 1 ) "-'g"; %2&}, (FE&I -7 ) Y2 (F Q-l)
: (Ay)2

%’é (han) " %3 ( Fn'@*)
(a y)

{3)

vonlNeumann, lectures at Los Alamos, February 1947,
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This set of equations is in fact unodnditiom.lly stable: that is, irregularitles
always deorease with increasing tine %, for any choioos of At and 4y, In this

case substitution of eixgy %t snto (4) leads to

akékt
At " A L) 1
T BT (oo (A af B
or | ' |
At
tanh 0‘/6*’ 1(3 2 [oos %Ay) -1] , 88 the relation bLebtween Ocand/f.

.
Tha left hand member o this equation is negative real, and its inverse hyperbolic
tangent is, therefore uegaﬁive real pius;an intééralimulbiple of Ti, so that the
real part of © is always negative. The‘pfice one pays for this is that if we
regard the EZ‘I (g?=0,1,2,00'0~) as the unknowns, system (4) is a large number of
simaltaneous aquations, whereas sach eq@;tion of the system (2) gives one of the
uminowns exvlicitly., 1% may be noted inlpassing that (4) is a somowhat better

approximatiomn to (1) than is (2), Indeed if wo had wriktten ;/)ZH ,2:%. 25';

instead of g?' %?&l' %;,l in the first term of the square bracket and had writien
© 2

1
qz&é instead of G, (4) would have been correct to second order in At. Bub if this

had been done, tho system would have been st1ll more implicit, (and nonelinear) because

nél

N . . .
the unkmowns, EE 1 would have ocourred in the gquantities 72 ets, Our oconcern hers

is with stability rather than with accuraoy.

(4) is of interest primerily when zly is smaller than the limit set by (3) for
a given At. We therofore first consider (formal) mothods of solwing (4) in the
limit Ay —>0, That is, we retain the differential charmcter of the original

equation (1) with respest to the variable:y, and write

(5) "Z:‘é' F(y,t+At) = -&, Fly,t) ¢ §-g—- -3‘2- [F(y.t) + F(y.t&m)} G

where it is understood that the variables entering implicitly through PoQ,G are taken
to be y, t, F(y,t)e For a glven value of t, (5) is essentially an ordinary differential
equetion, with F(y,t#At) and y the depondent and indepondent variables, and with p,q,d

known fumotions of y. We therefore oall

~APPROVED FOR PUBLI C RELEASE
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A - oonstant

®

(7) == Fly,t) 20 & p-a-- ( é%z..l) = ¢y)

T ‘ .

(8) F(y,t # Ot) = f & £(y)

and write

() Afzpg (q%) + 9

IV, THE SCLUTION OF BEQUATION.(9)e Tho general solution has two "constants of inte-

gration® %o be fixed by the bowundary conditions. For many physical problems the
boundary oonditions ars imposed at two different points, y; and yp, so that a
direct stepwise numerisal integration c_;i‘-‘ (é) is not possible, unless a triale-and-error '
procadure be adopted, Butpau.ch a procedure -is very difficult in the present case
(100 with pg>0 and A 4; large) because a solution which depa.rts only slightly
from the desired solution at ono ve.luo of y departs theref‘rom in general more and
more as the integration prooeeda. The departure from the desired solution is roughly
exponential in character as y—ieﬁ:hor $ S0 and grows at a rate which is greater, the
smaller At, It 1s proferablé to solve (9) by means of a Greens's funotion that can
be constructed from pal'jv:i’..oulur‘ solutions of the oorrespoudiﬁg homogeneous equation
(Hilbert's “par'amatrix'f) and which causes the boundary oonditions to be satisfied
automatically, - . e | .

