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MrJLTI-vEL(xxTrSERREI-WILSQH

NEUTRONDIFFUSION C&CULATIOHS

Certaintypesof neutrondiffusioncalculatMhawere considerably

simplifiedwhen the Serber.WilsonMethodwas introducedabouteight

yearsago. Thismethod,semi-empiricalIn natureand namedafter its

co-discoverers,1 was firstformulatedfor the one-velocityisotropic

theory

has in

to the

and appliedto sphericalgeometries.Withintheselimltsit

generalprovedto be a fairlyaccuratemthod. If restricted

source-freecase it has, in addition,turnedout to be qyite

ZELTM@6bleboth dfiiC_y

The Serber-Wilsonl!eth~

untilaboutthreeyearsago●

and numerically.

ma, however,not extensivelywed here

At that tlm the computationtechniqws

Involvedwere systematizedand somewhatimproved.2 A year latera

set of specialfunctiontxibleswere completedresultlngIn a considerable

savingof cmputing time.3 The mrk involvedwas furthershortemd

when the CPO calculatorwas broughtIntothe pictureabouta year ago.

Let w considerneutrondiffusionproblemsunderthe above

restrictionsfor the mment. The corre8pmdlngmathematicaldescrip-

tion is then furnishedby the integro-differentialequationbelow:

1. IA-234by R. Serber, BM~l by A. H. Wilson.
2. LA-756by B. Carlson.
3. LA-1364,1365,1366by B. CarlsqJ .*4.~oldso~ein,●nd D. Sweeney.
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where #(r,@ d...*. the

directioncosineand 44”( )r

-lto +1.0The quantitiesW-

neutronflux as a functionof radiusand

the integralof #’(r,#+ over * fr~

and c in (1)representknownstep-functlms

of r characterizingthe asseziblyof xmsdiaunderconsideration,the

generalmediumbeing,in this case,a concentricsphericalshell.

Specifically,~ is the inversemean free path for neutrons,and c

the nuniber of neutronsemergingper collision.

The followingstepsare involvedin the Serber-WilsonMethodand

e~ression involvingtwo arbitraryconstants.

(B)Definingand derivingtwo functions).sof Y (r),havingthe

dlmmsion of /( )r , one dependingperhapson the gemtry and the

otherbeing the net neutronflux.

(C)Applyinga sufficientnumberof physicalconditions,primarily

continuityconditions,on the two functional to determinsthe arbitrary

constants.

An approximateor asymptoticeqmession for J (r)may be obtained

eitherby applyingthe @herical Harmonictransformationto (1) or by

Studyingthe integralequationequivalentto (1).1 In eithercase

we obtain:

(2) tir) - A

1. LA-247by K. M. Case, IA-m by B. Carlson. See alSOAppendix,.p.27.

● ● 00
● ● :*.

●●: : ●
●●O: ● ** ● 0

● ●.6 6
● 0 ●

● 00●g ●
●

● *o: “
● 00

● 000● : ● O*
● ● 00 ● e

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



eqUatiOZlk~ = c art (k&). me ~tit~ k,

may be eitherreal (c●1) or pure imaginary(1

For the sp~rical geomstrywhichis being

radialflu% Y(r) . 2#(r,-1) was chosenas

takento be positive,

>Cic o).

consideredthe inward

one of the functional,

tk other. Differential

equationsfor /%’’(r)and y(r) are readilyobtainedfrom (1)and

the solutionsare immdlate. For if we let += -1 in (1)we have

on the one-:

On the otherhand (1)may be writtenIn the form:

[
1 ~ (l-#) Xr,fi) ~ 4r)t(5) p*+(~+*+F~#

1
---c

Whlck Integrated over # frcm -1 to +1, gives

-5-
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and hence:

(6) #(r) =+ J“re (C.I)r12 f (r’)dr’ .
r

substituting(2) In (4)Wa have:

+

(?)~(r) -A [Q(lklr,fb)+~R(lklr, @)]s

a

where

1 /‘~ i[~((m+ik)r)-E1((=+i.k)r)] + # [El((u +ik)r)+E1((u-l.k)r)] e-r,

The functionsQ and R are tabulatedin LA-1364,LA-1365,and LA-1366,

~ ~ the *CtiOXM S @ T in the fo- for ~(r). The latteris

obtainedby substituting(2) in (6):

.

