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METHODS FOR THE SOLUTION OF THE TWO-DIMENSIONAL

RADIATION TRANSFER EQUATION

by

Robert Weaver.l Dimitri Mihalaa.2 Gordon Olson!

ABSTRACT

We use the variable Eddington factor
(VEF) approximation to solve the time-
dependent two-dimensional radiation trans-
fer equation. The transfer equation and
its moments are derived for an {nertial
frame o>f reference 1Iin cylindrical gecmne-
try. Using the VEF tensor to close the
moment equations, we manipulate them into
a combined moment equation that results in
an energy equation, wnich is automatically
flux limited.

There are two separable facets 1in
this method of solution. First, given the
variable Eddington tensor, we discuss the
e“ficient solution of the combined moment
matrix equation. The second facet of frhe
problem 18 the calculation of the variable
kddington tensor. Several options for this
cialculation, as well as  physical limi-
tatfionus on the use of lcrally=-calculated
Eddington factnrs, are discussed.

Croup X=7, Los Alamos Natlonal lLaboratory
X-Diviston CLonsultant, Los Alamos Natienni Laboratory



I. INTRODUCTION

In two spatisal dimensions, the time-dependent radiation
transfer equation is at least a six-dimensional problem (r,z,t;
6,¢,v). Many classes of methods have been advanced to solve this
complex problem, including S, methods.l Feautrier mel.hods,2 and
moment equation expansions,3 to name a few. In this paper we
examine the moment expansion method.

Because angular projection factors appzar 1in the transfer
equation itself, thie moment expansion technique always produces
a system containing more unknowns (moments) than equations to
determine them. Thus a closure relation is requirede A perticu-
larly attractive secheme 18 to introduce variable Eddington
factors to close the system of moment equationa.“ In ona spatial
dimeneion, a scalar Eddington factor is all tha: is required to
close the system. However, 1in two spatial dimensions, the
closure requires three independent factors (an Eddington tensor)
because the second moment has three 1independent <components
(Prr' Pzz' and Prz).

The moment method of solving the transfer equation has two
separable facets. One needs to solve the system of moment equa-
tions, given the closure information; and, given the solution of
the moment equations (hence the dietribution of seources and
ninks), one needs to detarmine the VEF rensor. In this paper, we
discuss briefly the various computational techniques one can use
to handle each of thitse facets of the method.

An important 1liwiting case for the wmoment equations {8
obtainud if one assumes a constant Eddington factor. In partica-
lar, deep within an vpaque radiating flu!d (e.g., a sntellar
interior) the radiation field becomes nearly isotropic and steady
in time. In this regiume, tne flow of radiation energy can be
approximated very accurately by a diffusion equattion. Also the
vector flux 1is proportional to the gradieut of the eneryy
density; eo radiation tends to flow down the gradient from the

hotter Aide to the cooler aids. If one acsumes that the diffusion



approximation is valid everywhere, then the Eddington factor 1is
everywhere constant, and the solution of the transfer equation is
particularly simple. However, most interesting radiation transfer
problems (e.ge., a pulsating star; a supernova) span the regime
from optically thick to optically thin. In the optically thin
regions, the assumption of a constant diffusion value for the
Eddington factor 1is no longer valid. In this case, the radiation
field becomes anisotropic (i.e., nonlocal), the time dependence
of the radiation field may become important and the direction of
the radiative flux may no longer be exactly along the gradient of
the energy density. Calculating the magnitude of these differ-
ences between diffusion and tramspor:t is the essence of using
variable Eddington factors instead of a —constant factor.
Moreover, given that efficient codes exist for the solution of
the diffusion equation,5 this variable Eddington tensor method
can be formulated in such a way so as to be a natural extension
and improvement of existing diffusion codes.

This paper 1s organized as follows. In Sec. II, we derive
the inertlal-frame transfer equation in two-dimensional cylindri-
cal geometry. The moment equations are closed by introducing
variable Eddington factors. Exam;-1es of boundary conditions are
derived. In Sec. 111, we couple the radiation moment equations
to the material energy equation and briefly review techniques for
the efficlent solution of the combined moment matrix equation.
Finally, in Sec. 1V, we review methods for obtaining the variable
Eddington factors. In particular, we @8how results comparing
Eddington factors celculated with sinmple formulae (e.g.,

] 7)

Minerbo's or Levermore and Pomraning's to analytic Eddington

factors in simple 1D and 2D geometries.

I1. TRANSFER EQUATLON AND ITS MOMENTS

A. GCeometry

We nnnume the material is contained in a cylinder of finite

length with azimuthal eymmetry about the cylinder's axis. We



choose r,®,z as coordinates and assume that all material proper-
ties are functions of t,r, and z.

The radiation field in the medium 1is a function of both
position and direction, thus the specific intensity is I(t.r.z.e)

where n ls the unit vector

/142 cos ¢ E + v’l-l-JI sind é + u % . (A. Q)

n-

Iy

Here y = cocB, where 6 is the angle between n and z, and ¢ 1is the

azimuthul angle relative to the local radial directior r.

B. Transfer Equation

By following a photon path an elementary distance ds in the
coordinate system defined above, it 15 easy to show that the

transfer equation 1is

0|

a3t 13, T a1, stng (21 _ a1
5t e " T T VI leose 5o+ T (55 )]

-

+u%-KB+S-xI. (Bol)

Here the total extinction coefficlient 1is x

k + o, the sum of
the absorption coefficient ¥ and the Thomson scattering
coefficiecnt o, B 1is the Planck function, and S 1is the Thomson

scattering source term
S(u,9) = 35— ¢ I(a') [1 + (aen*)? [dur . (B.2)

As unmunal f denotes integration over all solld angles dw = dude, ¢

ranges from O to 2w, and u ranges from -1 to I.



