APPROVED FOR PUBLIC RELEASE

 UNCLASSIFIED

CIC-14 AEPORT COLLECTION REPRODUCTION COPY

UNCLASSIFIED

PUBLICLY RELEASABLE
Per 2 m. M fonas Pss. 16 Date: $4-16-91$
UNCLLASSIFIF'

Glassffieation ohnnred to UNCLASSIFIED by autharlity of the U. S. Atomio Enetigy commistis, LA - 586

Por AtMR(TID-1400-S2)Sept-00t Mir74 ny REPORT LIBRARY fotelfasting, $2 / 12 / 75$

July 19. 1946

This dooument contains \qquad pageso

OF DETONATI W WAVES

WORK DONB BY:

Do A. Flanders trandit
J. Me Kelier Ysseph M

REPORT WKITTEN BX:
T. H. R. Slcyrime

VERIFTED UNCLABARIES
Per $2 \mathrm{~ms} \quad$ latl-79
By ynestallogn ca-ll-9le

ABSTRACT

This report summerizes the derivation of the oquation of state of H. E. (Composition 'B' at danaity $\rho_{0}=1067$) used in the most reoont implasion os oulations, and inciudes condensed tables of the important veriableao Tho reaults of caloulations on various types of detonation wave made with this oquam tion of stato are reportod, and compared with earlier calculations based on r - law equationso

UNCLASSIFIED

In a fundamental report on detonation waves 1), G. Io laylor has given the theory of plane and oxpanding waves and the results for detonation Waves in TNT, using an equation of state for the oxplosivo gasos found by Joneso In this report wo give a brief account of the derivation of the equation of state used hore in various namerical calculations and of tho results of oaloulan tions on detonation waveso

1. Equation of Stato

The first numerical aaloulations made on detonation raves used
a $Y=3$ equation of stato for the explosive, and neglectod ohanges of entropyo Experiments had indicated that this form was fair approximation for pressures of the order of the detonation pressure, though it was certainly in orror at lower pressures; furthermore this form was well adapted to certain analytio and somicanalytio caloulationso

Subsequantily, howerer, dasire for greater acouracy in implosion caloulations led to the use of a somendat more accurate equation of stateo In his report ${ }^{2}$) Jones has calculated the normal (Chapman-Jouguet) adiabatic for certain explosives, ToN.T. at loading densities of 100 and 1.5 gealom and Composition 'B' at a loading density of 105 ; those were obtained by oalculating the composition and thermodynemio propertien of the mixture of explosive gaseso

For the purpose of caloulating the convergent detonation mava in an implosion the equation of state of Composition ${ }^{\prime} B$ ' was required for a loading density of $1.67 \mathrm{~mm} / \mathrm{am}^{3}$ and for a range of ontropies about normel conditionso To obviate the necessity of making a freah oalculation, analagous to those of

The equation of state caloulated by Jones $41 /$ a certain adiabatio $p\left(\gamma_{1} S_{1}\right)$ where the subscript refers to conditions at the head of an ordinary detonation wave in Composition B at a loading density $P_{0}=1.5 \mathrm{gm} / \mathrm{om}^{3}$ - at the detonotion front the internal energy E ma bo derived from the shook condio tions

$$
\begin{equation*}
E\left(\nabla_{1}, S_{1}\right)=1 / 2 p_{1}\left(\nabla_{0}-\nabla_{1}\right) \tag{1}
\end{equation*}
$$

and therefore along the adiabatio

$$
\begin{equation*}
E\left(\nabla_{1} s_{1}\right)=(1 / 2) p_{1}\left(\nabla_{0}-\nabla_{1}\right) \odot \int_{\nabla_{1}}^{\nabla} p d v \tag{2}
\end{equation*}
$$

For ontropies S alightly different from S_{1} we have

$$
\begin{align*}
& E(\nabla, S)=E\left(\nabla, S_{1}\right)+T\left(S-S_{1}\right) \tag{3}\\
& p(\nabla, s)=p\left(\nabla, S_{1}\right)-\left(\frac{\partial T}{d \nabla}\right)_{S_{1}}\left(S-S_{1}\right) \tag{4}
\end{align*}
$$

 the problem is solved when the entropy ohange $\left(S, S_{1}\right)$ corresponding to the new conditions is dotermined.

