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A!3STRACT

A method is delsoribedfor solution of Parabolio differential equations

by calculating routines involving stepwise integration In both variables. The

main features of the method arise xmnipulations introduced to avoid in-
.

partial differential equations are oon-

from

whenstabilities that generally appear

verted into difference equations.
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ON THE NUMERICAL SOLUTION,OF PARTIAL DIFFERENTIAL EQUATIONS ~ PARABOLIC●TYPE

%

16 THE EQIJATION. The equation ,,.—

where t and y are independent variables, F is tho dependent variable and p,q,G are

given, smooth functions of t,y and l?,is in essenoe the-heat flow equation for a

system in which only one space coordinate enters (e.g. by reason of synsnetry),in

whioh the thermal eonduotivity and the speaifi.oheat aapaoity depend on time,

position and temperature, and with a distributed heat production at a rate also

dependent on time, position and temperature.

If pq>O (whioh will be henceforth aswnned), we have the well known stability

property of’parabolio equations, namely that a solution free of singularitiesat ono

. tlmo t 1s free of singularities at all later times.

This report oonoern:~numerical methods of solting (1) by integration procedures
.

whioh are stepwise in both independent variables. It is olear in principle that if

F is known at time t for all y in a certain domain and suitable boundary conditions

are applied at the boundaries of the domin, equation (1) then permits determination

of F at a sli~htly later time t +~t and that tlhisprocess oan be repeated. That tho

establishment of satisfnct,ox-ycalculating routines for doing this is not a trivial

problem will be apparent from Seotion 11 below.

11. THE EXPLICIT DIFFERENCE SYSTEM. Let us ohoose a rectangular mesh of points.— —— —

@ ,tn), fien ~s O,l,Z!,.C+*;n s 0,1,2,....0 in the y-t plane. Without loss of

generality,wa may IIssumothat the spacing of the points is uniform in both directions,

beoause the variables ylt can be subjeot to transformations without departing from the

● assumed fozm of (1)* The aotual distribution of mesh points, before this transfonna.

tion, may have been fixed by aonsidgrations of desired aoouraoy, rapidity of varia-
.

tion of p,q and G with y-and t, and perhaps other oaloulating routines in au overall

physioal problem of’whioh equation (1) is only a part. The

At andAy. The value of”aw fuuotion, say F(y,t),at mesh

u-,....

spaotngs will be deno%ed by

point (yp,tn)will be de-

NCIA$SIF-lE~

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



‘4 UNCLASSIFIED
, ._, .

noted by F~ for @rovi@. “Simi&rly qn ~ denotes the value of q at a point midway
. Jtiz

bet-en (~,tn) and (Y~+lStn); equi~lenk~y, to the degree of approximationwe 8ha11

L “8’* $+? is the mean ofq>and q~+l.

A sy8tienof difference equatims approximating to (1) is

.$k$ti,l-%)-$+(%%) ,5.
(2)-+- &j&Jj+P3 .—. .

~~(AY)2 /4’

‘Ikeeonditionx for stablliky of this sy6t913 has boon disoussed by one of us
(l)e

klkhOllghthe differontisl equation is stable in tho scinsethat small irrogvlarit!.es ‘———

introduoeilat one time beoom~~roduoed as Lime goes on, unless new irregularifiie8are,-

introduoed by the “heatiproduction” term G, the difference equations My be unstahlo;

thnfiis, under some oirounmt,anoesIrregularities may be amplified and grow wikhou%

limit as time goes on: a solution of (2) does not in general approaoh a salution of
.,,

(1) as the moh i8 made firier.anflfiner unless a certain restriction (equation (3)

below) is applied to the relation betwe6n zIy and At at each 8tage of tho limiting
.

procass. .“..

.
The argument WY be sum&rizod as follows; For a s.uffioientlyfine mesh we my

treat p, q and G as oonstant over a region that is small but nevertheless oontdm

many mesh points, If’1’at a given time t is expanded in a Fourieh series in y,

wo may regard F(y,t) as a superposition of functions, eaoh dependf~ on y through

‘@y,w?lerea factor e A 18 real, Rwl on

@
(2)

on may be ounplex’ . The relatii9n

s~ah a funotion into (2) and oancalli&

OLt
t through a faotor e , tiered (depending

betweenoL and#is found by substitutinfi

out common faotors. Tt is

m----’Leotures (unpublished)delivered ~ J. von??eumannat Los Alamos in February, 194?.
,.