Because we assume strict azimuthal symmetry (3I/3¢) = O, and
this term will be dropped henceforth.
Cs Moments and Eddington Factors
Define the following momentes of the radiation fileld:
zeroth moment, the radiation emergy density:
E = % § I(E)du H (C.1)
firset moments, the flux components:
F_o= § I(n)n du = § I(n) /1= cos¢dw , (C.2)
F, = § I(n)n,dw = § I(n) /1-2 ein¢ds = O , (C.3)
and
F, = $ I(n) n_ do = ¢ I(n)udw ; (C.4)
second moments, the presspure tensor components!:
p =L ¢ I1¢unn de=L1¢ 1(n) (1-2) cos?e du (Ca5)
IrY e ~<‘r'r c - ’
-1 w = 2 -2 -
Pr¢ < § I(E)nrn.dm < f I(n)(1l-y*)ein¢cos¢ dw = 0 ,(C.6)
« 1 -1 )
P o < ¢ 1(9)"r“gd” < $ 1(r) w/l-u® cos¢ duw , (C.7)
- .-l. - .l_ Y -ul 2 )
P@’ 5 f I(E)n’n’du o ¢ I(E)(l w )ein€ ¢ duw , (C.8)



Pyy " % § I(nda,n du = -cl- § I(a)u Y1-12 sing do = 0 , (C.9)
and

P, == ¢ Ln)e n du = < § I(n)i¥du . (c.10)
Note that

trace () = P+ P, + P, =E. (C.11)

In order to close the system of moment equatious we intro-

duce the tensor variable Eddington factor

f = B/E . (C.12)

In solving the moment equations these geometric factors are
presumed to be given, either from an approximate formula such as
given by Minerbo,6 or from a direct evaluation by a fo-mal solu-

tion (see Sec. IV below). In the present calculation there are

only three 1independent components of f, namely frr . fzz. and
frzi f¢t follows from Eq. (C.1ll)
f@0 =] - frr - fzz . (C.13)

The scattering source term can be written in terms of the

moments defined above as

S(u,¢) = ?2: [E + {1-u2)(cos? ¢ Prr + 8sin?¢ P.¢)
+ 2u(1-w ) 2cosp P+ W2 P ] , (C.14)



which can he rewritten as

S(u,#) = J52E {1 + (1-42)sin2¢ + (1-12)(1-281n? )f

r

+ 2u(l-u2)1/2c050frz + [uz - (l-uz)ainZOszz} «(C.15)

D. Moment Equations

Taking the zeroth monent of the transfer equation by inte-

grating Eq. (B.1) against dw we find

1 39(rF,) dF,
+ < T + 57 " x(4nB-cE) , (D.1)

9

m

(- 3

t

which 1is obviously the radiation energy equation. Here we made

use of the fact that Thomson scattering 1is conservative so that
$ [S(n) - oI(n)jdw = 0 . (D.2)

Next, taking the radlial first moment by integrating
Eq. (B.1) against n,dw and using Eq. (C.1l1) we find

oF 9P 2P._-+P,,~E 9P
r ., rr rrvltzz + rz X
c

1 .
:; at or r 3z Fe oo (D.3)

r

which 1is obviously rthe radial component of the radiation momentunm
equation. Here we made wuse of the fact that for Thomson

scattering

$ S(n)n dw = 0, (D.4)

which 1is evident on physical grounds, and can he verified by

direct calculation from Eq. (C.l14) or (C.15).

~J



Finally, taking the axial first moment by 1integrating
Eq. (B.1) against n,dw we find

- - X
- F . (D.5)

1 3F, 1 3 AP;,
73 Trar U T Er

Equations (D.3) and (D.5) rewritten in terms of Eddington

factors are

oF 9(f..E (2f,.,.+f.,,~1)E 9(f,,E)
1 r o, rrE) + re ‘zz + rz - X F i (D.6)
2 at ir r 9z c r
and
l an l 3(rfrzE) a(fzzE) ‘x
:; 3t T T ar * 3z " fa o (D7)

E. Configuration Factor

In order to eliminate the undifferentiated term in Eq. (D.6)

in a couvenlent way, define the configuration factor8 q such rhat

3inq _ 2fpptf; -1

ot rfop ’ (E. 1)
or
. 2f +f -1
tn iq(r)) = JF (—“;,f—u——)dr' . (E.2)
[o] rr

Then Eq. (D.6) reduces to

¥ ’ {E.3)

which is a more pleasant form for the equation.



Note that q = q(r,z). Also, 1in the 1isotropic 1limit
fre = f22 = % and q = 1, whereas in the radial streaming limit
frr =1, f,, = 0, and q = (constant)°r. In the axial streaming
limit f,., = 0, f,, = 1 so q 1s undefined. To choose the correct
value in this case we go back to tne basic derivation of
Eq. (D.3), where we find that the (l/r) term 1is really
(P - Paa)/ Th CLLY: (£oa/fep) )/t and in th fal

rr 34 e us 3¢ { 39 rr » an e axia
streaming limit {f f,, = 1 - 2¢, we may reasonably expect
frr = f¢¢ ™ €, hence q = 1. In practice the value chosen should

not matter because if f,.,. = 0, the %? terms vanish anyway.

F«. Combined Moment Equation

We now use the two momentum equations to eliminate the flux
from the energy equation and thereby obtain a single second-ovder
(parabolic) equation for the energy densitye. To 1llustrate the

approach we write the vector form of the equations:

JoE

It + YeF = «(4mB ~ cE) (F.1)
and
1 F X
_— e 4 T - - . .
> 3t 7+ (£E) - F (k.2)
c
We now differcnce Eq. (F.2 in time, leaving the space

derivatives 1ian continuous form; for stabllity we use a fully

fmplicit (backwards Euler) sckeme. Thus

n+l n
F -F a+l
- - +1. ’ +1
—— + 7.(gE" S S L , (F.3)
2 - c -
cc At
or
n+l -c . n+l N N
¥ oFT VC(EET ) 4 vy L (Fod)
+x +



where vy =

l1/cat. This equation provides a form of flux limiting.9

A finite difference representation of the energy equetion is

- O[Kn+l(4ﬂBn+l -

+ (1 - 96) [xn(éﬂBn - cEn) -

cE

n+1) - Y' n+l]

