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Abstract

This paper presents an overview of an approach to address complexity issucs
an'd real-lifc engincering problemis in large. urban transportation sysu:ms. ln
this context we discuss the fundainental problem of designing a metropolitan
transportation systemn which is both efficient and controlable.
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1 TUrban transportation systems

More and more metropolitan areas worldwide suffer fromn a transportation de-
mand which exceeds capacity. In many cases. it is not possikle or even not
desirable to extend capacity to meet the demand [1}. In consequence. a consis-
1ent nanagement of these large. distributed transportation systems has become
more and more important. Examples of such activities include the construc-
tion of fast mass transit systenis. the introduction of local bus lines. design of
traveler informational systeins and car pooling to improve the use of current
capacity. introduction of congestion pricing. and in the long term also guidance
of the urban planning process towards an evolution of urban areas with lower
transportation needs.

At the level of a metropolitan region. the transportation dynaniics is the
aggregated result of thousands or. in some cases. millions of individual trip-
making decisions for ihe movement of people and goods between origins and
destinations. Every decision is based on incomplete information of the state
of the transportation systent as a whole. Since complete global knowledge of
every relevancy of the current (and future) state(s) of a transportation system
is impossible tc obtain, future information based control strategies might. to
a large extent. be based strategies exploiting self-organizing properties of the
systems. That would still not remove the inherent tension between global and
local transportation optima. This essential tension is one of many reasons why
predictability is very difficult in such systems.

One method of approaching these and other wu.iletent complexities of the
large transportation systems is to represent the systenis and generate their dy-
namics through sinmlation in order to asses thetu. ‘The most straightforward
way seemis to be a bottoni-up microsimulation of the dynamics of all travelers
and loads at the level of where the transport decisions arc made. Starting with a
generation of travel demands derived from syntliesized traveler populations and
consequent trip planning decisions. over production of associated traffic and
eventually the consequences for congestion. travel time. air quality. and other
dynaniical system properties, can he all be generated. and thus analyzed. This
i> the approach used by the TRANSIMS project [2]. which this work also is a
part of.

2 TRANSIMS

The 'TRansportaticn ANalysis and SIMulation System ('TTRANSIMS) is part
of the nmlti-track ‘I'r.-vel Model Improvement Prograni sponsored by the U.S.
Departntent of Transporiction and thie Favirommental Protection Agency. Los
Alamos National Laboratory 1s icading its development. TRANSIMS will ad-
dress issues resulting from the Intermodal Surface ‘Transportation and Efliciency
Act of 1991, such as considerations of land use policies, tntermodal connectiv-



itv. and cnhanced transit service. It will support analysis of potential responses
to the stringent air-yualivy regnirements of the Clear Air Act Amendinents of
1990.

The TRANSIMS project objective is to develop a set of mutually supporting
realistic simulations. models. and data bases that employ advanced computa-
tional and analytical techniques to create an integrated regional transportation
systems analysis environment. By applying forefront computation:l technolo-
gies and advanced methods relevant to complex systems analysis it will simulate
the dvnamic details that contribute to the complexity inherent in today’s and
tomorrow s transportation issues. The integrated results from the various de-
tailed simulations will support transportation planners. engineers, and others
who must address environmental pollution. energy consumption. traffic con-
gestion. land use planning, traffic safety. intelligent vehicle efficacies. and the
transportation infrastructure effect on the quality of life. productivity, and econ-
omy.

Fig. 1 illustrates the TRANSIMS architecture [2]. The TRANSIMS meth-
ods deal with individual behavioral units and proceed through several steps to
¢stimate travel.

TRANSIMS predicts trips for individual houseliolds. residents. freight loads.
and vehicles rather than for zonal aggregations of liouseholds. The Travel De-
mand Module (inodule | in fig. 1) generatcs the households and comniercial
activities through the creation of regional synthetic populations from census
and other data. Using activity-based niethods and other techniques, it then
produces a travel representation of each houschold and traveler.

