LOS ALAMOS SCIENTIFIC LABORATORY

OF THE UNIVERSITY OF CALIFORNIA
LOS ALAMOS, NEW MEXICO

CONTRACT W-7405-ENG. 36 WITH THE U.S. ATOMIC ENERGY COMMISSION

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM

CAT. NO. 1935

LIGOARY BURE

RESIRICTED DATA

MASNE CONTAINS RESTRICTED DATA AS DEFINED IN THE ATOMIC ENERGY ACT OF 1954. ITS TRANSMITTED DISCUSSIVE OF ITS CONTENTS IN MEDIUMNICO TO AN DESPITEMENTED DESCRIPTION OF PROMISE TEXT

UNCLASSIFIED

LOS ALAMOS SCIENTIFIC LABORATORY

of the

UNIVERSITY OF CALIFORNIA

Report written: March 9, 1954 Classification changed to UNCLASSIFIED
by authority of the U. S. Atomic Energy

Per Jack Hongard Salar Salar

LAMS-1640

This document consists of 5 pages

0.3

f 10 copies, Series C

THERMONUCLEAR REACTION RATES

PUBLICLY RELEASABLE

Per A. Palatique FSS-16 Date: no date

By Maneia Rolling CIC-14 Date: 1-24-96

by

James L. Tuck

STRICTED

This document contains the Atomic Error of its contents transmittal or the discount of the dis

All Los Alamos reports present the opinions of the author or authors and do not necessarily reflect the views of the Los Alamos Scientific Laboratory. Furthermore, this LAMS report has not been prepared for general distribution. It is accordingly requested that no distribution be made without the permission of the Director's Office of the Laboratory.

UNCLASSIFIED

APPROVED FOR PUBLIC RELEASE

dympyoon ...

UNCLASSIFIED

Distributed:

LAMS-1640

Series A JAN 2195

Los Alamos Report Library

1-6

Series B

Los Alamos Report Library

1-8B

Series C JAN 2 1950

Los Alamos Report Library

1-10C

UNCLASSIFIED

ABSTRACT

This report gives the thermonuclear reaction rates for the DD, DT, D ${\rm He}^3$, TT reactions for temperatures 50 ev to 100 kev.

UNCLASSIFIED

Thermonuclear reaction rates for the following reactions are given:

D + T = He⁴ + n + 17.4 Mev

D + D
$$+ \text{He}^3 + \text{n} + 3.3 \text{ Mev}$$

He³ + p + 4.0 Mev

D + He³ = He⁴ + p + 17.5 Mev

T + T = He⁴ + 2n + 11.4 Mev

Definitions

Reactions/cc/sec =
$$\frac{1}{2} n_D^2 \overline{\sigma v} \left[n_D = \text{deuterons/cc} \right]$$

and $n_1 n_2 \overline{\sigma v} \left[\text{reactions between densities} \right]$

T is defined as $\frac{2}{3}\overline{U}$ where \overline{U} is the mean kinetic energy per particle.

Accuracy

The data presented here were computed mainly from the cross sections of Arnold, Phillips, Sawyer, Stovall and Tuck, Phys. Rev. 93, p. 483 (1954). In this paper, the yields are measured at 90° and use isotropic angular distributions in the center of mass system for (DT), (D, He³). The resulting probable error in σ is $\frac{164}{5}$. For the purposes of this interim report, the $\frac{1}{3}$ have been rounded to the nearest figure given.

For DD, which is appreciably anisotropic in the center of mass system at the lowest energies observed (\sim 10 keV), the angular distribution

. :: IINCLY??!!!

has been used for both branches. This results in a branching ratio $\sigma_{\rm DDn}/\sigma_{\rm DDp}$ of 0.93 below 20 kev. There is some weak evidence that the angular distributions of the two branches are different, in a sense that would make $\sigma_{\rm DDn}/\sigma_{\rm DDp}$ closer to 1.00. This would increase $\sigma_{\rm DDn}$ by some 7% and make a similar change in the $\overline{\sigma}_{\rm V}$ of the neutron branch. However, for the purposes of this interim report, $\overline{\sigma}_{\rm V}$ have been rounded off to the nearest figure.

T kev	₹ TD	σγ ^{DD} total	D He3	TT _{2n}
•05	7 × 10 ⁻³⁵	2 x 10 ⁻³⁵	1 x 10 ⁻⁴⁸	1 x 10 ⁻³⁸
0.1	3 × 10 ⁻³⁰	4 x 10 ⁻³¹	3 × 10 ⁻⁴¹	2 x 10 ⁻³³
0.5	6 x 10 ⁻²³	2 x 10 ⁻²⁴	2 x 10 ⁻²⁹	1 x 10 ⁻²⁵
1.0	7 x 10 ⁻²¹	2 x 10 ⁻²²	6 x 10 ⁻²⁶	2 x 10 ⁻²³
2.0	3 × 10 ⁻¹⁹	5 x 10 ⁻²¹	2 x 10 ⁻²³	1 x 10 ⁻²¹
5.0	1.4 x 10 ⁻¹⁷		1 x 10 ⁻²⁰	6 x 10 ⁻²⁰
10	1.1 x 10 ⁻¹⁶	8.6 x 10 ⁻¹⁹		5 x 10 ⁻¹⁹
20	4.3 x 10 ⁻¹⁶	3.6 x 10 ⁻¹⁸		
40	7.9 x 10 ⁻¹⁶	1.0 x 10 ⁻¹⁷		
60	8.7 x 10 ⁻¹⁶	1.6 x 10 ⁻¹⁷		
80	8.5 x 10 ⁻¹⁶	2.3 x 10 ⁻¹⁷		
100	8.1 x 10 ⁻¹⁶	3.0 x 10 ⁻¹⁷		