(F.5)

where V+F {s to be evaluated using Eq. (F.4). In particular, {if
we use a fully implicit formula (6 = 1) we have
+ +
(v + xn+l)En 1 + % ver? 1 éﬂ Kn+l Bn+1 + Y!_:n i (F.6)
or substituting from Eq. (F.4),
n+) 1 f 1 .n+l 41 xn+an+1
E - n+l Vel n+l Ve (LE )] o= re n+l
Y+« (y+x ) Y+x
n Fn
YE Y =
+ - ‘( ) . (Fo?)
+
Y+'<n+l c\Y_’_Kn l) v+ n+l
In the limit of high opacity and/or 1long timesteps, which

inplies (x/Y) = (cAt/Ap) > 1, Eq.
equation
n+l 4n _n+l 1 . 1
& ?_ B + n+l Y l n+l
K X

In the limit of low opaclty and/or

x/y << 1, (Fe7) reduces

equation:

Eq-

1v

to

(Fv7) reduces to the Adiffusion

n+l)J

Y°(£E . (F.8)

slrort timesteps, which 1mplies

an approximation to the wave



"l _ (cae)? ve[ve(eetl) " - L g.p0
- - ~ cY__

m 2E° - E (F.9)
or
2 Ve[ve(gE"TY)] = (E"*! - 26" 4+ E"T)/ae2
- (d?2E/dt?2)" . (F. 1)
In writlng the second equality in Eq. (r.9) we used Eq. (F.b) fur
k/y << 1.
Now consider the combined moment equation {n conpoaeat
form. Taking backwards time-differences in Eaqs. (D.7) and (E.3),

we obtain

n+l
n+l Y .n c 3(qfpE )
Fr - ( n+l l'r - n+l or
Y+X (v+x )q
a+l
_ c 9(f.,E _l
»
Ga™th e
and
n+i
Fn+l - { )Fn - c 1 a(rfrzb )
z n+l 2 n+l : or
Y+X (v+x )
n+l
) c a(f zb )
+1 ) ‘
(y+x" ) z
Taking the backwards time difference of Eq.
tuting from Eq. (F.11) and (F.12) we have

(b 1)

(F. 1)
(Fol2)
ind substl -



+l,.n+l 1 9 r rr
(y+<" 7 )E = = . ]
+
r 9r q(Y_’_xn l) or
n+l
13 1 a(rfrzb )]
r or (Y+xn+l) 9z
n+l
13 [ 1 a(rfrzE )
9z (Y+x"+l) or
n+l
_ 9 l 1 a(fzzh )] o bir Kn+an+l
a. + ~
2z (Y+xn I) 9z c
n Y 3 ( r Flt“ ) Y 9 ( F: )
+ Yh - —x - - v — .(F.l")
cr dr Y+xn+l c 92 Y+xn+l
Let as define the optical-depthi~like variables
dt_ = (y + Xn+l)dr ’ (Foldun)
€tz q(y + x"hH %_' (Folan)
and
drv_ = (v + x"“)dz (Felde)

Then Eq. (Fel3d) cun be written

(Y+K“+‘)H“+‘ q 2

(Y+x"+l) ? 31;7 rr r arzarr




4 +1_n+
- (cﬂ 0 an 1 + YEn)/(Y + xn )
Y 9 ( r F: ) Y 9 ( F: )
- 1 _°_ —) - 1L . (F.15)
cr arr Y+xn+l c 312 Y+xn+l

As was true for the vector form of this equiation,
[Eq. (F.7)J, Eq. (F.°'5) limits correctly to the diffusion cquaa-
tion and to an approximation of the wave equation. An {important
rroperty of Eq. (F.15) 1is that it 1is possible to obtain seconi-
order accu.ate representations of all the derivative terms
operating on E"tl, The term 32/31;2 and 32/311 offer no parti-
cular difficulties. The cross derivatives 32/31r312 and
32/3TzaTr can be evaluated wuniquely by assuming that the
variable (rfrZH“+l) can be represented by 4 prodact uf
second~order Lagrange polynomials {in AT, end A1, on the
nine-point stencil centered on the point of intercst.z Note that
becanse the derivatives are to be evaluated along 1lines of

constatt r and of constant z, the derivatives do aot conmmnt e,

G Boundary Conditions

We novw obtain exemplary boundary conditionsy. Connider flrat
the axfer r = 0, From symmetry considerncfons we know that Fp. & 0
and Pr, 0 on the axis. Therefore Trom Egqe (Eo3) we obtala

the very stuple boundary condition

D (yt rrl':)
'——-;-:‘-F—- I.-() : ¥} ((" ‘)

Although Eys (Folh) appltes at atl fotertor poltnte (feee, not un

the axla ov udjacent to the edpen), we cannot  apply 1t in

(K]



practice on the cylindrical shell next to the axis because we can

not compute a finite value for drp, as defined in Eq. (F.l4b),
from r = 0 to r = rj. To get around this difficulty we can
rewrite Eq. (F.l3) as follows
( n+l
- ‘n+l)En+l _ 9 l 1 a‘qfrrE )J
\Y n+l or
q(y+x )
. .n+l
9(qf E )
1 rr
+ n+l ir
rq(y+y )
- {same terms as {n rewainder of (F.l])} . (G.2)
Then defining
- +
ar: = q(y + x""Har
we have
2 n+l n+l
(Y+rn+l n+l ? (qfrrb ) 1 W(errh )
n+l . E - w? - n+l R
(yv+ ) LR r(yv+; ) r
2? n+l ) 1+1
LA T BT P
r 10y r I
2 r r
+1
a2 (1 _E"TH . _
M1 e . LA A VI I T L
2 ¢
9
7
N N
SLoa ey st (Mg,
cr oAt Y*x“ « 1, Y*x"

14



This equation applies at all interior points, and may, in fart,
be preferable to Eq. {(F.15). (Note that the first derivative
term can be calculated to second order.) Alternatively, it may
be best to use Eq. (G.3) just in the radial zones next to¢ the
axis, and use Eq. (F.1l5) elsewhere.

