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Forevord

This paper was prepared as a contribution to the Proceedings of the 45th Scottish
Universities Summer School in Physics, hel¢ at the University of St. Andrews in Au-
gust 1994. The School dealt with a range of topics in laser-plasma interactions, and was
attended by about sixty graduate students and researchers from Europe and the United
States. The paper was the basis for two lectures on the subject of hydrodynamic insta-
bilities given at the School. The focus of the paper is on buoyancy-driven instabilities of
the Rayleigh-Taylor type, which are commonly regerded as the most important kind of
kydrodynamic instability in inertial- confinement-fusion implosions. The paper is intended
to be pedagogical rather than research-oriented, and so is by no means a comprehensive
review of work in this field. Rather, it is hoped that the student will find here a foundation
on which to build an understanding of current research, and the experienced researcher
will find a compilation of useful results.

The aim of the paner is to discuss the evolution of a single Rayleigh-Taylor-unstable
mode, from its linear paase to its late-stage constant-velocity bubble growth, with a brief
consideration of the saturation of linear growik. The influence of other modes is invoked
only ir '~ :short-range sense (in wavenumber space) of the Haan saturation model. Owing
to limitations of time in the lectures and of space in the Proceedings, the treatinent of other
instabilities such as Richtmyer-Meshkov and Kelvin-Helmholtz is necessarily very brief, and
entirely inadequate as an introductory discussion. Likewise, there is no reference to the
effect of convergent geometry, to long-range mode coupling, or to shape effects in three-
dimensional growth. Furthermore, there is no reference to the large body of experimental
research related to hydrodynamic instabilities.

I would like to thank Chuck Cranfill, Steve Haan, and Brad Beck for their kindness
in reviewing and commenting on preliminary drafts of the paper.

This work was supported by the United States Department of Energy under contract
numbe: W-7405-ENG-36.



Hydrodynamic Instabilities in Inertial Confinement Fusion

Nelson M. Hoffman

Introduction and Survey of Instabilities

An ideal inertial-confinement-fusion (ICF) implosion is exactly spherically symmetric.
If the implosion departs from spherical symmetry, the imploding capsule’s performance
is degraded in several ways. For example, the conversion of the imploding shell’s kinetic
energy to the fuel’s internal energy becomes less efficient and the compressian of the fuel
to high density may be less extreme. In high-efficiency capsules ignited by a central high-
entropy bubble or “hotspot” (Lindl 1988), the surface area through which the hotspot
loses energy by thermal conduction may be increased. Increased surface area also allows a
particles created in fusion reactions to escape the hotspot, further hindering the hotspot’s
self-heating. In severe cases, asymmetry can lead to the breakup of the imploding shell
(at larger spatial scales) or the creation of hydrodynamic turbulence (at smaller spatial
scales). Turbulence in turn may have a number of deleterious effects, involving the turbu-
lent transport of mass, momentum, and energy in ways that corrupt the highly organized
evolving structure of the immoding capsule.

ICF impiosions, whether real or ideal, are .ubject to a variety of hydrodynamic insta-
bilities that amp!lify small departures from spherical sy.nmetry. Instabilities can cause a
disturbance to grow from an amplitude which may at first seem insignificant to a level that
can seriously disrupt the flow, as described above. Instabilities do not themselves generate
the initial asymmetric disturbance, or “seed”, from which the final disruption grows. In-
stead, the seeds arise from limitations in our ability to fabricate perfectly spherical shells, to
generate perfectly uniform laser beams, or to create perfectly symmetric thermal radiation
fields in hohlraums. Small perturbations of a capsule’s surface caused by the roughness of
the material’s crystal structure, or by machining marks from the fabrication process, are
examples of instability seeds. Other examples include the interfecreuce pattern in a focused
laser spot, which can imprint disturbances on an initially smooth surface irradiated by
tiie laser. Thus the seeds simply reflect the inevitanle deviztion of real-world experiments
from the idealized constructs of theory. Instabilities then cause these seeds to grow to a
size that may have serious consequences for an ICF implosion.