(8)#(r) =A [S(\k~r) +~T(lklr) ] s

- Ao_(c-1)

[

sin kr -krcoskr jfcoskr+krsinkr
k (kr)2 ‘+ (kr)2

The Serber-WilsonMethodmay be extendedto the antsotropiccase

and to geomtries suchas planeand cylin&tcal.l For the anisotropic

casel%s transcendentalequationfor k~ willbe different. For

othergecmtries a substitutefor the functionalJ (r)may have to

be found. And again,if a sourcefunctionis presenton the right-

hand side of (1)it may be difficultto find an asymptotice~ssion

for Y’(r). GeneralizationsIn the above&Lrectionshave on the whole

1. TransportTheoryOf Neutrons(LT-18)by B. Davison

-6-
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proved feasible,whereas,

seriousdifficultieshave

in the directionof more velocitygroqpa

been encountered.

Let

Velocity

g is the

us then turn to the

-ups ●
Insteadof

WW -% g = 1,

multi-velocityisotropictheorywith G

(1)we have the followingequationswhere

2, ... G:

In the abovaemression -g are the separateimversemean free

paths and Cgh the transfercoefficients.Denotingthe groupvelocities

byvg, C~ representsthe numberof neutronsof velocityVg emrging

per collisionof neutronof velocityVh.

calculatedfrommeasuredcross-sections.
.

Applyingthe maw principalsto (9)

we findthe followlngasymptoticform for the flux distributions:

Upswellasc are
&@

as to the one-velocitycase

~[

sinkir _ coskir
GCi A

i-l 1g i ~+Al”TqY ‘

i11whereki are the eigenvaluesand d
~

the eigenvectorsof the matrix

Cll -

equation:

(U) c21

kpl I

art(ki/=lj CM “ “ “ “ “ “ “ CIG

●

CGI
I

k&
C22- art(ki/=2~“ “ “ “ C2G

●

‘i/=G
CG2”” c~-=w’q%)l

-7-

i
al

.

u~
— arl
% G

o

0

.

0

I

,

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



After solving

(10)is determined

(11)for ki ~
U
~ ~ taking a ~ equalto unity,

exceptfor the arbitraryconstantseAiand Ii. J&
—

A )
—

is remdiedby introducing20 functional of (10), ~ r and x) ~(r ,

and requiringtheseto be continuous~tthe boundaries.Applyingthe

Z( )methodsofpp 5-6 to equation(9), ~ r and /) ~(r are readily

e ual to unityif h=g and zero if hfi.where~@ q

The functional (1.2)canbe considerablysimplifiedif we substitute

(10)on the right-handsideand then make use of the following

consequenceof (n):

wherethe lastequalityservesto defineCi. Performingthese
g

substitutionswe obtain:

(14)

&=+/ r,2=g
r

b

y{)where the functions ~ r are thosedefimd by (10).

-8-
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. .

Ifc S=O
@

consequentlyas

may? therefOrej

for g > h we have as a rule G distincteigenvaluesand

many arbitraryconstantsas boundaryconditions.We

conclude

the Serber-WilsonMethod

dealingwith fissionable

that in this case the above generalization of

iS valid. If, on the otherhand,we are

materials,for whichc-k +Oforallg>h,
e+

we can, as a rule,not counton (U) to give as many as G eigenvalues.

The resultis that we are left with moreboundaryconditions than

arbitraryconstants.1 “A nuniberof schemeshavebeen proposed,nme of

them entirelysatisfactory,which in one way or anothercirc~ent the

abovedifficulty.A new methodwhichmay in the end prove satisfactory

willbe introducedbelow. In the veryfew applicationsmade to date

it has turnedout to be both accurateand practical.