Let us now formulate the surface boundary conditions. For
brevity we consider only the cases of specular and diffuse
reflection. The imposed incident field case is treated in detall
in another report.lo

Suppose we have specular reflection at some boundary. Then
from ray-by-ray eyametry we know that F,.(R) = 0, F(0) = 0O,
and Fz(Z) & 0 on any of the boundaries where the reflection
condition applies. Further, at these boundaries f,., = 0. Thus

for boundary conditions we would have

3(qf _E)
Ir _ =0 (G.4)
r
.at r = R from Eq. ?E.3), and
a(fzzl) - .
—T a 0 ((lo ))

frox £q. (D.7) at =z = 0 and/or z = Z.

For diffuse reflection, the physical requirement that the
total energy across the boundnrv 1im returned (isotrupically)
ugain implies F,.(R) = 0, Fgy(U) = 0, and Fg(Z) = 0 on the
boundaries wherea the reflection condition applies. But in this
case we no loungar necessarily have ray-by-ray cancellation, and

in general f,., * 0. Therefore from Eq. (D.7) wo have

1 3 a(flzz)
-r— -rr- (rfrlE) + ——r.—"'—-—ﬂ z 0 ((n.())



at z = 0 or 2, and from Eq. (E.3) we have

9(f_E)
1 3 re =
q 3r (A B) +—5p— 2 0 (6.7

at r = R.

IIL. ENERCY BALANCE

The transfer and moment equations written above apply either
to the integrated quantities (energy densities, fluxes, etc.) 1if
the material is grey, or monochromatically if it is nongrey, with
a separate set of equations for each frequency. In any case,
both the opacities and the thermal source terms depend on the
material temperatura.

The temperature structure 1s determined by an energy balance

cquation, which 18 of the form

bE
o lgeE + e 3p (3)] = IT kCeky - aamday

where all material properties are functions of temperature and
density., The term on the right-haud side |a the net energy input
to the material from the radiation field. This equation shows
that anll the transfer equations are coupled together because the
tomperature atructure that detarmines any monochromatic radiation
field {s, 1in turn, determined by the collective action of all
thewe fleldn.

Iln practice the radiative terms {in the energy bilance
equation may dominate both the hydrodynamic work term and input
from other wsources. Thues, to obtain a mwmutoaally consistent
temperature structure and radiatfon fleld for nongrey material,
we muat {n principle nroulve the eneargy equation siuvultaneously

with all the frequency-dependent transnfer equations; while this

1o



is feasible in 1D, it 1is computaticnally prohibitive in 2D, and
we must develop a4 1less costly approach. There are several
options one needs to consider in order to obtain a consistent
description of the interaction of the radiation field with the
material. In this section, we shall merely give an overview of
the most obvious methods. It should be noted that the following
discussion {8 purely theoretical; the final proof of the feasi-
bility of any of these methods will be in how computationally
efficient they can be made. We have some cxperlence in this
respect with regard to the 1D equation;ll however, to date our
experience in 2D is limited.

From the work that has been done in one spatial
dimenaion.12-“ we think there are two main categories of
methods: the mvltifrequency/grey technique and the full

multigroup method.

H. Energy Balance - The Multifrequency/grey Technique

The basic idea of the multifrequency/grey technique
originated at System, Science and Softwarelz in the late 1960's.
Here we review the extension of this method te two spatial
dimensions. The heart of the technique s to try to write
frequency-integrated moment e2quations that average correctly over
the non-grey opacity. Thus, we use spectral profiles generatred
in n separcte saet of monochromatic calculations, and assume that
these discributions will be relatively {insensitive to changes
made Iin the {Jteration process required to solve the coupled
transfer and energy equations.

To obtain the appropriate equations I{ntegrate kqs. (D.!),

(b.7), and (E.3) over frequency. Let

]
m

E /[ B dv = E /E (H. 1)

=2
1t

Bv/] B dv = B /b , (M. 2)

17



and define the usual Planck mean

KE]Kde.
P vV

Further, let

£.r ¢ / £ (V) e dv

[, = / f ., (V) e dv

£,, F / £,,(v) e dv

K, E J K e, dv

X, = [ x F o (v)Av/[ F _(v)dv
X, = | x,F, (Vav/[ F (v)dv .

Then the frequency=ltantegratell moment equations are

o(rFr) DFz

-5

1 .
7T + 5 oy + P énxph cKHh
il ii!. 12 (qf E) + iii;zk) _ X F
G2t T ‘ ) x ¢ r
I SR TAL AT T LA
2 ot r ar oz c z

The conftguratton factor q {n again defined by Eq. (E.2),
nelap the Tregquney~averaged Edaington factors Hqa. (H.o4)
(1. 0),

I8

(H.2)

(H.4)

(H.5)

(H.6)

(He7)

(1. 8)

(H.9)

(. 10)

(H.11)

(tte12)

but now

through



The frequency-integrated energy equation can now be written

o [ + p_ B (-‘1;)] = cxgE - 4mc B . (H. 13)
The basic assumption we are making in this approach is that, like
the Eddington fartors, the ratios ey, F.(v)/F,, and F,(v)/F, can
be determined from a frequency-dependent formal solution and then
held fixed in the solution of the coupled uoment and en rgy-
balance equations.

To obtain a combined moment equation we proceed as before,
replacing time derivatives with backward time differences.
However, since we wish to present here only a brief discussion of
applyiang this technique 1in two dimensions, the combined moment
equations for the multifrequency/grey technique will not be
derived.

It is worth listing the advantuges and disadvantages of the
multigroup/grey method. The most important single advantage of
the method is that it reduces the number of variables used in the
energy—-balance part of the calculation to an ahbsolute minimum,
namely one (the energy density) per meshpoint. This makes the
computation of E(r,z) as cheap as possible, and minimizes the
cost of iterating the temperature distribution to counsistency.