The Interinodal Route Planner (niodule 2 in fig. 1) involves nusing a demo-
graphically defined travel cost decision model particular to each traveler. Vehicle
and mode availability are represented and mode choice decisions are made dur-
ing route plan generation. The method estimates desired trips not made (latent
demand), induced travel. and pcak load spreading. This allows evaluation of
different transportation control measurcs and travel demand measures on trip
planning behaviors.

The Traffic Microsimulation (module 3 in fig. 1) exccutes the generated trips
on the transportation network to predict the perforinance of individual vehieles
and the transportation systein. It attempts to execute every individual's travel
itinerary in the region. For example, cvery passenger vehicle has a driver whose
driving logic attempts to cxecute the plan, accelerates or decelerates the car, or
passes as appropriate in traffic on the roadway network.

The Traffic Microsimulation produces traflic information for the Air Quality
Module (module 4 in fig. 1) to estimate such things as motor veliels fiel use.
source cmissions, dispersion, transport. air chemistry, meteorology. visibility.
and resultant air quality. The emissions model acconnts for both moving and
stationary vehicles. The regional metearological model for atmospherie cirene
lation is supplemented by a model for local effects. “The dispersion model is
used for directly emitted contantinants antd handles both local amd urhian seale
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Figure 1: The TRANSIMS architecture. Viewing a metropolitan traasportation
system as a large dynamical system enables us to isolate dynamics of different
time scale. Urban evolution which operates over years - the left part of the figure
- is currently not a part of the TRANSIMS project. TRANSIMS is currently
primarily concerned with the shorter time scale dynamics. It assumes a cer-
tain land use and transportation infrastructure and starts oul by estimating the
travel demand on a day-to-day or week-to-week basis. This estimated travel de-
mand is thcn being routed including mode choices and trans shipment processes.
For instance note that the transportation of fucl cil and school cluldren poses
very different constraints on the thc mode of transportation. Once the routing
is completed a microsimulation of the actual trips occurs which deals with the
sccond-to-second dynamics. As an tmportant side effect of urban traflic the mo-
bile source pollution gcueration can be computed and the resulting air quality
mmpact estimaled.

problemis. ‘The air chemistry mod.l includes dispersion. but is designed to deal
with sccondary polhitant production on larger scales.

An important aspect to gote at this point is that all these modules describe
different time scales, but always reference individual travelers. Activity plan-
ing operates on it daily or even weckly (e.g. shopping) basis: trip plntiing on



a link traversal time basis constraints changing approxiniately on a daily basis:
thie microsimulation on a second-by-second basis; a typical time-scale for inete-
orological model is of the order of 5 minues. Yet. these modules arc not only
connected “downwards™ as described above. Various feedbacks couple tlese
modules. Unplannable trips will change the weekly activities of individuals:
trips which in the microsiniulation take much longer than planned will need
replanning: etc. In thie most extreme case; all submodules feed back into urban
evolution and settlement patterns: Bad air quality. traffic jams or unfulfillable
t1 .:sportation dentands all inake people or businesses to relocate.

3 Travel time variance and unpredictability

The advantage of a niicrosimulation approach is that vhe system dynamics is
being generated through the simulation with all its emergent properties withoue
any explicit assumptions or aggregated mo'! !« for these properties. The major
disadvantages of a complete microsimulation are extremely high computational
demands on one side and perhaps explanatory problems on the other. The
inclusion of many details of reality may be excellent for generating a dynamics
whicli is close to the system under investigation. but it docs not mecessarily lead
to a better understanding of the basic (ininimal) mechanisins that cause the
dvnamics. Therefore the TRANSIMS project also inchides the investigation of
much sinipler and coniputationally less demanding models and siinulations, for
example the one we are going to discuss here.

One of the important issues both for analysis and for realistic simulation
of transportation systems is their high variability and the effect tlus has on
predictability. Here. we want to concentrate on one particular source of un-
predictability which may very well become important in a foreseeable futurc:
Assume that traffic management measures and modern information technology
(see, e.g.. [4. 5]) succeed in moving the transportation system closer towards
higher efficiency. Then we face an interesting problein because in transporta-
tion systems (and presutnably also in niany other large. distributed mnan-nade
systerns), there is a “critical” regime around niaximuin capacity. where the sys-
tem is very sensitivce to small perturbations. Sinall perturbations will generate
large fluctuations in congestion formation and thus travel times.