For the Chapran-Jouguet adiabatio the changes in v and S are determined by perturbation of the equation of conservation of energy and of the Chapman-Jouguat condition, combined with equations (3) and (4)。 Howerer, these conditions involve first and second derivatives of pressure and tomperature at the detonation front; these derivatives are somewhat erratic so that the direct application of these conditions does not lead to a satisfactory resulto The values finally chosen were obtained by compromising with additional oonditions derivad from the experimentally determined detonation velooity ($70800 \mathrm{~m} / \mathrm{sec}$) and variation of dotonation velooity with loading density ($3,800 \mathrm{~m} / \mathrm{seo} / \mathrm{gm}^{2} \mathrm{~m}^{3}$) - These values oorresponded to a γ - Value equal to 309 。 so that the datonation pressure wis. $0_{3} 207 \%$.mgrobera. . The new Chepman-Jouguat adiabatia was then caloulated n :4n,
are listed in Table 1 (Cf , Table 3 of Jones' paper) - The remaining calcula tions, for higher detonation pressures, were then straigitforvard.

The equation (4) is of the form

$$
\begin{equation*}
p=f_{1}(v)+\Delta S f_{2}(v) \tag{5}
\end{equation*}
$$

A. condensed table 3) of smoothed values of $f_{1}(v)$ and $f_{2}(v)$ is given in Tabla 2_{0} together with the equation of the Hugoniot curve $p=\psi^{\prime}(v)$ that setisfios the shoak oonditionso

For the calculation of plane and expanding detomation waves we also need the following quantities,

$$
\begin{align*}
& o=v \sqrt{-\partial \rho / \partial v} \tag{6}\\
& \sigma=\int_{v_{1}}^{v} \sqrt{-\partial p / \partial v} d v \tag{7}\\
& f=\left(p / \phi^{2}\right) d e^{2} / d p \tag{3}
\end{align*}
$$

The values of these quantities, calculated for the Chapmanojouguet adiabstic. are given in table 30

The lowopressure end of the adiabatic was represented by the empirical formula

$$
\begin{equation*}
\mathrm{p}=\left(\nabla / \nabla_{0}\right)^{-1.2}\left\{{ }_{00724} 06+\frac{0.0153190}{\left(v / v_{0}\right)}+\frac{0.113443}{\left(\nabla / v_{0}\right)}\right\}^{(\text {megaibars }} \tag{9}
\end{equation*}
$$

This holds for $\left(\sigma / v_{0}\right)>2.5 ; \nabla_{0}=0.5938 \mathrm{om} 3 / \mathrm{g}$ 。

2. Plane Dotonation ñares

If x denoto the distance travelled by the wave and the time an nee inftiation, the pressure and velooity distribution in the wave are determined by the equations 4)

$4)$ See Taylor's roport or LA-1.fio:

These solutions are given in table L for the above equation of
 The Pressure distribution is also show in Figo l_{g} together with that calculated by Taylor for ToN.T. of density 1.510

3o Expanding Eetonation Maves
The pressure and volocity distribution behind an expanding wave have been caloulated as a proliminary to the numerical integration of the airablact coming from a spherical charge of H.E. The oquations determining the solution b) may be writton in the form.

$$
\begin{align*}
& \frac{d \psi}{d z}=\frac{\psi \xi}{(1-\xi)^{2} \psi^{2}-\xi^{2}}\left\{25-f(1-\xi) \psi^{2}\right\} \tag{11}\\
& \frac{d \xi}{d z}=\frac{3 \xi^{2}-(1-\xi)^{2} \xi^{2}}{(1-5)^{2} \psi^{2}-\xi^{2}} \xi \tag{12}
\end{align*}
$$

Here z is the similarity variable

$$
\begin{equation*}
z=\log _{c}(x / D t) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi=u e^{-2}: \quad \psi=u / c \tag{14}
\end{equation*}
$$

f is the quantity defined by equation (B); and is a known function of $\phi=\xi 0^{\circ} / 4$. The boundary conditions at $z=0$ are

$$
\begin{equation*}
\xi=1 / Y+1 ; \psi=1 / \gamma \tag{15}
\end{equation*}
$$

The first stop in the solution was the preparation of a emooth teble of values of f as a flunotion of ; this is reproduced in table 5o The numerical integration was carried out with \mathcal{G} as independent variable starting from $2=0$ subsequently, when \mathcal{G} became small, z wes used as independent
 that hin thin the sphere $x / D t=00478$ the explosive is at rest at a pressure of 00603 mb . The prossure and polegdey dogatidigtions for thia alution are
given in Table 6, and for the $r=3$ oquation of state in Table 7. The pressure distributions in the two oases are illustrated in figure (2), together with that. osloulated by faylor for T. N. To of density 1051。

