UNCLASSIFIED
 PUBLiCLY RELEASABLE LAY Classticegtion Group NOV 20.4995

CIC-14 REPORT COLLECTION
 REPRODUCTION
 COPY

March 16, 1944

L. AM S-62 (Series B)
c. 3

This document contains 4
\qquad pages

REMARKS ON THE FISSION CAPTURE RATIO OF 25
Y. F. Weiselropf

The capture fission ratio $\alpha=\sigma_{\text {capture }} / \sigma_{\text {fission }}$ oi 25 can be messurad at thermal enargian but this measurement cannot bo extended to aitigiga scouring in the fisalor spectrum. Therefore theoretical considerationa to estimate the energy dependence or α are relevant.

The ratio a is given by

$$
\alpha=\frac{T_{r}}{\Gamma_{i}}
$$

adore Γ_{r} and Γ_{f} are the partial width e in respect to radiation and so fission respectively. We sro interested in the ratio x of the values of α at low energies to the values around 1 MeV:

$$
\begin{equation*}
X=\frac{\left(T_{f}\right)_{1 \mathrm{KOV}}}{\left(\Gamma_{f}\right)_{1 \mathrm{oV}}} \frac{\left(\Gamma_{r}\right)_{1 \mathrm{GV}}}{\left(T_{r}\right)_{1 \mathrm{HeV}}} \tag{1}
\end{equation*}
$$

The expression for $\dot{\sigma}_{f}$ at' 2 HoV is given by:

$$
\begin{equation*}
\sigma_{f}=\xi \sigma_{0} \frac{T_{f}}{\Gamma_{f}+\Gamma_{n}+\Gamma_{r}} \tag{2}
\end{equation*}
$$

σ_{0} is taken as πR^{2} (1 nuclear radius), which dofinea the stroking probability $\xi_{\text {. }}$ Since for $\left.1 \mathrm{MeV}: . \mathrm{F} / \AA^{\circ}=2.3,\right\}$ wont bo

UNCLASSIFIED

larger than unity. Γ_{n} is the neutron width, which consists of several terms: $I_{n}=T_{n o}+I_{n 1}+T_{n 2}+\ldots$, corresponding to the elastic remission ($I_{n o}$) and to the inelastic emissions $I_{n i}$ If $R>\mathcal{A}$, tho Following rotation holds: ${ }^{\text {1) }}$

$$
r_{n 0}=\left\{\sum_{\lambda=0}^{L}(2 l+1) \frac{D_{2}}{\pi}\right.
$$

1 is the maximum l win can got into the nucleus ($L=R / X$) and $D_{\mathcal{L}}$ is the average distance between the states winch can be formed by neutrons With the angular momentum f, by collision with a nucleus in a state with definite quantum numbers. Let v es call Δ the diatance between degenerate levels of given angular monontum, J, and assume Δ indopondont of J, vo get $D_{l}=\frac{\Delta}{2(2 X+1)}$ the factor 2 coming from the spin. Ono then gets

$$
N_{n 0}=\left\{\frac{L+1}{\pi} \frac{\Delta}{2}\right.
$$

Wo may noglect I_{r} in (2) for 1 MoV and get for I_{f} :

$$
I_{\mathbf{f}}=\frac{, r_{n}}{\left\{\frac{\sigma_{0}^{*}}{\sigma_{n}}\right.}
$$

He then write: $I_{n}=N \Gamma_{n o}$ where $N \geqslant 1$ is related to the number of level which can be roached via inelastic boatotoring of 1 hov neutrons. It is someminat smaller than this number because $I_{n i}$ is

[^0]

APPROVED FOR PUBLIC RELEASE

amallor than $\Gamma_{n o}$. We then get for Γ_{f};

UNCLASSIFIED

$$
j_{f}=\left[\xi N /\left(\frac{\sigma_{0}}{\sigma_{i}} \xi-1\right)\right] \quad \frac{L+1}{\pi} \frac{\Delta}{2}
$$

Astor inserting $L=R / \lambda=2.2$ and $\sigma_{0} / \sigma_{f}=2$ on the basis bf i the experimental value $\sigma_{f}=1.6$ burns land $\sigma_{0}=\pi R^{2}=3$ barns, one óntaina:

$$
T_{\rho}=\frac{H \xi}{2 \xi-I} \frac{\Delta}{2}
$$

Δ can be estimated in the following way: At thermal energies $\Delta / 2$ is just equal to the level distance D_{0} between the levels observed by senaniol. 2) (The factor two comes from tho fact that the neutrons excite level with two values of J_{o}) The decrease of the level distance from thermal energies to 1 MoV can be estimated by using a dependence $-\sqrt{a E}$ for the level distance (E is the excitation of the compound nucleus) and by adjusting the constant a so that the level distance docrasaes from $100-300$ kilovolts at $E=2$. to 2 aV at $E=6 \mathrm{HoV}$. wo than obtain $a=22(\mathrm{MOV})^{m 1}$ and a decrease of Δ by a footor of 2.5 if B in raised from 6 to 7 MoV .

In order to get a lower limit on r_{f}, we put $\xi=1, \mathrm{~N}=2$, $\Delta / 2=1 / 3 D_{0}$ and $D_{0}=1$ VV.

This giver:

$$
I_{I}>0.66 \Theta V
$$

1) A. O. Hanson, Cig lB

2) LA Report in prepotent ot $\because:$

APPROVED FOR PUBLIC RELEASE

The most plausibio value for I_{f} may be obtainod by putiling $N=2, \quad \xi=0.75, D_{0}=2:$

$$
\left(\mathrm{I}_{\mathrm{f}}\right)_{1 \mathrm{scV}} \sim 2 \mathrm{oV} .
$$

We used I_{f} at low enorgies in order to estimate K whioh is defined in $(I) . \quad\left(\mathcal{I}_{f}\right)_{\text {low }}$ is smaller or equal to the total width I of the lovels observed by ludaniel. Acoording to his ourves one may put:

$$
T \cong 0.25 \mathrm{ov}
$$

One obtains for the fission wiath at low energiea:

$$
\Gamma_{r}=\frac{\Gamma}{1+a}
$$

which givos 0.2 ov with a value α of 0.25 . Ihus the ratio x obsys the relation:

$$
x \geqslant 2.6(1+\alpha)
$$

*ith the most probable veluo of I_{f}, wo obtain

$$
x \sim 8
$$

APPROVED FOR PUBLIC RELEASE

Tier. From C. Sexaen
I. te APR 11944
Fic No Rec.

[^0]: 1) See Bohr and Wheeler Phys. Hov. 66, 426 (1939) and also LA-24 (33 and 34) page 8, formula 17.