It is convenient 4o transform (9) to the ce.nonioal form of the Sturmm-Liouville

theory. Introduce the new dependent and independent variables g and 4, and imown

funotions U, 0 es follows:
y gk
"l':f /;— .7 ) | ,O:<p>
ez £ . V= pe

Iy

APPROVED FGR PUBLI C.RELEASE
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From these definitions vthex_-e follows the identity

3). 1 " ~
p %3: ( ﬁd-a-y- ‘F -—-’- - (eb)
for any funotion P (y). Then (9) becqme:s

(10) Ag (_i" -o;’g& v,

where

;{f(_,zm-o) Q,F(y;f)) fzef

ay

Vpa

in which F(y,t) is to be regarded as a function of X through the relation xg‘f & .
Lot the boundary oondition be g(£,) = gyr B(E5) = 250
Lot go('l.) be a solution of the corresponding homogeneous equation, vanishinz at
L=%,. That is, g (%) satisfies ‘

2 B
(12) i’if = (A+0) go  6o(K,) =

Define g, (%) by

(12) g4,(¥) = go(t) W
[+

By differentiating (12) twice and usigg (11), we see that g°°(¢) is also a solution

of the homogeneous equation, That is,

a® _a | % rz dz _1
;?goo =3 | ¥ % [Eo(")]z g, ‘.-
2

\)

- dZES j‘ dz
= ar?'ox [ (z)] S (A+vo) g J m ’

or

2 .
4 |
(13) Z %o (Ato) g .» goo(iz) =0

and furthermore

APPROVED . FOR °P';UBLI C RELEASE
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(14) g, (¥) 5% goo(l) goo(t) 7 go(ﬁ

Now define g(%) by ,
Y|

(15) () = goo(i)[f; go(Z)V(z)ds +dJl- go(%)j: goo(z)yf(z)dz v8

1
whore ol e.ndﬂ are two conate.n’cs.

By differentiating (15) twioce and using (11) (13), (14) we see that

2
d
ez (Ao -V,
ay L . :
or, in other words, that (15) is the goneral solution of (10)s That is;

25(p) _ 200¥) f S (s 4| s g (B g, DYCE)

ag - 9F ]
ag. (%) o
“-g—i- S <,°(z)7’(z)dz&(5 - g,(3) goo(i)ﬂr(x)
~ L
2e@) . Ceoo®) [T dgyo () '
'd_Lx.z Eeglf . 5>o(z)¢(z)dz ool + o g, (4 Y (1)

po

¥a - '
a%e () dg (¥)
+ 3 ) Boo() (2)az 48| - —T— £ (OIYD)

ay?

r4
= (L+o) goo(i:'[j;l go(z)lp(z)dz ol ]

Y,
2
+ (Avoy) go(t)[i Boo(2) Y (2)az &,5] - Y(z)

by (11), (13), (14). The stated result then follows from definition (15),

g °(’\4) vanishes with positive :lope e.t = 7‘1 and inoreases roughly exponentially
as % increases to ﬂz. Conversely, 800 vanishes with negative slops at X= Xo
and inoreases roughly exponentially as ﬂdecreases to 11. (See also second paragraph
below.) For numerical e.pplioq.tiqn of this sol;tion ﬁ: is, tﬁerefore, sonvenient to |

deal with quantities defined as follows:

' APPREVED" FOR PUBLI C RELEASE.
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(160,0) o) 5 S Koo 3 - 222 _
-d-.-i' 80(1) Ti“ goo(%)

From (11) and (13) these qpantities are seen to satisfy:

(178,0) 33 K, =1 -1 (Ato), “ar koo w 1=k, (Abo),

(18a,5) X (¥,) = 0, '  Xoo(%2) = 06

Furthermors, the two terms on the right Har;d side of (15) will be denoted vy A(¥)
and B(%) respectively. These quantitios are seen o satisfy, and be fixed by the

rolations -

d ) k@) k@) |
(190) g7 AW z = =255 & e *O;oo(‘@ v (0,

oo

L B, XE) KeolA
(1) = o2 'B(¥) = -lmo 2y ¥ 500 f;oo(,o ¥ 6o,
and o .

(20a,b) A(i'l) 2 8y B(¢2) 2 By

That is, ")

dA (%) - dgoo(-t) f
d¥ = d¥ ¥y

g, (2)(2) az 4ol + g (4) g (YD)

A(X W (
: - if.;g;) b goo() B, (A (%)

o “o0 . Boo By
k +k - dg, 2 €508 ¥ (12),

and from this (19a) follows. (19b) is similarly ol.)te.ined.