(2)
It is, of oourse, hhe real part of.ku;h a funo%im that is of interest. It follows
that the boundednoss of the funot.iohto be expanded, over the range of y involved,
for given t, allows us to restr$et consideration to funotions with ~r+al (Fourier
sorbs or integral in y). Tho real and imaginary parts of~yield an exponential
growth or decay in timo and a time dependence of tho phase of the sinusoid in y,
respeotiively. Nelthor of these Can be exoluded on a priori grounds, sodwill in
general be aomplex.

, UNCLASSMI@
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< or
C%bt J@%[oo.$j’Ay)-1] ●

UNCLASSIFIED
e Z1+2(4)

(As noted above, m ar~Itrefitinq p and q “asconstants.)

Tho oonditim for stabili$y (oondition that all dist~wbunces get “smalleras t inoreasos)
.

is clearly that the reo,lparh of 6 should be negative for all real P , or that the

quantity e‘at (whioh is soon to be real from the above equation) should lie between “

-1 and +1, From the shove eqtition it is seen that e
0L4t

cannot exceed +1, and the

requirexksntthat

(3) 2 P q ::Y)2

ranges from O to

it be greater than -1 for all r;al~leads to

< 1 for stability, because the square braoket

-~ as ,# iS Varlod.

Inequality (3) places sgvere rostriotions on the c>olae of

tho condition

in tho above equation

a mesh for numeriaal

caloulntion. Iti3.slinear in At and quadratic in Ay. Therefore, If LJy Is chosen

very small in tho interest of accuracy, dt must be ohosen mry very small in the

interest of stabillty. It oan happen that a prohibitively large number of steps

At would be required to complste the

domain of values of t.

III. THE IMPLICIT DIFFWENCE S~TSM.—— .— —

oulty disappears ii’in plaoe of (2) we

calculation by equation (2)

One of us has

Write

over the desired

the above diffi-

13)
vont!eurmnn,leotures’at LOS A~amos~ Febr~w

, b

. ,-

. . :., .
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‘Ms seliof equations is in fact unoofiditlonallystables that is, irregularities

almy8 deorease with

oa~e substitution of

c%At
-1

bt
e =2 f%TY

.
inortiasingtime t, for any ehoioos of dt and AY. In this

,:

[OO+?AY,.l]fA;+l

tanh‘+ : ~~, [043. @2wl -1], as the relatiou between @and#.

!. ,

The left he.ndmember o!!’this equat10n is,negative red, and its inverse hyporbo~ic

tangent is, therofore negatiw real plus-an integral mulbiple of ri, so that the

real part of OL is alwuys neg~tive. The price one pays for this is that if w

nkl
regard the ~ ~@,l,2, “’*”s) as the unknowns, system (4) is a large number of

simultmmous equations, whorea8 eaoh equation of tho system (2) gives one of the
,’

unknowns explicitly. It mRy be noted in passing that (4) is a somewhat better

;+1,$:!* g:approximation ho (1) than is (2). Indeed, if we had written p

instead of # qn
/4” J@” $’~

in the first term of the square braaket and had written

~n+~
J

instead of ~, (4) WOUM have beep oorreut to seoond order in fit. But if tihis

had been done, tho system would have been still more implioit, (and

n&l . ..
the unknowns, Fg ‘+1 eto.would havo ocour–rodin the qunntlt$os ~

is with stability rather than with acouraoy~

(4] is of interest primrily when A y’is smaller than the limit

non-linear) beoause

Our oonoern he!%

set by (3) for

a given Z3t. We therefore first oon8ider (fomal) methods of solving (4) in Vne

llmit Ay~o. That is, we retain the differential oharaoter of the original

equation (1) with respcd to the variable y, and write

where it is understood that the variables entorlng implloitly through p,q,G are taken

to be y, t, F(y,t). For a given valuo of t, (5) is essentially an ordinary differential

equation, tith F(y,t$~t) and y the dependeti ati independent variqble8, and with p,q,G

known funotions of y. We therefore oall
,,

.

-.
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(8) F(y,t + dt)=f \,f’(y) ‘
j

..
and writo

(9) Af:P* (.$$)++

IV. THE SOLUTION OF E@ATIOlf-@. The general solution has two “constants of inte-.— ..— ,

grethnn to be fixed by the boundary conditions. For many phyeical problems the

bounda~ conditions ari3im$osed at two d~ffemnt points, yl and y2, so that a

direct stepwi.se!mr!!rioalintegration of (9) is not possible, unlese a trial-and-error

But’suoh a protsedureis very difficult in the present easeprooedure be adopted.
....