For the subsequent IBA calculations it was desirable to ku ve the hydrodynamio variablos listed as functions of $\bar{H} / D t$, where X is a Lagrangoan radial coordinatoo It follows from the oimilarity hypotheeis that

$$
\begin{equation*}
\frac{x}{D t}=\left(\frac{1-\xi}{\nabla / \nabla_{0}}\right)^{1 / 3} \quad \frac{x}{D t} \tag{16}
\end{equation*}
$$

and this quantity is included in Table 50
For starting the IBM caloulation it was useful also to have an expana sion of the solution near $t=0$ of the form

$$
\begin{equation*}
x / D t=1-a_{2} \theta^{2}-a_{3} e^{3}-a_{4} d^{4} \tag{17}
\end{equation*}
$$

phere

$$
\begin{equation*}
\theta^{2}=1=x / D t \tag{18}
\end{equation*}
$$

The general formulae for the coefficionta as are

$$
\left.\begin{array}{l}
a_{2}=r /(r+1) \\
a_{3}=\frac{4}{3} \cdot \frac{r}{r+1} / \sqrt{(r+1)(f+2)} \tag{19}\\
a_{4}=\frac{r(5-r)}{3(r+1)^{2}(f+2)} \cdot \frac{r}{(r+1)^{2}}\left(1-\frac{p^{i} p^{m}}{3\left(p^{\prime \prime}\right)^{2}}\right)
\end{array}\right)
$$

where $Y_{0} f$ have their values at the datonation ironto For the modified jonese equation of state these have the values

$$
\left.\begin{array}{l}
a_{2}=0.79592 \tag{20}\\
a_{3}=0.13233 \\
a_{4}=-0.05
\end{array}\right\}
$$

The in st coefficient is unoertain on acount of the p^{w} termo
40 Convergent Detonation Taves
The first oaloulatignis of contegignt qutonation waves were made with

the isentropio $\gamma=3$ equation of state these were reported in Lum 1430 Subsequantly, nother caloulation was made elsewhere, also using a $\gamma=3$ equation of state but adritting ohanges of entropy according to a perfeot-gas law for the Hugoniot curves this did not differ muoh from the former, and a omparibon of the two solutions mas made in a report by J. Calicin, Howob2.

Later a nem caloulation of the convergent wave was made usiag the modified Jones' equation of state and formed the basis for all racent implosion oaloulations (from IBM problem N orwards). The preparatory analytic oalculam tions were reported by J. Koller in LA-LEly which also inoluded comparisons of the effeot of convergence for different Y - lay equations of stateo

Complete numerical dotails of the calculation are available in IBM problem Ho We include in this report $\mathrm{H}_{\mathrm{H}} \mathrm{g} \boldsymbol{\mathrm { H }} 3$ and 4 to illustrate this solutiong the former represents the variation of detonation pressure with radius of convergence, and tho latter the pressure distribution at a time $t=a / 2 D$ (whore a is tha initial radius). Comparative ourves for Y =laws have been talien from Lálel4 and included in these figureso

APPROVED FOR PUBLIC RELEASE

TABLE 1

URCLASSIFIEU
dynos/ i.om²
1.6363
10^{11}
.5384

- 6084
-6823
- 7569
- 8335
$.915 h_{1}$
1.012
1.138^{\prime}

1. 331
1.491
1.725
2.063
2.567
3.346
6.682
2. 34
17.12
59.96
131.4
334.1
1050.4
3.723
$x 106$
$\times 120^{5}$

APPROVED FOR PUBLIC RELEASE

mefrabara

INCLASSIFIED

$\mathrm{V} / \mathrm{V}_{0}$

$f_{1}(v)$	
-9604	
- 7232	
. 5579	
- 4371	
. 3486	
-2677	
-2073	
-2034	
-1685	
-1442	
-1238	
.1140	
. 03466	
-01296	
.006871	
1.626	$\times 10^{-3}$
50610	$\times 1004$
2.204	
6.908	$\times 10^{-5}$
2.946	
1.269	
4.199	$\times 10^{-6}$
$\underset{0}{2.824}$	