Hydrodynamic instabilities are straightforward consequences of the conservation equa-
tions of hydroaynamics. In their idealized form they are just solutions to these equations
for specific initial and boundary conditions corresponding to somewhat simpliied versions
of real flow fields. For example, the Rayleigh-Taylor instability (Taylor 1950), which we
shall encounter often in ICF in a generalized form, arises i the case of two initially motion-
less incompressible fluid layers of unequal density, where the denser fluid is supported atop
the less densa fluid in a gravitational field. If the interface, or contact surface, between the
layers is disturbed so as not to be exactly horizontal, then the Rayleigh-Taylor instability
ensues. The interiace disturbance, which is the initial seed in this case, grows until even-
tually bubbles of the less dense fluid ascend through the denser fluid while jets or “spikes”
of the denser fluid plunge downward through the less dense fluid. The Rayleigh-"Taylor in-
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stability is never encountered in this precise form in ICF, because gravitation plays no role
in an ICF implosion; the time and space scales of ICF are simply too small. However, the
accelerating and decelerating forces produced by pressure gradients acting on the shell of
an ICT capsule are effectively analogous to gravity. Thus hydrodynamic phenomena arise
which are for all practical purposes equivalent to the Rayleigh-Taylor instability, appropn-
ately generalized. For example, in ICF we may encounter compressible flow fields which
are converging or diverging, which do not necessarily have sharp boundaries separating
fluids of different density, and in which the acceleration force is not necessarily constant
in time.

A related :nstability is the ablation-surface instability, sometiines called “Rayleigh-
Taylor iustapility at an ablation surface,” or the Bodner-Lind! :nstability (Bodner 1974,
Lindl and Mead 1975). This occurs when intense radiation, either laser or thermal, heats
a material interface and ablates it. The ablated material flows away iroia the interface,
creating a high-pressure, low-density corona which accelerates the unablated material.
The density decrease from unablated to ablated material corresponds to the contact surface
between the two fluids in the incompressible Rayleigh-Taylor instability, while the pressuie
increase from unablated to ablated material gives an acceleration force. Two effects that
are not present in the incompressible Rayleigh-Taylor instability act to reduce the growth
rate in the ablation-suiface instability: the ablation flow of material through the unstable
region, and the smoothing of tamperature perturbations by the radiation flux.

Other instabilities of particular consequence for iCF are the Richtmyer-Meshkov insta-
bility and the Kelvin-Helmholtz instability. The Richtmyer-Meshkov instability (Richitmyer
19€0) occurs when a shock wave crosses the interface hetween two fluids of unequal density,
traveling in a direction normal to the interface. This can be viewed as the ):miting case of
a Rayleigh-Taylor instability in which gravity acts for an iufinitesimally short duration on
the fluids, imparting an impulsive acceleration to the interface and generating fluid motions
that persist even in the absence of gravily. The Kelvin-Heimholtz instubility arises when
the two fluids are initially in motion, and there is a variation across the interface of the
velority component parallel to the interface. Such a gradient in the parallel velocity, re-
ferred to as “velocity shear”, is unstable i 1t is sufficiently severe, and leads to the creation
of vortices which entrain the two fluids in a characteristic rotational motion. The Kelvin-
Helmholtz instability (IKelvin 1910) can arise along the interface between the ascending
bubbles and descending spikes of late-stage Rayleigh-Taylor instability, where the shear
due to the differential motion of these structures can be significant. Other circumstances
giving rise to Kelvin-Helmholtz instability include the case of a shock wave crossing an
interface in a direction not precisely normal to the interface (Diamond et al. 1993). Shear
is generated by the deviation from strict normality, so that both Kelvin-Helmholtz and
Richtmyer-Meshkov instability can occur in this situation.

We shall see later that Rayleigh-Taylor instability and the related ablation-surface
instability develop whenever the ucnsity and pressure gradients have opposite signs during
an ICF capsule’s implosion. This occurs primarily during two episodes of the implosion:
ab.ation-surface instability arises at the outer surface of the capsule’s shell during the
initial inward acceleration of the shell, while Rayleigh-Taylor instability arises at the inner
surface of the shell during the final deceleration of the shell by the low-density, high-
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pressure hotspot at the capsule’s center. Between these two episodes, the shell is coasting
at nearly constant velocity, and perturbations grow via the Richtmyer-Meshkov instability,
induced by the shocks which emerge at the inside surface of the shell. If the shocks are
not normal to the interface, Kelvin-Helmholtz instability may occur as well.

A. Linear analysis of Rayleigh-Taylor Instability

It is worthvrhile to derive from basic principles the small-amplitude behavior of the
Rayleigh-Taylor instability, both because we shall thereby discover some of the properties
of the instability and because the exercise will serve as an example of the technique of
linear perturbation analysis, widely used in instability studies. The discussion follows
that of Chandrasekhar (1961). Our starting point is the system of equations describing
the hydrodyn:umic motion of an ideal fluid (that is, a fluid in which there is no energy
dissipation or heat ex~hange), known as the Euler eqnations:

%t‘i+v-(pv)=o, (4-1)

o 4 plv- V) = ~Vp+ pg; (4-2)
Equation (A-1) is called the continuity equation and Ea. (A-2) is called the equation of
motion or momentum equation. Here p, v = vyX+v,y+V,2, and p denote respectively the
density, velocity, and pressure of the fluid. An external force, such as gravity. acting on the
fluid is represented by g = g% + g,¥ + g2 In the particular example of Rayleigh-Taylor
instability we shall consider, the fluids meet at a horizontal interface and are initially at
rest. We take the normal to the interface as the direction Z , so that gravity acts along z.
Since gravity acts downward, g. < 0 and g = —|g.]Z. All physical quantities are initially
uniform throughout both fluids, away from the interface.