The principal disadvantages of the approach are: (1) We are
torced to assume the invariance of the spectral profile functions

e Fr(v)/rr, and Fz(v)/Fz in the temperature-iteration. ln

’
r:ality the spectrul] distributions implied by the new temperature
distribution at the end of a timestep could be quite different
from the initial estimates. The place where this Is most scerious
is {n the calculation of kg, which determines the total rare of
absorption of energy fror the radiation field by he material.
(2) The sormation of flux-welighted mean-free-paths ns In
Eqe. (H.8) and (H.Y) 1s worrisome, because the directional and
frequency distribution of the flux could be such that | vavdv

has the opposite sign from f dev {or 18 zero), which would fuply

19




infinite or negative mean-free-pathe 1in the flux calculation.

Both would be unphysical.

I. Energy Balence: The Multigroup Approach

In the direct multigroup approach we assume that at each
meshpoint we are going to try to solve simultaneously for the
radiation energy density for G groups, plus the temperature. The

energy equation tu be solved 1is

DE
D (1 :
plEFE + P T (;;] - é W Kg(CE, = 4mB) . (1.1)

Here wg 1s the quadrature weight for group g and all material
properties are fanctions of {(p,T); that {s, Ep = Ej(p,1},
Pm ™ Pp(p,T), Kq = Ks(p,T), Bg = Bg(T). Thus we have a nonlinear
system (coupled with the transfer equations) to solve. In writing
a difference appruximation we use fully implicit differencing and
evaluate the right-hand side at tft! for stability.

To solve the system we assume that at each meshpoint we have
an estimate T* cf the temperature and write TN+l = T® + §T, and
then linearfze o1l equations for 6T. For the present, we will
take the simplest possible approach and iinearize only E; and
B; we can add otl.er terms 1if needed later. But {in any event the

structure of the system (s unchanged. We then have

E_(T#*)+C,(T*)8T-E (T) AE_(Tw) AE_(Tw) b .1

o= i Tt e e (MO ()]
.- ifﬂi?") .n+1

- -[au)ugxa\lw) ar— J 6T + &waxx(rw)lchg - ént(r*)J . (1.2)

We can wolve this equation for 6T aud write

a 6T + ) egl-:“” + v , (1.3)
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where

DCV(T"') 3B _(T*)
a = T + 4m lu k (T%*) ——%F——— (1.4)
g g 8
Bg = cngg(T*) (1l.5)
and
E ([%)-E_(TM) E_(T*) E_(Tw) .
m n m m D i
Y=-9 At + vr or + vz 9z + pm(T*)B? 3)]
- An)wgrg(T*)Bg(T*) . (1.6)

To couple the energy balance into the transfer equation we

linearize the source terms in the latter, writing for cach group

n+l n+l

2 2
Y:K:)En"'l .9 3 (qfrrh ) _ l 9 (:fr;E )
Y*rX r2 a.r;z r Tz Tr
2 N+l 2 . “+l
1 9 (rfrzh ) i 3 (lzzE )
r arrarz 3 12
z
* [f
(A% ow 2BNy5r AT cu pwayg”
- C 91 + c
(y+x*) (Y+x*)
n n
rF ¥
- Y (1L 3 r_ 9 z
¢ l'r arr (Yb ﬁ) + aTz (;I;T)J . (t..)

Here ™ on any quantity means that quantity 1s evaluated at
T = Tw, Again {t should be noted that we have linearized only
the Planck function. It we are willing to do the :ork, we could

also tinearize x, x, and the differential operators.



Equations (I.3) and (I.7) provide a linear system for Eg,
(g=l,ee¢.,G) and 6T at all meshpoints. The tirst problen
(addressed blLelow), is how we solve this big system. Given that
we have, we apply 6T everywhere, update the material properties,
and do the solution over again, iterating to consistency. The
teration may be slower than a full-scale linearization, but it
is much simpler, and avoids problems with noisy derivatives.

Let us 17 map out the form of the grand matrix for the
system to be solved. In labeling the energy densities we write
Eijg for E(ri,zj,vg). From our 1D experience.ll we
expect that the best way to organize the varlables and hence the
structure of the resulting matrix 18 to put all frequency 2roups
and the temperature perturbation together at each mesh point.
The form of the grand matrix is shown on Fig. 1. Here, at each
gridpoint we have an "arrow matrix”, which describes the coupling
of 6T to the local values of Eijg for all groups, and the local
response of the radiation fields tc 6T. These matrices are
bordered by a blcck tridiagonal pattern of diagonal matrices that
glve the coupling of a given woshpoint to 1its two adjacent
neighbors at the same z-level, and this pattern is 1in turn
bordered by two more tridiagonal! blocks of diagonal matrices
glving the coupling to meshpoints at the z-levels above and below
the current one.

Conceptually, one can view this scheme as emphasizing the
frequency <coupling at a given spatial pocint ¢to the local
temperature, while handling the spatial coupling to adjacent
neshpoints in the outer structure. This secheme 1s thus well
adapted to the optically thick limit because as x+~, the diagonal
matrices bordering the arrow matrices and the diagonal matrices
in bordering squares of the checkerboard all vanish. We realize
this advantage only If we actually solve the arrow matrix
directly. Happilvy the decomposition and solution of the matrix

is slmple:ll



Consider the matrix

This matrix can be decomposed into A = L+U where

11 1
L = and U = il .

Take £l for i=1,...,I. Then for 1i=l,...iI-1 and

Uit tiiFayy

UiI-ail/aii for i=l,¢e.,I-1. Further, le-an for j=l,¢.,I-1l and

Iil Iil
L =- a - L u - 3 - a u . (108)
11 S L T 17 Lty

So in short, we can form the decompouition trivially by scaling
each element of the last column by (l/aii) to get Ui and

accumulating - A1 into ar; to form lII' This 1is inexpensive,

being proportional to I. To solve Ay = 4 we then proceed as
follows: Consider L x = R. Then for i=1,...,I-1, xi-R!/l11 and
fcr 1i=1,
1-1
x; - (RI jzl lijxj)/lll

Next consider Uy = x.