$$
f_{2}(v)
$$

$$
\psi(v)
$$

.500
.550
.600
.650
.700
.750
(CJ) 0796 - 800 .850 -900 -950
1.00
1.50
2.00
2.50

500
10.0
20.0
50.0
100.0
200.0
500.0

10000
∞

$$
V_{0}=0.5988 \quad \mathrm{~cm}^{3} / \mathrm{gm}
$$

UNCLASSIFIEI

APPROVED FOR PUBLIC RELEASE

:. : : . : : :			T-x
v / v_{0}	c/b	σ / D	\mathbf{f}
(CJ) 0796	- 7959	0	10.13
. 800	- 7749	. 00402	10.81
-820	. 6833	.02199	7.66
. 840	. 6365	. 03791	5.58
. 860	-5996	.05244	4058
-. 830	- 5720	. 06559	3.63
-900	- 5529	.07851	2.39
-920	. 5409	.09053	1.70
-940	¢5326	-10206	1.19
-960	-5272	-11322	- 75
-980	-5240	-12405	- 45
1.00	-5219	-131462	. 34
1.10	. 5095	-18381	. 66
1.20	04913	-2274i	$1.04{ }^{\text {a }}$
1.30	-4,474	-26582	1.44
1.40	0.4405	-29949	1.77
1.50	04132	-32894	1.94
1.60	$\bigcirc 3879$	-35477	1.88
1.70	- 3636	037758	2.47
1.80	0336	-39760	2.84
1.90	-3122	-41512	2.49
2000	-2892	-43053	3.26
2.5	-2077	04845	
300	. 1723	-5139	
305	-1502	05437	
400	-1354	05627	
405	-12490	-5780	
5.0	-11717	. 5908	
10.0	. 08825	. 6604	
20:0	.07512	. 7165	
50.0	.06449	. 7.903	
100.0	. 05949	-8234	
200.0	. 05499	03630	
500.0	.04988	-9110	
1000.0	$\begin{gathered} .046455 \\ 0 \end{gathered}$	$\begin{array}{r} 9444 \\ 104137 \end{array}$	

APPROVED FOR PUBLIC RELEASE

TABLE 4
Plane Detonation Wave (fixed mall)

	Jones' Equation of State			$r=3$
$x / D t$	W/D	$\mathrm{P} / \rho_{o D^{2}}$	W/D	$P / p_{0} D^{2}$
1.0000	.2041	. 2041	. 2500	. 2500
. 9760	22001	-2002	-2380	-2382
-8624	-1821	.1340	. 1812	-1873
. 8037	-1672	-1713	-1519	.1642
-7513	01517	.1.608	-1257	. 3445
-7102	.1382	. 1517	.1051	-1313
. 6785	. 1256	.1433	.0993	-1206
. 6346	. 1020	-1299	.0673	. 1082
-6040	¢0800	. 1178	.0520	. 09967
-5298	.0203	.08797	. 0149	.08090
-5010	0	.07769	.0005	.07430
. 5000			0	.07407
0	0	.07768	0	.07407.

TABLE 5

c/b	$\underline{1}$
(CJ) 0796	11.026
-780	10.927
- 760	10.703
. 740	10.258
. 720	90457
- 700	8.327
. 680	7.255
-660	60488
0.640	50828
-620	5.168
-600	40572
- 580	30862
-560	2.986
-540	1.724
-520.	0.481
-500	0.951
0480	2.264
0460	1.525
-140	1.750
-420	2.950
-400	2.130
-380	2.300
-360	2.460
-340	2.620
-320	:28880
- 300	. 5.940

$x / D t$
1.00000
.99756
.98821
.96902
.93714
.99314
.94644
.80564
.77101
.74077
.67032
.60653
054831
0.49659
0.47688
0
$x / D t$
1.00000
-99697
.99544
.96206
-92416
.87243
.81909
-77460

- 73549
.70158 . 62856
- 56473
- 50839
.45893
044126
0
u / D
.2041 .2041
.1936
.1319
-1697
.1533
.1376
.1220
-1080
.0957
0845
.0578
.0343
. 0158
.0031
0
0 .05932
$\mathrm{P} / \mathrm{PO}_{\mathrm{o}} \mathrm{D}^{2}$.1936 -1820 .1691 .1553 .1410 -1284 - 1194 - 10940 . 10110 -08629 .07440 .06537 -05979 -05932

TABLE 7
Expanding Yiavo $(r=3)$
$x / D t$
1.00000
.99920
.99969
.99639
099197
093599
096929
.94564
091456
.87577
.92920
.77500
071329
064383
.56457
04536
0

u / D	$\mathrm{P} / \mathrm{F}_{0} \mathrm{D}^{2}$
. 2500	-2500
-2400	. 2400
-2300	. 2300
-2200	-2200
-2100	. 2102
-2000	. 2004
. 2800	0.812
-1600	01626
-1400	-1449
-1200	.1282
0.1000	. 1127
-0800	.09843
-0600	.08555
.0400	.07408
-0200	. 04407
0	-05532
0	.05531

APPROVED FOR PUBLIC RELEASE

(

UKCLASSFFIED

DOCUMENT ROOM

rec. \qquad No: REC: K.

