LAMS-933

Series. A

TRANSMITLAL OF THE DOCUIEN
IT MUST NOT BR LEFT UNATTER MAY HAVE ACCESS TO IT. WHEN YOT IN USE. LOCKBD FILE OR SAFE. WHILE TS DOCUMR IS IN YOUR POSSESSION AND UNTIL YOU HAVE OBTAINED A GGNED CBIPT UPON ITS TRANSFER TO
AN AUTHORIZEU INDIVIDUAL, IT IS YOU BSPONSIBILITY TO KEEP IT AND UNTIL YOU HAVE OBTAINED A IGNRD CBIPT UPON ITS TRANSFER TO
AN AUTHORIZED INDIVIDUAL, IT IS YOU SSPONSIBILITY TO KEBP IT AND ITS CONTENTS FROM ANY UNAUTH

$\mathrm{C}_{2}-4$.${ }^{20}$
 MUST BE COVERED A SIGNED. RECBIPT. OU OR WHERE AN NAUTHORIZRD PERSON MUST BE STORED IN A "THIS DOCUMENT CONTAINS ING GMATION A GETINO THE NATIONAL DBFENSE CONTENTS IN ANY MANNER THA UNAUTHORIZE PERSON IS PROHIBITED AND MAY RESULT IN SEVERE C MINAL PENALITIES NDER APPLICABLE FEDERAL LAFS."

RESTRMCD DATA "THIS DOCUMENT CONTAINS RESTRI FDATA AS DEFINED IN THE ATOMIC ENERGY ACT OF 1946."

$$
\text { August 22, } 1949
$$

This documont contains_fages.
on the range of engrgy relifases
WHICH CAN BE DETERMINED BY FIREBALI OBSERVATIONS

By

F. Reines

UNCLASSIFIED

UNCLASSIFIED

INTRODUCTION

The problem considered here is the range of applicability of the scaling procedures ${ }^{(1)}$ as applied to photographic records of the fireball for the determination of the relative yield of fission bombs.
(1) See Volume III, Scientific Director's Report of Operation Sandstone。

I - UPPER LIMIT

As to the upper limit on the gield, the method should be applicable to bombs having an energy release as high as a quarter of a million tons, a number which represents a rea-. sonable limit on the projected yield of fission bombs. Arguments might be given which would establish a true upper limit, but this will not be done since it is, in a sense, an academic matter as to whether or not the method is applicable in the region where no bombs, at least of the fission type, will exist. It might be useful, however, to state that in the event a super bomb is developed this question should be reinvestigated, since yields much greater than a quarter of a million tons would then become possible. In passing, however, it would still seem that fireball observations might be applied even to super bonibs. ${ }^{(2)}$
(2) The factors which enter into the upper limit are somewhat dependent on the height of burst. For example, a very large bomb, say a few hundred kiloton yield, burst on a 300foot tower, would not reach the conditions of temperature and pressure corresponding to a 20-kiloton bomb burst on a tower of the same height, because of the ground reflection. If the point of detonation is instead made a few thousand feet, these limitations would no longer apply and instead one would have to be concerned with the effect of the inhomogeneity of the atmosphere. It is difficult to see how such effects could enter to an appreciable extent, even at yields as high as ten million tons. It is not felt that the effect on the ball of fire growth due to air pre-heating by neutrons and gamma rays is important to the present considerations.

II - LOWER LINTT
:ixun nnmimirn
The considerations which apply to the estimate of a lower linit are fortunately rendered quantitative by the existing ball of fire rate of growth data. These considerations involve the concept of scaling according to which the fireballs from two explosions are in "corresponding states" when the rates oi. growth are equal.

Consider Figure 1, in which is sketched the logarithm of the fireball. diameter, D, versus the logarithm of the time from the instant of detonation, t, for a given bomb yield, w. (3) Since the maximum diameter at which the shock front can be readily observed coincides pretty well with the diameter at the first light minimum and is, according to the scaling laws, a function of the cube of the gield, the curve of Figure 1 is bounded by $D_{\max }$. The fact that the log-log plot is practically a straight line over the region from about 70 meters and up is taken to indicate the validity of the similarity solution. A noticeable curvature ${ }^{(3)}$ sets in at smaller diameters and may be taken to denote departure from similarity due to the effect of the finite mass of the bomb and auxiliary equipment.
(3) See LAMS-921, Analysis of Fireball Growth at Sandstone, Figures 1,2 , and 3 for actual curves.

UNCLASSHE

Figure 1.
FIREBALL DIAMETER VS TMME

APPROVED FOR PUBLIC RELEASE
\qquad \cdots

UNOI nCOILIEA

Having established the length of the diameter-time curve in the simjlarity region, it is now possible to make an estimate of the smallest yield which can be determined from photom graphic observation of the fireball. It is clear that, when \mathbb{W} diminishes so far that the corresponding $D_{\max }$ becomes equal to the point at which the log-log plot begins to curve, no region of similarity remains. In order to establish the tonnage at which this happens, we simply take the cube of the ratio of $D_{\max }$ to $D_{\min }$, recognizing that $D_{\min }$ is difficult to establish with any accuracy, and apply this factor to the observed yield for the case under consideration. From X-Ray (36.8 KT), the minimum measurable yield is found in this fashion to be $1 / 2$ kiloton. A similar number results from the Yoke and Zebra data.

The accuracy of the method for such low yields as 500 tons is certainly poor, but should be better than order of magnitude; it improves rapidly with increasing tonnage and should be in the neighborhood of 10% at a few kilotons. It is conceivable that an improvement in observational techniques might be made in the direction of increasing the range of $D_{\max }$, the maximum observable shock radius, and that this will enable the determination of lower yields.

COCUPETT ROOM

REC. F::0M '
DATE 9-7-49
REC. NO. REC.