(i.e. with pqZOand ~,,~large) booause a solution whioh departe only slightly

from the desired soluti,ohat o~o.valuo of y departs therefrom in general more and,.,. ..

more as the integratio]lproeeeds~ The departure from the desired solution is roughly

exponential in oharaotor ks y<either +=

smaller At. It is preferable to Solw (9)

be eonstruoted from pwtioular solutious of,.

and grows at a rate whioh is greaterz the

by Hans of a Greene’s funotion that can

the corresponding homogeneous equation

(Hilbert’s “par&atrix’l) and whioh cause: the boundary oonditions to be satisfied
:,.

automatioally~
.!
,

It is oonwnierrt to transforn (9) to the canonioal form of the Sturm-Ltouville
,.

theozy. Tntroduoe the new dependent and independent

funothns
v
,& au folknvsx

v= /4 ,
&

‘t.. !

. . i:
.. -2.:./.

... ..!

.
.-.

vartibles g and%, and known
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From these definitions there follows the identity.

.

.

for any funwtion q(y). l’hen(9)becom&. .

(lo) Ag

where

(V!Linwhioh F(y,t) is to “b regarded as a funotion of % through the relation %= _
●

Let

Let go(~) be a soll~ion of tie corresponding homogeneous equation, vanishing at

That is, go(~.) 88ti8fies

(11)
d2
~ go : (A *U”) go, go(%l)

Define goo(#) by
f?$2

J, ~.(12) $00(*) : go(z)

By differentiating (12’)twioe and usi~ (11), we see that goo(fi is also a solution

of the homogeneous equntion. That is,

.“ L

or

and furthermore

!

APPROVED FOR PUBLIC RELEASE
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(lQ) ~o(% ) $jj go.(%) “ goo(%) +* eo(ti :-1. ‘

,- \.:...
. .

Now define g(%) by ‘ “’ “ ‘“ “ ““.
4 ~1

[ .1 r
2

(M) g(%) = coo(%)
~L

go(z)T(z )dg +cL + go(~)

1

%o(w’)dz ~ ●

%

whore ~ and~are two aonstants.

By differentiating (15) Woe and using (11), (13), (14) we see that
!

. . . .

,..1

or, in other words, that (15) is the general solution of (10). That is;

dg(i~ dgoo(~)

[[

%

1

g(>(z)~(z)dz +~ + goo(i) go (%’ly(i)
d% ‘~ ~

‘% [f:o(z)?(z).z+P]- go(#) goo(*)y(x)

.
Ml. d2goo(%)

~ 1dgoo(+)-—
d%2

f;o(+~)dz +~ +—
d}2 ~ d+

go(34l(y)

by (11), (13), (14). The stated result then follows from definition (15).

go(~) vanishes with P08itive slope at z = xl and inoreases roughly exponentially
I

as % inm3a8e8 to *20 Conversely, goo Vanishes’with nOgatiVe 810pe at z= %2

and inoreases roughly exponentially as #decreases to %l. (See also seoond paragraph
-.

below.) For numerioal application of this solution it is, therefore, ~onvenient to.

deal with quantities defined as i’ollowss
.,

,. .

.. . . . . .“:!
:,”

.,:.{.:..~.+.’”r’

. .,#- ,“

APPROVED FOR PUBLIC RELEASE
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go(-z)
(16a,b) ko(%) =——

* go(%) ‘
koo(%)= -

15J%)

+%.(7) ; “

From (13) and (13) theoe quantities are seen to sati8fyi

(M3a,b) ko(~l)=o,

Furthermore, th~ *O terns on

and B(#) ~8peuti~ly. These

relations —

&
(19a)~ A(%) :-#*) +

Ocl

koo(%z ) s 0.

the right hand

quantitios are

ko(%) koo(i)

ko(%) + koo(+~

side of

seen to

~ (30s

(15) will be denoted by A(x)
\

satis~, and be fixed ~ the

.
and 1“

‘r&t 3.s,

[s%~(x) dgoo(%)

T- - d# 1go(z)~(Z) dz +dt + goo(%) go(%)~(~)
$~. .

-4-
= “ :.:%) ?+ goo(’~)go (%) - (*)

but

and from this (19a) follows. (19b) is similarly obtained.

The procedure for numerioal oaloulation oonsisfx of the following steps~ integrate

(17h) from$$ to %2 starting wi~ (16a) and integrate (17b) from Z2 to < starting.

with (18b); then integrl~tg(Ma) from% to <2 and (19b) from <2 to Z1 starting with

(20a) and (20b) respeot!lvely;then the desi~d funotion is given ~

(21) g(%) g A(Z) + B(%).