To investigate this plienonienton we can initially coneentrate ont an extremely
simnplified transportation system. We omy include vehicular traflic. and we
assume that all veliicles are of the same type. Our system includes only single
lane traffic on a circular road. and the driving dynamics is gencrated by only a
few very basic rules. Using a cellular automata of the form (2) and (3) and a
parallel npdate functional {7 we can obtain a very simple dynamic traflic system

a siimulation - of the form

{Sit + 0} = U{Si0) (h



where
S = Si(xi. w. :.'.f.j.l) {2)

is the ith car (object). r; its position on a 1-D lattice. 1 its current state
(velocity). =; its neighborhood in front (zap to next car. which is object j). and
fij their interaction rules

fiy(xi(t). yitt). i) — (it + 1). gt + 1)). (3)

which changes tlte location and the interna! state of current car (ohject). For
a detailed discussion of the dynaniics we refer to [3. 9. 10]. The algoritlun for
ke dvnamics is for completeness also listed in the appendix. For a general
discussion of some of the inatkematical properties of dvnamical systens of the
form (1) we refer to [11].

The critical regim. effect can be seen in Figure 2. The top plot shows flow as
a function of deusity. The middle plot shows the average time. #;. that a vehiclc
in the simulation needs in order to travel [ = 750 nieters. And the hottom plot
shows the relative variance of this travel time. i.e.

o(ty) ;= XX V7 (tt = ()7} )

)] (4

where (...) denotes the average over all cars during the sitnulation: {t;) there-
fore is the average travel time for all cars during the simulation. -- Note the
explosion of the variance near maximum flow.

On an intuitive level. this is fairly straightforward to understand: If. in
light traffic. soine short temporary disturbance happens (e.g. a minor accident),
the gtieue caused by this disturbance will be dissolved very quickly after the
accident has been cleared away. If the same happens in very dense traffic. it will
not have any grave cffect because there is congestion all over the system anyway
and i: just shifts the pattern. However. in between these two regimes there is
a traffic density. where there are only few jams in the system. but the new
jam caused by the accident has difficulties to dissolve. This is the traffic density
when small disuurbances. such as a ininor accident. have maximum influence. --
Technically. onc can use the langnage of a directed percolation phase transition
to precisely describe what happens [6]. A first order (critical) phase transition
exists in the systent.

4 Simple adaptive agents

Obviotisly, any traveler would like to avoid congestion if possible. (iiven a
transportation nctwork. travelers will try to route the trips around congested
areas if alternative rontes are not too long or too costly. To see what this
routing behavior does with the overall dynamics in a transportation network
we can forimulate, a minimal traffic network. Here the travelers have individual

-t
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Figare 3: Schematic skeich of the network used for the simulations. Vehicles
drive from A to B and can choose between the direct route and the much longer
alternative route. On the direct route they encounter a bottleneck. Other rehiclea
drite from C to D.

routiug plaiis and can make decisions aliout which route they want to take
depeading on knowledg: of congestion. They can also re-plan depending on
their earlier experiences of travel time.

Imagine (see Fig. 3) a road from A to B with capacity gp,ur. With a bottle-
neck with capacity sy shortly before B. Further imagine that there exists an
alternative. but longer route between A and B. On the direct route from A to
B additional travelers from ' have to go to destination D. First assume that
there are no travelers with origin in C.

If mauy cdrivers are heading frem A to B. they will. withouw knowing anything
about the overall (raffic situation. all enter the direct road. In consequence. a
queue builds up from the bottlen~ck.

A Nash Equilibriuin is defined as a sitaation where no agent (= driver) can
lower his or her cast (= decrease travel tinie) by ur.ilaterally changing behavior.
Assuining iha* the drivers have complete information. this iniplies that the
waiting tinie in the queue exactly compensates for the additional driving time
on the alternative route.