In this new mthod we replacethe quantitiesc
@

in (U) by ~

definedbelow,thus

(15)

saw

ThiS obviously

emanations.

transforming(c@) intoa right-triangularmatrix:

= o, g>h

eliminatesthe difficultiesreferredto but requires

Beforeturningto these,however,a@ defining Hg,

1. See lkansport%theoryof Neutrons (LT-18)by B. Ikwison, pp 180-185.

-9-
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the followingconsequences of (~)

then 7
@ = cgh“

Equation (n) as

msy be noted. If cgh =Oforg>h

modifledby (15)will in generalhave

G eigenvalues ki$ i = 1, 2, . . . — . art(ki/-i). ~Ukil-i)= Cii

elementsof the eigenvectors
U
Czi
~

can be obtained successively

(starting with ~ ~ = 1) sincethe determinantis right-triangular,

‘i.8., has zeros below the diagonal, and =: =O$g>i.
For the purposeof illustratingthe aboveformulaeand notation

we considerfor the mcmentthe three-velocitycsse: Consequently,

for a centralcore (forwhich~, = O) are then givenby:

(16) Y sin
%!r3shr

a(r)--~ ~
+

‘s2% r ‘

-1o-
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Due to the triangularcharacterof the determinantsand emressions

admve,the laborinvolvedIn findingeigenm~s ~ aPPl@X be-Y

conditionsis consideniblyreduced. As an exaqple,connectthe six

functional of (16)with the cmrespondingexpressionsfor an infinite

shell. We find then thatthe resultingsimultaneousequationscan be

grouped,In this case intothreesetsof two each,thus reducingthe

computationalwork.

Goingback to(lJ-),i.e.,to the defin.itionof ~ , it is evident

theitwe are tamperingwith the interchangeof mutrons. Studying

groqps#1 and #f?,for Instance,we find that for each collisionin #1~

c~ neutronsare givento #2. Hence,if thaseare givento #1 rather

than#Z?,as is done in (15),then#2 shouldreceivescmn compensation.

LettingN2/N1denotethe n-r of co~sio~ ~ =OuPs K Per co~sion

in group#1, we shouldclearlyreducec‘U (what#2 givesto #1) by

c= “NJI?2● Thisritualis performedfor eachpair of velocitygroups

and for eachmedium. However,sinceNg is obtainedas an integralover

&r) ~ V?’g(r) iS nti availableuntilthe boundaryconditionshave

beeh applied,we are facedwith X3 simultaneousequations,transcendental

in half of the unknownsinvolved. The methodrequires,therefore,a rather

elaboratetrialand errorprocedure.It is an exactmethodonly if the

ratioslVg/~are independentof r withineachmedium.

Useln (14)we lyre, correspondingto (16),the followlng

for Z(r) * ~r),

expressions

I

I

,.

-11-
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(17)

The tibove formulaecan easilybe extendedto G groupsand to the

@MM* sphericalshell. In solvingsystemsinvolvingexpressionsllke

(14)and (15)and M separatesphericalmedia,we startwith tbe 2(M-1)

equations involving ~, solve for these unknowns and proceed to the

2(M-1)equationsinvolving~ and ~-1~ etc.

Withthe ?ibOvemethod(j-velocityproblemsare essentiallyreduced

to G one-velocityproblemseach of which (forthe propervaluesof lfg)

must give the mans result for the requirad criticalparameter. The

-12-

I

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



sinepart

spherical

of the formulaefor Ng for threevelocitygroupsand a

shellof innerand outerradii~ and ag are givenby:

I

-13-
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t

Consideran untampedOralloysphereof density18.8 gr/cm3described

by the j-velocity parameter~given in LM276:

1.843.2 gig .3902
3 c@ =

.1862
/

.4725 .
.2081 .2783 .58Q4

We propose to calculate the critical radius of the sphere and the

three flux distributions using the method described above. These are

then to be compared with the results In LA-I.272,obtained by the

Integral Theory Methti.