,,

APPROVED FOR PUBLIC RELEASE
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. l?otethat in a routine involving punch c&rds, the integrations of (17b) and (19b)

oan be oombined in a
\

hae been done.

The funotions ko.

single pass throi~ghthe cmrd deck after the
!.
I

.-.

and koo have sevornl advantages over go and

integration of (l?a)
c

goo for numerical work.

If’~5(~+!l)>71(EM is wkally the case,),the SiZeS of go and goo VZWY by many P~rs

of 10 (beoause of their aforementioned roughly exponential charaoter) whereas k. and

kO. t3taynioely in rangeO Furthermore, go and goo genmally change by S1-ble frac-

tions ef themselves in tLsingle step of the integration in ~, requiring the use of

high order integration formulas, whereas k. and koo are usually nearly oonetant over

nwmy steps of the integration. Lastly, k. and koo oan be obtained by integrating first

order differential equations (17 a,h). The seoond of these advantages is somewhat

illusory, as we will have to develop elaborate integration formulas for the ko, lcoo

.

V. DIFFERENCE EQUATTOIW~ AGAIN. If equations(17a,b) and (19a,b) are rewritten as.— ——

. difference equations, ww will have a sys%m essentially equivalent to (4), elthou~h

the nature of the appro:dmationmay have “changedslightly by virtue of our detour

through differential equation theory. The advantage gained by the operations of

Sootion IV is, of oourso, that our new set of differenoo equations can be solved

direotly, whereas the sd (4) oannot be, as it stands, except by inverting a matrix

of order equal to the number of mesh points with given n.

Corresponding to the fixed interval size Ay iKIy, there will be a variable.—

interval size

so that oondition (3) for the Valtdity of the explicit method is

The implioit method, on the other hand, is valid, no matter what the relative
.

sizee of (~~)2 and 2At=may be. But when (23) holds (in faot, under all conditions

exoopt (A%)2Z< 2fAt)o ODO must use care in writing difference equations to approximate

(17a,b) and (19 a,b). To illustrate, oonsider the speoial ease of equation (l?a) in
.,

APPROVED FOR PUBLIC RELEASE
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.

may write ko(%)

tion by writing

(24) ICO(ZZF1)

4.”
s (A&c7j2 +c$k@(A), If we had made (17a) into a Mfferenco equa-

..

thenc$ko would sa’ti8&

t 1

in8toad of the aorreot relation

derSvable from the dif:rerenti.alequation. Clearly (25) agrees with (26) if :

m(~g,l-b)~~lbutnot-o~~-n’. Ind~ed#~fG(%~.,-w)~ls

the cfko(%)oomputed from (25) inoreases in magnitude exponentially as ~ inoreases,

instead of decreasing oxponsntielly as

a sort of instability under just those

We avoid the imitability (aud also

it should. Thu8 the implicit method aoquires

conditions where the explioit method is stable+

the inaoouraoy)thatwould result from use of

(25 ) as follows: to obtain a formula (a~ternatiiveto (l?s))for calculating ko(%J+l)

assumption that A*u- is oonstantiin this interval. The general solution is

where A. i.3a

the interval;

ooustant~

we determine A. in terms

ko( #j)+l)=

APPROVED FOR PUBLIC RELEASE
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.,
where

.:-i
. .,.

● ,;

●

,1

:.
The formula for koo(%) is the same excep; for interchange of %

./j+l
and Z~ in (28)

(but not in (29)).
.,,

1

Equation (19a) for A(~) may be similarly treatedby assumin~ ko(%.)and lcoo(~

!6 constant, for reason8 that will apptiarla~er. The solution which reduces to the”

.

: Iioo )! 00(4

where primes denote differentiationwith respect to% and
.

,.,. ,.
.,+
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.

we have, in place of ($1),

..

#

wm2 [

The integration formula for B(z) is quite similar. Calling

(35)
1
“(%)= y(%) +kop’(w) tk~p’’(%) $kjy’’’ (v””””””,””,

and ... .

14●

.

For praotioal oalaul.aticm,expressions (32) and (35) must of oourse be trunosted.

In order to see how to do this in a reasonable way, we regard the entire development

80 far as amounting to an expansion of the solution of”the orjginal equation “(l)in
.

powers of the small quontity At; or in’inversepowers of the large quantity ~ .