The solution is

YI - xI and ii - xi - uiIxI for 1-1.....1-1 .
NOsE: These d2compositions and s8olutions could be vectorized
over all N N, gridpoints. Thus the solution of the overall

system, including direct solutions of the arrow matrices down the
diagonal, scales as (number of iterations) <N N,Ng.

Having solved the system, then, as before, we know E and 68T
at all gridpoints. We can then update T* + T* + §T and iterate
to <convergence. T"e ounly assumption built 1into multigroup

approach is that Eddington factors remain constant.

J. Energy Balance: lroposed Solution of rthe Matrix Equation

Consider now the problem of s8olving the 2D grand matrix
equation to obtain Ej4, and 5Tij° We treat hei the grand
matrix corresponding to the full multigroup method as developed
in Sec. I [t.e., Eqs. (I.3) and (I.?)j; however, the general
procedures can be applied to any large, aparse system derived
from the transfer equation.

Although a direct solution of th¢ grand matrix equatior may
be possible, it is computationally much more efficlent to use an

iterative scheme.ll

In the overall solution, these iterations
are the 1inner {terations to find the value of the temperature
correction for each meshpoint. Ihe outer 1iterations 1involve
applying this temperature correction to make the radiation field
consistent with the temperature st-ucture at the advanced time
level.

Let us write symbolically the matrix for each r-leval
represented in Fig. 1 as Ty. Then, we can write the matrix equa-

tion corresponding to Eqs. (I.7) and (I.3) as

= R (Jol)



where the vector V3 ¥ (Ejjyg, 6Tj3; g=l,...,G; j=l,eee,J) and Ry
1is the resulting right hand side (RHS). The simplest iteration
procedure that can be used to solve Eq. (J.1) is to move all the
the elements of Ty to the RHS except the arrow matrices down the
main block diagonal (see Fig. 1). The resulting matrix blocks
can be decomposed directly and the iteration scheme would be very
etficient far cells that are optically thick.li For optically
thin cells, the number of iterations may become excessive for
such a simple scheme. The convergence can be accelerated by
retaining more information of the left hand side (LHS) of the
2quation. One method, that 1in our opinion seems to be very
tantaliziug, 1is the sgo-called diffusion seynthetlc acceleration
(DSA) method.13 This acceleration method was origiral’y derived
for the 1iterations of the static neutron transport «quation.
Here, we briefly indicate how this method can be arpited to the
combined energy and transfer equations of a rad::tiag fluid.

The essence of a diffusion accelerated Ili«v.tfoan 18 to
replace the messy spatial transport operator (Y°E) in the com-
bined moment equation [Eq. (1.7)] by the correcponding diffusion
equation operator [YZ(E/3)]. By so doing, the difference between

the diffusion and the transport operator can be moved to the RIS
of the equation. The result is to have a simpler matrix equation
to solve (the multigroup diffusion equation), while {iterating on
the difference between difrusion and transporte. In opaque
regions, where the diffusion solution 1is accurate, the transport
correction term on the RHS {8 very s8emall and the 1iterations
converge rapidly. For transparent reglons, this type of
prescription merely dictatcs those terms in transport solution on
which we should iterate.

In order to use this type of acceleration scheme, we replace

Eq. (J.1) witn

By ¥y = By o (3.2)



where

and Dy is the diffusion matrix operator correspcnding to Ti+ The
grand matrix for the multigroup diffusion equatfions 1s shown in
Fig. 2. The only difference in form between Dy and T; is that the
diagonal matrix blocks corresponding to the cross derivative
terms (e.g., 32/arratz) are absent in Dg. Note that since the
temperature correction is in both Dy and Ty, this term stays on
the LHS. Also, the term added in the definition of Bi invulves
only the spatial transport operator Y-g. Indeed, since diffusion
18 really only a special case of the VEF type of solution, this
added term is simply

In this method, we are iterating on the *zrms in the radiatfion
pressure tensor that corrcspond to the anisotropy of the
radfation field; just as one would expect as the difference
between diffusion aund tranaport.

The solution of Eq. (J.2) 1s s8till nontrivial. The main
difficulty comes from the fact that we are solving for the
temperture simultancously with the energy densitims. Perhaps the
best approach 18 to exteud to 2D the split matrix 1iteratfon

scheme outlined by Axelrod aad Dubola.l“

Essentially, the split
matrix scheme breaks up Dy 1into two matrices, each of whicia can
be solved directly, and alternately moves one part of Dy to the
RlS. For brevity, we shall not comment further about this
m thod, other than to say that since the 80 ution of simplified
equation, Py Yl - B{. may require {teration, the {teration on the
difference between transport ocnd diffusion {8 in some =Bsense a
secondary {teratfion and thus may slow the convergence to the
transport solution. Trisl and error will be necesrary to decide

which {teration acheme will work best.
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IV. CALCULATIONS OF THE VEF TENSOR

In solving the material energy equation for the temperature
distribution and the moment equations for the radiation energy
density and flux, we assume that the Eddington factore are
given. These quaatities can be evaluated 1if we know the full
angle-dependence of the radiation field I(r,z,t,9,¢), which must
be determined from an angle-by-angle formal solution of the
tranaier equation for a given distribution of thermal and
scattering sources.

We plan to provide several options for calculating the VEF
tensor. When examining a particular parameter space, one may
choose to use a simpler approximation to a traunsport type of VEF
tensor, leaving the moiv expensive angle dependent calculatfions
for the final model or for bench-mark problems. These options
will span the range from as inexpensive as multigroup (or grey)
diffusion to as costly (or hopefully lesns) as Monte Carlou methods
as far ar computar time is concerned. In order of computer time

expense, these options for the VEF tensor are asw follows.

(1) fiJE % Gij ({.e., multigroup diffusion).

(2) £13 a [(1 - rpy/2)8td + [(3ry - Dyz2rle
whrre R = Ry (F/cE) 1iu prescribed by a particular theory (c.g.,

Minerboﬁ); F1 {a the 1th component of the flux vector and F (s
its magnitude. We shall discuss this option in more detnil
below.