We take as a first trial, N,/N9 = 2.6 and I?e/N== 1.4; as a second
A d c 2

trial 2.6 and 1.45;and as a final trial 2.7 and 1.4.

the “fd.lowingtable is obtained:

By calculation

CASE

Calculated
Quantities

I

M1/N3-2.6
N@3=l.4

1.2355,.0224,-.1509

1.3166,.0829

1.5111

.35319,.26290,.2765(

1.2355,1.13%,1.1530

0 1.3166,1.3$42

0 0 1.51.11

II

N1/N3=2.6
~/N3=l.45

1.2355,.0343,-.1509

1.3047,.06go

1.5250

.35319,.25692,.28142

1.2355,1.1339,1.1578

o 1.3~7,1.35&2

o 0 105250

III

lvl/N3=2e7
~2/N3=l.k

L.2355,.0091,-.1717

1.32,9,.0829

1.5319

.35319,.26952,.28381

L.2355,1.lh60,1.1602

o 1.3299,1.3591

0 0 1.5319

.

-14-
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Table (continued)

CASE I II III

la2&
‘1’ 1$ 1 1 -.1460 .4943 1 -.2XL0 .6470 1 -.0635.9447

=2 &
2’2 0 1 2.3438 0 1 1.0877 0 1 2.2153

e: oo~ oo~ oo~

we

In

of

by

lkking
%

=1 and solving <(r) . Q(k3~,~/~3c~) = O for ~ “

find: Case I: %=8.489, CaEW II: %=8.323, and Case III:~=8.243.

solving 2( )
3
r = O and calculating the quantities below we make use

one of the Serber-Wilson!l%bles,in this caseLA-1364.

Continuingthe work,denotingki/~gc~ by $:, likewiseQ(ki~, $:)

CASE I

.7419,.5987,.6225

.82w, .8544

. .$?p!o

2.9982,2.2s8,2.3477

.34600,.43355,.4280c

-.12417,.13861,.088u

.07418,.027&

.Ooo11

II

.74~9,.5881,.6308

.8178,.8630

.g821

2.9396,2.1383,2.3422

.356k8,.43580,.4283:

-.l12d+,.17882,.08781

.12.167,.02751

.0000Z

III

.7419,.6104,.63b9

.8416,.8672

.9860

2.9113,2.2217,2.33~

.3613h,.43389,.42849

-.10588,.13907,.08768

.07454,.02749

.00002

-15-
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Table (continued)

I I

,3
‘2 -1.25136

,3
‘1 .77364

-1.1743

.9335

-.04860

-.021g6

use

for

5“

the aboveresultsfor

I
II I III

.04376 -1.12286

.62094 I .37201

.0393 -1.0531

.9503 .4438

-.05115 I .04514

.03438
I

-.01760

4-

V
4-

pnd /(z which shouldbe equal

the correcttrial combination) to interpolate for N1/N3

Linearinterpolationis in this caseequivalentto solving

-.04860+ + (~ +.6).~, (!!?. 1.4) = o,
‘3

● 5 l?3

.0046 ‘i N-
-.021g6+ “+’ (q -2.6)+% (# - 1.4) =0,

3

leously. The solutionof (21.)gives IT1/N3=Q.6S3andN2/N3=l.417

,ch,by calculation,we find k2=.26430,k3=.28207,a1=8.301,

-16-
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2a =-.l&, 3
1

a~=.7@!J Cr2=1.6W2j~=.6918g and A2=-.5378.

Thisproblemwas also solvedusingthe two-velocityparametersof

ExampleII. Result: ~ = 8.315. Furthermore,a variationof the

~thod was tried,making~U ratherthan~= equalto zero. ~ result

in this case: % - 8“~”

The followingtablegivesa comparisonof the Serber-WilsonMethod

and the Integral Theory lkthoa:

% ~#3 ‘2/N3
Theory

l-vel? 2-vel ● 3-vel. j-vel. 3-vel.

S.w. . 8.39 8.32 8.30 2.653 1.417

I.T. 8.’72 8.70 8.70 2.630 1.416

*kramters (LA-3.276):w-= .28=, c = 1.2936.

The flux densities(as

well. Cf. graphon page 24

functionsof r) do not agreenearlyas

and TableVII (SecondSet) in IA-1272. .