Now assunie that there ar~ additional tiavel demands from C to D (sve
Fig. 3). the exit for the latter lving slturtly before the hottleneck. Obviously. this
traffic is suffering fron: the bottleneck queu : upstream (= left) of the bottleneck.
and from taese travelers” point of view 1t wosild be much better if the queue were
located to the left of the ramp that the travclers froin ¢ use to enter the link.
Note that moviug the quenc further npstream does not tnake any difference for
the drivers uriginating in A. - ‘This example illustrates that one casily finds
situations where there are better overall solutions than the NE.



A way to push a traffic svstein from a NE towards a better cverall solution
is 1o keep the density on each road at or below p°. the idensity of maximum
throughput. Then there would not exist gueves anywhere in the system. thus
ensuring that additional traffic could proceed undisturbed. Note that this could
for instance imply (in the limit of a perfect implenientation) that drivers have
to wait to cnter the road network until suffi.ient capacity is available for themn.

One possible way to achieve this is to introduce a congestion-depeadeat toll
(“congestion pricing” as opposed to “road pricing”). and this toll i» simply
increased until the density on the respective link has dropped to the desired
level.

This is exactly the system that we simulated.

In our simple network. there are only two different types of travelers: Trav-
elers from A to B. and travelers from C to D. Travelers from A to B can choose
hetween the direct and the longer alternate route. In order to make decisions.
each AB-driver remembers his or her last travel-time on cach of the two routes.

A traveler calculates expected costs [7] according to

costyirest = 10l + @ ~Lgirer (3)

and
costgny =a-tan (6)

where cost gire e 8nd cost,y are the expected costs for the two route choices. toll
is the toll for the current day (see below). t4ire~s and fgn are the remembered
travel times for each route. and a is a conversion factor which reflects trade-off
between time and nioney. a could be different for each driver. but is unifornily
equal to one in this work. (o reflects “standard values of time™. VOT. which
can be looked up for traffic systems.)

Then. each driver chooses the cheaper route. except that there is a 3%
probability of error (which gives each driver a chance from time to time to
update her information about the other possibility).

As long as the traffic dynamics is deterministic and completely uniforin. this
scheme leads to a Nash equilibriuni [7]. However. in onr case of stochastic traffic
dynamics. this is no longer true: There might well be a decision rule different
from the one above where at least one traveler is better off. for example by
triggering some kind of day-to-day oscillation between the two routes and taking
advantage of it. In other words. by dealing with stochastic traffic dynamics. the
notions of economic equilibrium theory have to be used with care.

We describe 200 consecutive days of a simulation where tiie toll was kept at
zero during the first 100 days. and in addition all A-B-traveiers were forced to
use the direct route during the first 50 days.

Fig. 4a shows results for the trip timnes and the adaptive toll. Fig. 4b the
vehicle-to-vehicle variations of the trip tiine (as defined earlier). and Fig. e
the day-averaged density. on selected road sections. Tlhiese sections are: (i) the
section where the density for the toll adaptation is imeasured. (ii) the section of
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Figure 4: Simulation output for 200 teration f the sumple corridar network
model. Time.steps 1-30: No adaptation: 51-100: drivers can choose allernative
route: 101-200: drivers can chocse alternative route, and the toll adapts in vrder
to keep the density at an e¢fficient levcl. Top: Average trip times for the direct
and for the alternative route from A to B as well as for the route from C to D.
and toll for the durect route from A to B. Middle: Vehicle-to-vehicle fluctuations
of trip time for the direct and for the alternative route from A to B. Bottom:
Densities on the segment shared by A-B-direct travelers and C-D-travelers. on
the segment shortly before the bottleneck used for delermination of the toll. and
on the alternative roule from A to B.

the main road between the ou-ramp from C and the off-ranip towards D. and
(i11) the alternative route.

Even when allowed (i.e. afier day 50). not ntany of the A-B drivers use the
new option of the ahernative route. This is to be expected. since it is more




than six times longer than the direet <cue In consquence, travel s ansl
fuctuarions .l not change nuch.

After day [0, the: adajtive tolling <taris an fairly quickly reaches a sta-
ticnary value around 260 As the ~10l” line in Fig. ¢ indicates, this keeps
indeed go.; near the “efficient” range between p = 0.06 and 0.10. In addition.
the density on the main segment rused by hoth A-B and C.1) travelers) drops
to around 2. 11. aheve. but close ta the density of maxmmm threughpu.