(3) An aexplicit S, type calculation of the #"pecific (n-
tensity to form [ by angle quadratures. Onc¢ «an uske a traditiooal
Shp type formulation here (ecge, TAOTRAN) for n  waaprhot type
Eddington factor. Alternatively, other ray tracing schemern can
be davelopod.ls

Ray tracing schemes have the advantage of being vheapoer
than Feautrier type solutions. The main (inadvantagen of thens

achemon are: (a) they do not account for retardation effectn, an

it ia unfeasible to store retarded {nformation along the eatire



length of a ray, because the total retardation from one =and of
the ray to another may s»an several timesteps in the solution. To
attempt to handle retardation in this class of schemes would lead
to a difficult interpolation problem and a very difficult data
management problem. (b) These methods suffer from ray effects.
Either the rays may miss an important source volume (long charac-
teristics) or strong local sources may be diffused over the grid
by successive interpolations (short characteristics). (c) Because
one 1s computing unidirectional {ntensities with these methods,
{t may be difficult tv obtain accurate fluxes (which require sub-
truction of intensities 1in opposing directions) 1in opaque
repions. This problem 18 most damaging in the multigroup/grey
approach becanse in either the grey or direct multigroup cases we
can evalnate fluxes directly from the moment equations them-
selves. We shall not discuss these sachemes further hetre.

(4) Finally, one could go to a Feautrier type solution.
Here, we choose a set of planes that slice through the c¢ylinder;
e.ge, cach one tangent to one of the radial =zones. From the
axial symmetry of the problem, it f€follows that {(f we know the
rndiation field on the set of all planes passing through a
particular radial zone, then wa have all the {nformation ncecded
to determine the azimuthai variation of the radiation fileld in
that =zone. On each plane the mAolution would proceed by formiang
angle doepeadeat symmetric awdl antiWwymmetric averagesn of the
ipecific {nteusity,and then effecting a 2D pl.nar solutfon.?
Again, further discusaion of thim method will be given

clnoewhoere. 10

A. Locally Calculated VEF Tensor

LLet an examine option 2 more vlonely.l6 The purpomse of
unluy a locally calculated ({eee, nontransport) Eddington facor
prencription {s to provide a calculational ability thet (s more
accurate than diffusion, yet nearly aa i{nexpeunive.

The prescription glven above for [ depends on two quanti-

tienw: E and F. In fact, Riven A wmcalar and a vector, the
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formula uniquely specifies the form of the tensor that 1is derived
from them. Following Hinerbo.6 we write the ratio R, = IEI/CE.
so that R, = Ry(R;). In one dimension, R, 13 the Eddington
factor, 1i.e., the ratio of the second to the zeroth angular
moment of the radiation field. In two or morez dimensions, Ry {4
the same ratio, however, the angles are measured relative to the
local flux direction. The prescription given above for the
tensor f{ then merely maps back to a general coordinate system.
Physically, Ry snould be a smnoth curve ruanging from Ry (0) = /3
for isotropic radiation to Rp(l) = 1 for streaming radiation.
(Although there are physical situations for which f ¢ 1/3; e.g.,
a thin plane source of radtfation” or two concentric opaque shells
separated by a vacuunm with the outer shell being hotter than the
inner one.) The exact form of the curve will be different for
each physical situation. However, in using a formula 8uch as
Minerbo's® for this relation, one 18 hoping that a variation of
the Eddington factor, which has the correct limiting values, will
provide a more accurate solution than diffusion.

Thie main result of Minerbo's paper 1is the calculation of
this relatlonahip between R; and R;. This rewult {8 shown 1n
Fig. 3. Threa other curvea are also ahown. The constant valuc
of Rp = 1/3 corresponds to a diffusion calculation. Using =«
linear expansaton of the axponential distridution Ia hisw theory,
Minerbo almo duerived a linear approximation for Ry (KR;), refoerrel
to am iinear in Fig. 3. The final curve in Fig. 3 In the corres-
ponding relationship deturmined from Levermore and anrnnlnuu’
flux-limited diffusion theory. The three varifable FEddington
fauctor curvem in Fige )1 apan the mame general reglion of thiw
figure between the two limiting values. We have run wsoeveral
fdealized teat camnen to compure themse approximute, tocul formulne
for { to anslytically calrulated valueam. Here we shall present
two uxumples of thim type of comparison, one in 1D and one In D,

1t Ja critical to note that since the Eddington factor 1n a
function of both the evergy deusity and the flux, these yguanti-

tlen must he calculdatad nolf-consxintontly. Furthevwore, sltace {1
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is really Y°[(Y'(‘E)] and F that enter the dynamical equations
for a radiating fluid, the 8solution of the radiation energy
equation (required for self-consistency) depends not only on the
value of f, but also on the first and secoud derivatives of f.
Thus, it is not only the value of f predicted by these formulae
that is important, but also the shape of the curve.

B. One-Dimensional Test Case

Our first example comparing local prescriptions for
Eddington factors 18 the calculation of ¢the radfation field
inside an 1isothermal sphare. For the case of a constant source
function (isothermal, no scattering), it {s simple to write down
the specific {intensity, from which the angular integrals can be

generated by numerical qundrnture.ls

For this exanple, we use an
optically thin sphere with a radial optical depth of T = 1/2. The
eaniest comparison to make 14 to uen the analytically cealculated
values of K and F to form R} and hence obtain f (i.e., not =
self-consistont value of f). This comparison is whnwn in Fig. 4.
In this care, the FKddiungton factor calculated from Minerbo's
statinticnl formula {8 sctually quite close to the real solution.
A ponernl trend we have found {n alro evident here: the valuen

prodicted by hLevermore!