-17-
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EXAMPLEII

We considernext an Oralloy(Oy)sphereof density

tampedby aninfiniteTubal.loy(Tu)shellof density19.0and look for

the criticalradluaand the flux distributions.To simplifythe work

herewe contentourselveswith a two-velocitycalculation.In LA-I.276

we fitithe followingpareuwtersfor Oy and Tu:

For the fluxdistributionswe writeaccordingto

of

to

the medium,althoughfor the sake

this effect.

●553
1.863 ‘

.62
I.50 ‘

and a ~ in general are function8
s

of simplicity,we emitnotatio~
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1

I

The functional Rt(ur,k/cr)and Tt(kr)correspondto the flux

densities(24). Notethat the latterhave a specialform,different

frcm (10),

infini.ty.

(27)

$ with
.

due to the requirement

Hence:

Rt(-r,k/~ )

c fmm k/o- =

—

thatthe neutronflux vanishat

= c ~ e“’”~((1+ $)=r); Tt(kr)=-1% e-&,
(kr)

C arth(k/cr).

~ to the firstIMU% of the computation,taking2.4, 2.5, @

2.6as successive trials tor H1/IV2,we calculate:

Orarloy Tu

H1/N2-2.4 N1/I?2=2.5 r?#v2=2.6

;Zu’ 12 1.2440, -.2798 1.2440, -.31.45 1.2440, -.3492 .g8 .62

G’Z21.922 0 1.6958 0 1.7305 0 1.7652 0 .50

~, k2 .34~55,.35585 .34155, .36790 .34155 .37987 .0W69 .18863

“12cl, c
1 1.2440, 1.2617 1.2440, 1.2763 1.2440, 1.2923 .98, .9035

cl, C2
22 - 1.6958 - 1.7305 - 1.7652 - .50

2
d:, ul 1 -8.532 1 -5.255 1 -3.902 1 -4.374

=1, a 2 ‘o
22 1 0 1 0 1 0 1

Thesecalculations are followedby threeone-velocitycalculations

and the computation of ~ and B1. The resultsare givenin the tablebelow:
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2.4 6J.29 .6322 9.408 .876 1*345

2.5 5.905 .5827 6.=5 .870 1.237

2.6 5.696 .5403 4.785 .883 1.144

Finally,testingN,/Nnby calculatingD whereD = left-handside
J.- G

of (25,a) minus the right-hand side}

NJN2=Q.4,D--.0518;N#J2-2•5~

Hence,by interpolationlV1/N2=2.457,

Bl=l.283,ad by

~=7.091.

The average

we obtain:

D=.0387;NJN2-2.6, D=.I.Iz2.

~-6.001, B2=.6040,~+a~ =.872,

calculationka(Oy)=.36274,a?( Oy)=-6.219,and
c &

velocity~ in the core is then givenby:

; = 3.457+ [*yl)( ](2 457 vl * 1.000&2v2) = 9.04 Can/shaketo be

comparedwith the IntegralTheoryresultof 8.g8,(estimatedfrom

the tableof ~ vs tamperthicknessgivenin LA-W6).
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EXAMPLE 1S1

As a finalexamplelet us considerthe sameproblemas in Exaqple

[but with a finite rather than an infinite tamper. We take the

xter radius a2 equal to ~. The parameters are the sax as in .

caqpleII but the Tu fluxdistributionswillbe differentand the

~ Co-tiom more complicated.We have:

A )lr

29) ~:

9foretmitlng CknlJnthe

bbreviatednotation:

sink2r

‘A2T

+

[

sinhk2r, g co;%
-B 2~2-2r 1
boundaryco-itions we introduce the following

We denoteQ(kir,ki/=gc~)by ~g(r) ~

by S@(r), and similarlyR(kir,kipgcj) by R=(r) ~

by T&(r): The boundaryconditionscan thenbe writtenas:

1

I
I

-22-
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a

n

-
2
3

.