Travel time= fur C-1) and for A-B-lirect travelers goJJown 1 Fig. 1a): and the
toll "ust offsets the time gain for use of the Jdirect route: time 0, ., = - toll =
Lie s51ere: ttevall that o = 11,

Vehicie-to-vehliicle Huctuativons (Fig. 1h) for the use of the altetnative road go
up from ca. 20 o around 1277, and fo: the use of the direct road from ca. 1'%
to around 12T, Moreover. the duy-to-day fluctuations alse sevin to go np in all
NICASUr-Mments.

One should Jdistingnish between two different kinds of lluctuations: Fluciua.
tions due to the dynamics. and fluctnations lue to the learning. The fluctuations
in the latter niight be due to the specitics of the chosen learning scheine. vx-
pecially the lack of historic information heyond the last day. More realistic
assumptions about the learning and en-route information are clainied to avoid
that {8}. However. the results for the vehicle-to-vehicle fluctuations ti.e. the @
as defined in the text) only depend on the fact that the traffic density is driven
towards the critical value. A lexs fluctuating learning scheme should therefore
even tncrease our values for @. For more details. see [9. 10,

The above work has to a large extent been motivated by Arthur’s ~bar prob-
lem” [11]: Assume that people want to be in a bar when it is neitlter too empty
nor too crowded. similar to the wish of not wanting to spend too much time
traveling which results in a choice of either the direct or the alternative route
{going to the bar or not). Also. the individual decision dvnamics is fairly equiv.
alent: ludividuals make their choice. then execute their decision. the outcome
of this is added to each individual's personal experience. and the cvcle starts
again. A fairly important difference between Artliur's work and ours. is that
Arthur needs many different. albeit simple. decision rules for each individual to
stabilize the outcome. In the traffic case this has not been necessary. Arguably.
in the traffic case. the dynamics itself already provides enougli luctuations that
individuals. even when faced with the seemingly same problen. make different
decisions.

5 Self-organized criticality in traffic networks

Now we are in a position to justify our initial claim that traffic management
ineasures will lead to higher fluctuations and thus lower predictability in traffic
networks. ‘The last section clearly shows that traffic management measnres
will tend to “equilibrate” traffic patterns. that is. to make overused parts of the
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system less overused, and to make underused parts of the system less underused.
Quite in general thus, the wholes system tends to operate closer to the point of
maximum efficiency. But as stated in Section 3 and also recovered in Section 4%,
this regime is the regime where variations are highest. or, in other words, the
system naturally evolves into a state where fluctuations are highest. which can
be seen as yet another example of self-organized criticality [12].

That means that, for an individval driver, it is really impossible to predict
how long a certain trip along a certain route will actually take. Which means
in return that neither a driver nor an omniscient traffic management system
can decide which of several possible paths might be the fastest or best. In this
way. it is the increasing unpredictability caused by the traffic management which
eventually impedes further improvement.

It is clear that this argument would benefit from further simulations in re-
alistic traffic networks. Although this has not yet been doue. the following
section shows an agent based simulation which has all the ingredients for such
an investigation.

6 A realistic network

In this section, we want to explain how the above methods can be extended
to simulate traffic in realistic networks. As a practical exarniple, we use the
freeway network of the German land Northrhine-Westfalia (NRW). We only
show results of a single-lane implementation. Multi-lane implenientations are
straightforward [13] but only make sense when one expects that the possibility
of passing introduces additionai T cts.

The impcrtant elements of the approach are (i) individual trip plans, i.e. each
“driver” knows belore the start of the simulation which route he/she wants to
take, and (ii) the use of individual decision rules based on past “sinmtlated”
experience. Roughly, for a plot like Fig. 5, the following was done in the simu-
lation:

o At the beginning of each “period” (= rush “hour”), there were 20 ordered
queues of vehicles with drivers waiting to enter into the network. Each
queue consisted of 2000 vehicles.

o Each simulated driver had an individual destination, and the set of the
10 shortest paths to that destination to select from.