The procedure for numerical caloulation consists of the following steps: integrate
(17a) f.‘rom"1 to 752 starting with (18a) and integrate (17b) from 752 %o 7(1 starting
with (18b); then integrate (19a) from % to 162 and (19b) from %, to %; starting with

(20a) and (20b) respeotively; then the desired funotion is given by

(21) g(¥) = A(¥X)  B(L.

'APPROVED FOR PUBLI C RELEASE
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Note that in & routine involving punch cards, the integrations of {17b) and (19b)
can be combined in a simgle pass through the card deck after the integration of (17a)
. N T . . , ('Y

has beon done, . . :

The functicns k and k,, have several advantages over g and goo for numerical work.
If({”(¢2-11)>71 (a8 is ueually the cass), the sizes of g, and g,o Vary by many powers
of 10 (because of their aforementioned roughly exponential character) whereas k, and
koo stay nicely in range. Furthermore, £, 8nd gop geverally change by sizable frace
tions of themselves in a single step of the integration in X, requiring the use of

high order integration formulas, whereas k, end k

oo 8re usually nearly constant over

many steps of the integration. lLastly, ko and k,, can be obtained by integrating firsy
order differential equaiions (17 a,b)s The second of these advanteges is somewhat
00

illusory, as we will have to develop elaborate integration formulas for the k,, k

also,

V. DIFFERENCE EQUATTIONS, AGAIN, If equations (17a,b) and (19a,b) are rewritten as

difference equations, we will have a system essentielly equivalent to (4), although
the nature of the approximation may have changed slightly by virtue of our detour
through differential equation theéx;y. The adventage gained by the operations of
Section IV is, of cowrss, ‘t.hat our new set of difference equations can be solved
directly, whereas the set (4) ocammot be, as it stands, except by inverting a matrix
of order equal to the number of mesh points with given n.

Corresponding to the fixed interval size Oy in y, there will be a variable
interval size

AXin %X, given by
(22) azz oy (pa)*
so thet condition (3) for the validity of the explicit method is
(23) (0% »2A% or YA o%>2

The implicit method, on the other hand, is valid, no matter what the relative
sizes of (Aﬁ)z and 2A1:Tmay be. Bubt when (23) holds (in faot, under all conditions
excopt (A¢)2<< 24%), ono must use care in writing difference equations to approximate

(17a,b) and (19 a,b)s To illustrate, consider the speoial case of equation (17a) in
APPROVED FOR pUBLl C RELEASE
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g o ' e

which (A $o~) is a consteant and consider a solution lying close to (A2o~) % 80 we
P

may write k,(X) = (,\&0*) R 5k°(7°). If we had made (17a) into a difference equa-

tion by writing . B,
(24) x (762&1) 2k (1’2) ¥'[1 - (R+0) Ek (7%)}] (7/"2&1-%5).

then Xk, would satisfy

(25) ék°(7‘j+1) = éko(&) [1 -2/ (Fy, -%Zy )]

instead of the correoct relation

(26) éko(¢£+1) = c;ko(“@) exp ['2V (,L"l Z,Z)]

derivable from the dif[‘erential oquation. Clearly (25) agrees with (26) if
S Ao (74,21-1 -Q) <<l but not otherwise, Indeed, if m_‘(')ﬁ/z&l ¥)>1,
the Jk (%) computed from (25) inoreases in magnitudo exponentially as % inoreases,
instead of decreasing cxponentia.lly as it should, Thus the 1mp11cit method acquires
a sort of instabllity under just those oonditions where the explioit method is steble,
We avoid the 1nste.b111ty (end also the inacoursoy)that would result fron use of
(26) as follows: to obtain e formula (a}tomabive to (85)) for caleculating k°(7fﬂ¥1)
from ko(‘fle), we solve {17a) anslytically in each intervel (%,, ij +1)undor the
assumption that A% ov is constent in thisl intervel, The genorel solution is

2Rt (e
(27)/ A4 o0 ¥ (%) = f-ﬁ =% R
o2VAR O~ (L= Zyp) + Ay

where Ao 1z a constante.