.NuG
1

A
P
P
R
O
V
E
D
 
F
O
R
 
P
U
B
L
I
C
 
R
E
L
E
A
S
E

A
P
P
R
O
V
E
D
 
F
O
R
 
P
U
B
L
I
C
 
R
E
L
E
A
S
E



,.,

B2=-.7282,=2=-.9987,B1=-1.7170,~=-.8957, andw calctiation

I

The results of the calculations are smmarized in the table below:

I II III

calculated
mtities N#V2=2.15 I?l/N2=2.20 N#f2=2.25

kl, k~ .34155,●32532 .34155,.3314$ .34155,.33761

% 6.800 6.658 6.522

2
a~) a: + ~ 5.297, .906 9.247, .895 25.439, .887

z
‘2$ 2 -.7!368,-.9990 -*7599,-*9989 -.7257,-.9987

E‘1’ 1
-1.8652,-.9033 -1.7851,-.8998 -1.7u7, -.8954

D -.0903 -.0447 .0035

Hence, by interpolationN1/N2=2.246, ~= 6.532, ~+~=.wj

k2=.337U, ~; =22.%1, and~=-2L653. For the tamper we have as in

z~ II kp@69, k2d3863, and +4.374.

The average velocity; in the core is given by:

7= 3.2U -
[ 1(2.246&1Vl) + (1.000/~2V2) = 9.24 compared to the .

~tegral Theory remiLt of 9.14 given in Lk1276. me critical radii also

agree well (S.W.: 6.53,I.T.:6.68),the error being in the direction

$MKIof the magnitude one is accuslxxmd to in one-velocity calculations.

I
I

#

i

-24-
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APPENDIX

I

I
I

TEE SPHERICALlfARhK)NIcMETHOD

We would like to compare the Serber-Wilson Method with another

important method, the Spherical Harmonic Method,

the complexity of the computations involved, and

accuracy one may expect. At present, the latter

both with regard to

with regard to the

comparison cannot

be tie since very few multi-velocity calculations have been carried out

with either method. In the ’one-velocitycase, however, it is generally

held that the Serber-Wilson Method and the Pa-Approximation (the

Spherical.Harmonic Approximation of order

accuracy is concerned, about equivalent.

For the purpose of comparing the two

d

three) are, as far as

methods with regard to

complexity (caqputationalas well as mathematical) the following brief

outline of the Spherical Harmonic Method will probably suffice. We

consider again the &velocity isotropic theory and expand the flux

distributions J’j@

(30

in Legendre series:

*S(2k+l) ~g,k(r)pk(@$ ~
k=O

where n denotes tliedegree of approximation and Pk(/L) the Legendre

-28-
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1

I

Polynomials. We substitute the above expansion in (9), multiply by

P~(p), 4-0, 1, ..0, n, on both sides and integrate over +from

-1 to +1. Before

(1-fi2)P~(# are

performing these integrations, *k(@ W

conveniently replaced by:

(2k+l)~k(/+ =
[. 1
(k+l)Pk+l$@+ kl?k-l(fi) ,

“(32)

(2k+l)(l-p2)P:(#
“ ‘(k+l) [pk-l(@ - ‘k+l(@ ] ~

respectively. Carrying out the above steps we arrive at the following

system of differential equations:

(33) (’+1)(Dr+
%) ~g,k+l+ ‘(Dr- ‘s) ~g,k-1+ (2k+l)w

td%,k “

[

Gx Yh=lshcgh h,O; k = 0}

=

o; k=l, 2, .... n,

(9) k+l
– ‘r $g,k+~+k [rDr-(a-l)]#8,k-~+(a+l)~ ~g,k=r

usually referred to as the Pn-transform of (9). For reasons which

will not be discussed here, n is usually taken to be odd, n = 1, 3, 5, ...

Equations (33) can be written in several alternate forms. For

instance, if we let
g,’ = #g,k/rk+l, we Obtain:Y

(
G

x #h=l ‘hcgh h,O; k = 0>

=
O; k=l, 2, .... n,

-29-
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I

and replacing r2 by x,

we have:

denoting the right-hand side of (34) by RHS (34),

(35) 2(k+l)Dx~g,k+~+k [2XDX-(*-1)] tg,k-l+(-+l)-g ~g,k = RHS (34).