R theory and diffusion theory typiceally
bracket the correct values, with a similar dimspersion on efither
#ldeo

In order to have a wsell-consistent wolution, we nmolve the
combined moment equatfon for the radiation energy dennity (for
more Informatlon, wNee Ref.o 10). Here we firnt make n gunean for
“he enorgy amd flux in a coll, then calculate an Kddington factor
from one of the varfoun prescriptionna. Thin Eddington factor s

then unaend In the corbined momen aquations to calculate a unew

onergy, with which we update the flux and hence Eddington factor

and lterate to consintvoncye. Note that the resulting wself-
ronniatent nolution will not neceanmarily reproduce the
analyticatlly eatculated moments of the radiation fleld. It im

precineoly thin differsuce in the resalting energy denwity that we

10



are trying to find. The results of this calculation for this
isothermal sphere are shown in Figs. 5-7. Figure 5 shows thne
Eddington factors calculated with self-consistent energies and
fluxes. This operation moves both the Minerbo and Levermore
Eddington factors closer to the analytic solution compared to
using only the analytic R;. However, the linear approximation of
Minerbo actually gets worse, with f being a constant 1/3 every-
where. The reason for this behavior {s that the linear approxi-
mat {fon has a discontinuous sc¢cond deri{vative, which results in a
numerical feedback prohlem. It is much better to use a rational
polynomial approximation, which has a continuous second deriva-
tive, in place of th: lincar curve.

Figure 6 shows the flux as a function of radins for the
ARelf-consistent solution. Mincrbo's linear and statiuntical
theories are both very close to the analytic solution, with
Levernore's and diffusion spanning each side of the true
solution. The energy density and flux calculated from diffusion
theory are aot In error nearly asg munch (in most regimes) as the
Eddington factor itself; which {8 annther way of stating the well
known result that diffosion theory typically works better than {1t
shontd. Finally, Fige 7 whown the run of cenergy density with
radius for this test cunne. Theswe resuits again show that
Minerbo'r ntatistical formalatlon {8 the best cholce. Diftfuston
in thoe wornt comparison for thisn problem (slnce 1t I8 optically
thin), with hevermore's formulation being nearly asw bad on the
other sfde of the analytic nolution. Other 16 test cases are

1
reported In a forthecoming paper.

G. TwoiQImuntionnl Toeat Canre

The two=-idimenstonal test coanme we present here {w that of an
an lsothevymnl flunfte vyllndur.lh We choovde the radiaw of the
cylinder to be equal to ftw hefght and use an opacity ol
a = O cm". We have not yet calculated o welf=-counintent model

o woe nhall show here only the pretiminary resulta for the

S



Eddington tensor calculated both analytically and with an analy-
tic R} used in Minerbo's statistical theory.

There are three 1independent components of the Edd{ngton

tensor frr' fzz and the off diagonal component frz' As was the
case for the isothermal sphere, the specific intensity 1s an ana-
15

lytic function., The Eddington tensor can be generated by angle
quadratures. The analytic Eddington factors are shown in Fig. 8.
Since the source function 18 everywhere constant, this problem 1sa
symmetric about the midplane (z = 1/2) as well as &round the
z axis. The radiation rield 18 nearly 1isotropic in the ceuter
of the cylinder (f11 - 1/3, flJ ~ 0). frr has a different struc-
ture than fzz since the optical distance from the center cf the
cylinder to a boundary 1{s larger {in the r-direction than the
g=direction. The largest dagree of anisotropy of the radiation
fiecld (li.e., frr t Ezz and frz > 0) {3 {n the <corners of the
cylinder where pniluts can wore easlly see bnth boundaries.

In Fige 9 we show these same quantities as calculated from
Minerbo's statistical arguments. We use the flux and energy
density from the analytic solution to torm R and thus f. The
results in Fig. Y are given as the differenc» between Minciuu's
and tue analytlce valucese. The maximum valuces of this difference
are 0.05% for frr' 0.04 for [rz' and 0O.11 for fzz. These maxima
occur near the coruners and outer boundary of the cylinder, just
where yon wounld cxpect o non-transport solution to break down.
lowever, especially {n 2D, the calculation of the variable
Eddington tensor still represents o slgnificant improvement over
diffusion. Allowlaug the main diagonal of the radiation pressure
tensor to have noa=equal components and nllowing fur non-zero off
diagonal elemcuatsn at lenanwt makes {t feanible to describe an
avinotropic radiation fleld to some dopgree of accuracy (if only
locally)e Thene results are very prellminary as we have not done
a nelf-conmintent calcalation Ln 2. However, we hope, as wan
true for 1D, that {in generating the nrelf-consistent Aolution
a) the solution conve,goen, and h) the Eddington factors will

approach the analytic valuen.
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Figure 1, A schematic diagram of the form of the grand
matrix to be solved in the full multigroufp.
2D combined moment and material energy eguation.
The matrix shown is for I « J e 4, The main
block diagonal is composed of arrow matricces,
which have a simple decompciition,
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Figure 2, Same as Fig. 1, except for the full multigrou
diffusion equation in place of the transport
ejuation,
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Pigure 3. Functional foras for the wroment relatjonship R (51)
for various theories. Here, m, 2 / ul1(u,v,dw 28

the ith moment of the radiation specific intensity.
iIn 1D, R, = £, the Eddington factor.

MOMENT RELATIONSHIPS
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fNinsor .- . /
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diffusion - — e - - /

Figure 4, The calculated Eddington factors versus radius for
an isotherral sphere with a radial optical depth of
0.%. The Eddington factor is calculated locally from
the analytic values of R‘ 2 F/cL tor various theoraes.
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Figure 5. The calculated Eddington factors from a self consistent

solution ot the combined moment equation for the problem
described in Fig. 4.
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Figure 6. The calculated fluxes fron .. self consistent solution
of the combined momant equation for the problem described
in Fiy., 4.
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Figure 7. The calculated energy densities f{rom a self consistent
solution of the combined moment equation for lhe
problem described in Fig. 4.
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Pigure 8. A contour plot of the analytic Eddington factors F ..
f,2, and £, for an isothermal cylinder with a radius
equal to its height. The opacity inside the cylinder
is 5= 0.5 !
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rigure 9.

The difference between the Minerbo theory and the
analytic Eddingtan factors for the isothermal
Cylinder descrabed in Fig. 8. Ar aralytic R, 1
used 1n Munerbo's theor:; thus, these results arc
not self consistent.
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