For exmnple, sinoe the error in (5) as written is at most of first ordor in, At,

we may regard (9) as bojng correot as written, and add O( At} to the first member

of (7). Thereforo we ttiyre~ard (10) as being oorreot as written, and write for t~

,1

Tho order of magnitude,,in ~ , of k. oan be found as followsz (17a) and (18a) yield

formally, for given % fl
I

ko(x)
!-

[

clk
rl-x%- %1 ●

1-(4A+0-)W
o

In this integral, the 8ymbol e stands for a funotion of k and ~ obtainod by sub-

stituting for % in the funotion u“(%) the inverse %(k) of the funotion ko(~).

APPROVED FOR PUBLIC RELEASE
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But we shall assume that ~(~) is
●

case (Y<<A asymptot~.sally,or

.

.

% means of (38) and (39)

ZOO(*), ~tai~i~ ODIY ter~~

we now write out explicitly the expression (32) for

dowm to cmiorA+.‘here.ult is,

-lcooA-$+(fwy,t))

$(l*k
dz

$L),~~ (~F(y,t)) - q=F(y,t) *2pG

d

[( )“

d’
-e (~F(y,t)) + 2pG- ’00 ~~ ~

1

()
m ~ 4,

A
.

This equation has been so~itten that the first four lines oontain terms in

~,&e ~, #-, rc38peotively.

Th8 ocrresponding expression for
X

o(z) is the

by -k..
,

Equations (28), (29), (34), (37), (40) are the

that in (40) the derivatives are to be replaced in

eege,

same exoept for replacement of koo

final fomulas. It is understood

the usual way by difference ratios,

!.

1
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VI. ASYMPTOTIC EQUIVALENCE TO THE EXfiICIT METHoD. The explioit methd (see—.—
?
.

Section II, especially equations (2),“(3))is 8table for~>4/(ZiX)2, and we shall

●

now show that the two meth0$8 are in approximate agreement for suffioiently large

values of a . The reaierm.ay tend to regard it as self-evident that this should

be true, beoause both methods purport to solve the original equation (1) approxi-

mately. But beoause aatual oonvergenue proofs a~ lacskingfor both methods, it is
:.

worthwhile to show the equivalence, espoo’~allysince the two methods appear to do

quite different things. The explicit

JFn+l in terms of the vslues ~n~l, F .
A .—

‘+1 dependthe implioit method mak~s ~

method deals with looa~ oonditions~ it gfves

1?-1 of F at neighborj.ngmesh points, whereas

on F at all the mesh points of oyole n, and also

on di”stantboundary oon,ditions.

Before demonstrating the equivalence, we first oarry the argusmnt leading to the

estimate (39) a little farther~ We seek a solution of the equation

dk (fi)

[1

(41) ~> s 1- (A+CY) ko(%)
2.

.
h the form

where the ooefflaionts ao, al, a2,●.o are functions of ~. By substitution of (42)

into (41) and equating coefficients of the various powers of ~, we find a. ● 1 ,

=0,a2= +a,~:~~,etoo
al We note parenthetically tht the series so

obtafned fails to satisfy the boundary oondition that ko(~) should vanish identically

in ~. Apparently one must add to (42) a funotion of #and Awhtoh vanishes, as ~~e,

more rapidly than any i~erse power of ~. The presence of such terms wa8 fore-
.

shadowed ~ the appearance of exponential, as for example in the hyprbolio tangent

immediately preaeding equation (39). But in any ease we oan write

.
.

.
and simik-ly ..

.,
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./%O -usimilarly tio >> 1, so wu may replaue e and e 0 by zero in (34) and (37)01
.>

Then . .

or
1 .,

This oan be rewritten, using the idonti~ preooding equation (10), and the defhit Ion

,. .
whioh leads imrmdiately to the “explioitn equation (2), as wa8 to be 8hown. Equation

(45) is to be contrasted with equation (5) whiah was our starting point.

:,
As a final remark, it is ~oted.that ngar a boundary at in %1, or ~U ~, we must

? ?.,t-’,~~,
ellAer choose the wsh size 80 that (A X)2 <C 2At or insure that the boundary is in a

place whero errors do not matter. For if 6 ~%is of order uuiby or greater, it is
. .

soon from (17 a,b) and (~~ a,b) that k. or koo will vary ~ a large fraction in an

t ntervalAX near
●

*
of (30) et seq..,

9

.
t!leboundary, oontrary to the assumption underlying

- --r

the derivation

. ..’ ’1’ ““
..’ .1
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