To derive the differential equation for $g,o for a Partic~ar n>

the fol.lowlngformula, obtained from (35) by differentiation, is very

useful:

For with the aid of (36) we can ellmina’tethe higher order #g,k’s and

be left with a (n+l)-order differential equation in #g,o alone.

We obtain, omitting the subscript g for the moment:

1“
1

where 2D#’g,l =

Pn-approximation

n=l,3$ -5:

“(3
sin- +g,wl ● o ingh@h,O)- ~ ~,C)”

we have the following differential equations for

-30-
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I

I

i

1.

~

10

\

.

.

G
L-c+z’ h @ h,O
‘g h=l

+g,o

,[KK
6 6llf50--1575W4D~+525u2.25Dr‘1

G
1

‘5: + z #
g,o ‘a=h=l ‘hcgh h,O

a~(l.155e~-xwo*231)D~

where it is understood that the denominator in the brackets operates on

the right-hand side M the

Note that the operators in (38) are continued fraction approxi-

mations of Z/art z

numerator on ~
g,o”

Jwith z=iD - For we have:
43”

(39) z/at z=l+z
2m/’/’

Denoting the (n+l)th approximation (the first (n+l)
.

[z/*zln~ “e “e ‘n ‘~ ‘emti case:

(40) Pn: [(iDr~g)+art(~r/w~]n ~g,o=~

terms)of (39)by

It can now readily be verified that the general solution of (40)

is given by:

-31-
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J.

provided the ki’s and a:’s satisfy the following matrix

(42)

I
..

C(31

which obviously

ki c- in this

Cd%ki cJ-20*0*”e*eclG
C21

.

[1kJ=2
’22 - -Tn”” “ C2G

●.

.

.

●

✎

✎

CG2 CGG -

equation:

approaches (U) as n approaches

case from an algebraic equation

i \
,a
1

‘2 i—a
‘1 2

.

.

.

~ ~i

‘1 G

I

~. The eigenvalues

in k: of degree

~(n+l)G. We can, thersfore, expect #n+l)G eigenvalues in the right

half of the complex plane.

In comparing the Serber-Wilson and the Spherical Harmonic Wthods

we observe that the cliffiuclty of having a sufficient number of ki’s

is replaced by the hardships involved in having to deal with complex

ones, and that the Spherical Harmonic Method has #n+l) tinws as many

o

0

.

.

.

0

-q:: “:: “~” J “:” ::”
● 0 ●0: ●:0 ●0: ●:* . .

a-ik”:●:““i :“;
●

● :*: ●***●0:
● * ● 00

● 0 ● ** ● 0
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ki’s as the Serber-Wilson Method, which implies (for n =3) more terms

‘?s to @ctiatij ‘tcoin (41), more czg Finally, the boundary conditions

associated with the Spherical Harmonic Method are more difficult to

apply, not only because there are more of them (n z 3), but also because

the remaining angular moments, i.e., ~g,k> k= 1, 2, ...$ n, must be

computed● For the conditions usually imposed on the g,k’s (or +g,k’s)
Y

are that they be continuous a$ each boundary.

In Pi-Approximationwe obtain from the first equation in (37):

and hence:

where Sl(x) = (sin x - x cos x)/x2 and Tl(x) = (COS x + x sin x)/x2.

In P3-Approximationwe first solve for 2Dx#g1 in the third

equation of (37), then obtaining 222! D~#@ and

first and second equation:

(45)

1~3!D~#tiE3!~Dr;Dr:Dr#a=4~ D6$$
●e ●**.OO55$ln:;05wg r @ “

.0 ● 0 ● ● :%
● *● ..:

● 0
:
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these differential equations we have:

‘iYkl-ggu—
[

22
i

-g 2

%2=

3%3=

[

‘iAi
T(kr) ,a #i s#@+ ~ 1 i

[
where S2(X) = (3-x2)sin x -3X COSX

[ 1T2(x) = (3-x2)cos x + 3X sinx /x3,

S3(X)= (15-6x2)sinx - (15-X2)X Cos x

s3(kir)

‘%3,“

.

[ 1T3(x) = (15-6X2)COSX + (15-x2)x Sfix /x4.
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