¢ Each driver randomly selected a yet untried path; or in case all paths had
been tried, lie/she selected the path which had performed best in the past
(with a small random chance to try something clse again).

o Tlie si:nlation is exer=:led, with each driver following his/her path. If too
niany vehicles avtempt to use the sane road section, this creates congestion
such as in Fig. 5.
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Figure 5 Simulated traffic jams in a single-lane implementation of the free-
way network of the German land Northrhine-Westfalia (NRW). Situation at
“day 16" after 6000 iterations (100 minutes). Free traffic is denoted by dots.
critical traffic by light gray “r’. and jammed traffic by triangles.

This scheme was executed for several consecutive periods, uvatil the congestion
pattern “relaxed” to a pattern which did not change mmuch from one period
tc the next. This was usually reached after siinulating 15 periods: note that
10 periods were necessary until cach driver had tried cach of his/hier options.
Obviously, it will be necessary to replace the arbitrary origin/destination
pattern of these simulations by ntore realistic data. Yet. some of the network
i ottlenecks seent generic with respect to trausit traffic through NRW: The jams
between Wuppertal and Kreuz Kanen are well known, and. as one sees, a
consequence of the missing extensi~n of the freeway Ad beyond Olpe  This
extension lhas since long been plannea: but it leads tltrough environmentally
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sensitive areas. and it is thus under discussion if it will ever be built. Note that
the simulation methodology presented here can be used t :valuate the utility
of such an extension. or what is necded to replace it by nnprevements along
existing paths. Or. which traffic streams have to be reduced in order to manage
with the currently existing infrastructure, and how this can be achieved.

The problems near Krefeid are due to the same bottleneck in North-East/South-
West direction. It is also known that the K”olner Ring presents a bottleneck.

For further details. see [10].

7 Conclusion

All the above is in agreement with our intuition that traffic management can
indeed make traffic more efficient. but may in addition lead to higher fluctu-
ations and, as a consequence. lower predictability. since the systen: is driven
closer to capacity and thus to criticality. In summary we seem to have reached
a paradox: In wanting to obtain a better control of the transportation system.
by the introduction of a traffic management systeni, we actually produce a more
unpredictable traffic dynamics. This happens hecause the traffic management
system in essence moves traffic from more congested roads to less congested
roads. and thus as a whole, forces the transportation system into the critical
regime where small perturbations have a large influence on the microscopic dy-
namics. Network traffic produced with adaptive drivers and traffic management
systems is therefore an exainple of self-organized critical dynamics.

Since air pollution as well as serious accidents also are maximal wlicre ac-
celeration and de-acceleration is maximal, the critical regime. in addition to its
non-controlabillity, produces these highly non-desirable sides effects.

Are Traffic Management systems then not desirable? This is probably the
wrong way to look at it. For example in stock markets. modern information tech-
nology has brought the niarket fluctuations to much higher levels than before.
and traders just have learned to live with that (aud have introduced additional
financial instruments which insure against the risks of fluctuations). It is also
unclear if society will accept a conipletety efficient way of traffic management -
for example, congestion pricing (unfortunately often confused with road pricing)
secins to evoke strong opposition by may people. And then there is always the
possibility that, when wc are aware of the risks, we are able to design traflic
management systenis which circumvent the problems --- maybe by having less
efficicut flows - flows below maximnal capacity and thus criticality.
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Appendix

The simple. single lane 1-1) cellular automata used in the simulations for this
paper are give by the following four rules [3):

FOR all vehicles i € {1.....! '} DO
(1) IF velocity[i] < Vmar AND gap[i] > relocityli]
THEN velocity{i] = velocityli] + 1.
(2) IF gapli] < velocity[i] THEN uvelocity[i] = gapli].
(3) IF velocity[i] > 0 THEN with probability 0.5 velocity[i] = velocity[i] — 1.
(4) position[i] = position[i] + velocity[i].
END

where position[i] is current position of vehicle i. velocity[i] current velocity of
vehicle i, gapli] distance to nearest vehicle ahead of vehicle i. and Vmaxr the
maximum velocity of each vehicle. Note that. because all values are integer.
relations like gap < velocity and gap + | < relocity are equivalent. For niore
details we refer to [3].
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