We give O its velue 0:4!‘% at the midpoint of the interval; we determine A, in terms
of the kmown ko('&) by setting = 'ée ; e.gd then we set L= 758&1 in (27)s The result

is :
. ow

14+ /A0, Ko(Eg) | & =1 - og . k(%

(28),/A+ 07,1 k(% )-.-[' 2 ] [ T ¥ ].
¥y Tor T

[ 14 M»o* (’,‘Z] [1 '/'\"%4-;- ko('fg)]

tanhw &‘/x\c» k (—ﬁ,,)

1+(tanhw) /M g k(¢)

2

APPROVED FOR:PUBLI C RELEASE
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where . . ST

(29) w://\& O/Z&*‘:(#,Z¥1-XZ).

f z
The formula for koo(';b) is thg same e;cc:_epit for interchange of {Z"l and Zp in (28)
(but not in (29)),

Equation (19a) for A(x) may be similarly treated by assuming ¥o(#) and k(1)
constant in an interval (% JRT ﬂ)‘ It is advantageous not to assume that 2}/(1.)
‘s constant, for reasons that will appear later., The solution which reduces to the’

correct value A y_; at Zs 751 .1 is

Ak L
~ .koi-koo ° -

f (€= % 1) o0,
[ ] ") ) »
i Ylgag

(30) Alz) = A,Z"l

1
or L7
1) ap ety e-(;’[. gy %e0 . _i%z;o{_; j e(é- ¥, )/ ko0 U (gag
. ‘oo Y.
Ot £y, je(g-vfg-l)/koo b ous

Calling z = _’.ﬁt_'_s. . WO heve generally

+ oo ‘ o

y o(8 =¥ ), Y (g)dg z &, J’ TP (- ke

-0 . d 2
5' {4’(74\ - °° q/ (%) + °° 4/”(,4) - ? ds
o

1;O(> XOO(“) .

where prines denote differentiation with respect to %, and

(22) 00l 2 P =k P b r2 P -k P b eeeeenn

APPROVED FCR PUBLI C RELEASE
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[

Iten, ocalling L

g -
oo = kon.- ’

we have, in place of (31),

- 2
(24) };g - A,Z-l ) “oo »& Y;k_glz_o;__ Z (%Z) -e “oo oo( 'z,e-l)

00

The integration formula for B(x) is quite similare Calling

(35)'Zo(¢) PAVOR ko¢'(¢) + koth".(Jﬂ) R ¢ I SELTIE LT

(76) ¢£¥1 -x/&

w°2 X S

[+]

thie formula is
2

- k
(37) By =B gy ° w"*k 2 o LCS2RE Iy SETRY

For practiocal caloulation, expressions (32) and (35) must of course be truncsted.
In order to see how to do this in a reascnable way, we regard the entire develorment
so far as amounting to an expansion of the solution of the original equation (1) in
pt;vrers of £ha small quantity At; or in inverse powers of the large quantity A .
For example, sinoe the error in (5) as written is at most of first order in. At,
wo may regard (9) as being correct as written, and add O (At) to the firet member

of (7)s Therefore we may regard (10) as being correct as written, and write for 4/:

(38) 4);(:‘;; + A-o-) (o?(y,t> + 200 &0(—}() .

The order of magnitude, in A » of k  oan be found as follows: (17a) and (18a) yield
formally, for given 1
ko(x) N
I
1-(A p o) ;

In this integral, the symbol O stands for a funoction of k and A obtained by sub-

stituting for Z in the funotion O~(% the inverse %(k) of the funotion ky (k)

APPROVED FOR PUBLI C RELEASE
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But wo shall assume that o (¥) is bounded in the interval 123 ¥ <%y 80 that in any

case O‘<</\ asymptoticsally, or

X, (¥ ax | __L/xko(x) ap_
2= 7‘1~j leA K VA S 1-p?
o : o

or{A Xy~ tanh VA (i-%i) as Ao,

8o [

-t
(39) kofx) = C(A F) for fixed X .

By means of (38) and (39) we now write out explicitly the expression (32) for

ZOO(JL), retaining only terms dowvm to orderA™2, The result is:
(40)  Yoo(®) = ApFly,t)
koo AT (PF¥.5))
2
.2 d
(1 ILOO/\) -(-1-;-2' ((oF(y,t)) - oe F(y,t) & 2pG

| . .
= X0 35:2'[ 2, -O')((aF(y,t)) +2p0

azx”
o)

This equation has been so written that tfxe flr;t four lines contain terms in
A, )\%, 1, (\'%, respectively,
The cecrresponding expression for Zo(x) is the same except for replecement of k,,
AT — ;
Equations (28), (29), (34), (37), (40) are the finel forrulas., It is understood

that in (40) the derivatives are to be replaced in the usual way by difference ratios,

Befey

Piy ey = € 5. d
Al L%l f 1§n1 - 17 (pF(y,t))

x,!u Y 251 *
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5

VI. ASYMPTOTIC EQUIVAIENCE TO THE EXPLICIT METHOD, The explicit method (see

Section II, espsoially equations (2), '(3):)_ is stable ror/\>4/(mc)z, and we shall
novr show that the two methoc}s are in approximete agreement for sufficiently large
values of A 4 The reacer mﬁy tend to regard it as self-evident that this shc;uld
be true, because both methods purport to solve the original equation (1) approxi=
mately. But because actual convergence pfoofs are lacking for both metheds, it is
wortlwhile to show the equiﬁlenoe, espéoiially since the two methods appear to do
quite different things, The expliocit method deals with local conditions: it gives
F/‘zu in terms of the values F:E‘»l' Fj, F?-l of Fat neig};bori.ng mesh points, whereas
the impliocit method mekes fé"’l depend on F at all the mesh points of oycle n, and also
on distant boundary conditions,

Before demonstrating the equivelence, we first carry the argument leading to the

estimate (39) a 1ittle farther, We seek a solution of the equation

) _2
(41) i;‘.,.;."_) =1- (Rto) [ko(x)J

in the form |
(4‘2) ko :A-% [&o 2 2 61 P\.% ¢ 12/\-1 S a.s A.s/z & ooooJ R

where the coefficlents a,, a,, 8,,ees are functions of X . By substitution of (42)
into (41) and equating coefficients of the various powers of A, we find e, ml,

a; =0, a5 = <0, 8y = 3 g.% » 0tce We note parenthetioally that the series so
obtained fails to satisfy the boundary condition that ko(X.l) should vanish identically
in A. Apparently one must add to (42) a function of % and A which vanishes, as A—> S,
more rapidly than any inverse power of A.- The presence of such terms was foree
ghadmd by the appearance of exponént.fna]:s, as for example in the hyperbolic tangent

immediately preceding equation (39)s But in any case we ocan write

49) %00 2 AF - gor¥ 4y de NP +o(x™")

and similerly
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Yool®) = AT - 302 - 214Z X240 ".5/2> R AT PN
For sufficlsntly large >\, Wy = 729 #j—/ ~ }\9 ('%l iil ) is f‘zlﬂéi

00

-é) - )
similerly @ >>1, so wo may replace © °° and e © by zero in (34) and (37),

§

Then S S

g(&)",& lgaeF(JL.t&At) ko o° [ oo)(oo"k ZJ

3 (3 Lyoa ) X [_ o &,2:,]

or - g
2
g(i)zglx- <1 --%)[ZA(’F(y.t) + 2(1 Q- %));(-i;g ((oF(y.’c))

- 20pF(y,t) & 4(:(:-] .

or 1oy

- 2
(44) PF(y,t &At)le[,l,or(y,t) $2 f;‘é‘ (PF(y,b)) - 20pF(y,t) + 2(ocl .

This cen be rewritten, using the identity preceding equation (10), and the definition

/\322-5- s B8 -
(45) F(‘Y‘::AQ = F(yd,:) $¢p Sy 61-5—' F(y,t 9 S

which leads immediately to the explioit" equation (2), as was to be shown. Equation

(45) is to be contrasted with equation (5) which was our starting point,

As a final remark, it is noted that nge.r o boundary at Y= Zy, or ¥Xm X,, wo musét
elther choose the mesh size so”"hat (a )L)? << 2At or inswre that the boundary is in a
place where errors do not ma.ti;er. For if /—A‘Iéia of order unity or greater, it is
soan from (17 a,b) and (18 a,b) that k, orwlhc o W11l very by a large frastion in an
intervalA¥ near the bounda.ry, contrary to t;he e.ssunption underlying the derivation
of (30) et seq.. ooooTTr
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