To investigate the stability cf hydrodynamic motion we ask how the motion responds
to a small 1i_.ctuation in the value of any of the flow variables appearing in the Evler
equrations. If the fluctuation grows in amplitude so that the flow never returns to 1ts
initial state, we say that the flow is unstabie with respect to fluctuations of that type.
Accordingly, we replace the variables in Eqs. (A-1) and (A-2) as follows:

P=P0+Pl,
V=V0+V],
Pp=po+n.

The quantities with subscripts “0” represent the unperturbed, or “zeroth-order” mo-
tion of the fluid, and thus must themselves satisfy Eqs. (A-1) and (A-2). The quantities
with subscripts “1” represent a small perturbation about the zeroth-order quantities; that
is, py << po, V1 << Vg, and p; << pg. Substituting these expressions into Eqs. (A-1)
and (A-2) gives

0(po + 1)

2V (o + 21)(Vo + V)] =0,



(Po+ ;1 &13‘-:_“') +(po + p1)[(Vo + V1) - V](Vo + v1) = =V(po + p1) + (po + p1)g.

or
0 7]
§+%+V'(P0V0+P1V0+P0V1+P1V1)=0, (4-3)

Po 9t P ot Po 3t P1 ot -

po(Vo'VVO+V] 'VVQ +V0'VV] +v; 'VV])+p](V0'VVO+V] 'VVC+V0'VV] 4+ v, 'VV]) =
—Vpo -~ Vpi + pog + 18. (A-4)
The fact that the zero*.. .rder quantities satisfy Eqs. (A-1) and (A-2) means

0
%+V'(P0Vo)=0, (A-3)

ov
Po afo +po(vo - V)ve = ~Vpy + pog. (4-6)

We can subtract the zeroth-order equations Eqs. (A-5) and (A-6) from Eqs. (A-3)
and (A-4). This amounts to dropping all terms in Eqs. (A-3) and (A-4) which contain no
appear~nces of the subscript “1”. Furthermore, we can omit terms in Eqs. (A-3) and (A-4)
which contain products of first-order quantities, since thcy are very srnall in comparisen
to terms which are lirear in first-order quantities. This process of omission of quadratic
quantities, by which we vbtain a system of linear partial differential equations, is called
linearization of the peiturbed equations. Linearization is valid onlv if the periurbat.ons
are sinall. The result of linearizing and of subtracting the zeroth-order equations is that
Eqgs. (A-3) and (A-4) become

9p,

W+V'(P1Vo+PnV1)=O, (A-7)

ov Ov
P 70 + po-wl + po(v1 - Vvo +vo - Vi) +p1(vo - Vvg) = —=Vp, + pig. (A-8)

Superposed fluids with density discontinuity
We now restrict our attention to the Rayleigh-Taylor instability in particular. For the
problem as it was posed earlier, the fluids are initially at rest. This means that vq = 0, so
that Eqs. (A-7) and (A-8) become
Op;

W+V'(P0V1)=0, (A-~-9)
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po;%l =-Vp, + p18. (A-10)
We now appeal to the fact that, for many situations of interest in ICF, unstable flow
occurs at velocities much smaller than the local sound speed. This has the effect that
accelerations in the flow are not strong enough to change the density of a fluid element
significantly, so the fluid moves without compressing or expanding. In such a situation we
call the flow incompressible. Provided that we are well away from shock waves or centers
of convergence, the assumption of incompressible flow is ofien valid. To say that fluid
elements move without changing density is to say that the Lagrangian total derivative
(also called the total substantive derivative) of density is zerc, that is,

%=-gt—P+v-Vp=0, (A-11)

Applying this equation to our 1astability analysis, we substitute the perturbed expres-

sions p = pg + p) and v = vy + v; into Eq. (A-11), and recall that both v¢ and the time

derivative of p, vanish, since they describe the static initial state. We also linearize the

result, dropping nonlinear terms in the first-order quantities, as before. The resuit is that
Eq. (A-11) becomes

0
—apTl-}-V]-Vpo:O. (A—12)

Comparing this equation to Eq. (A-9), which ve write in expanded form as

E;
.gt_’+pov-v,+v,-vpo=o, (4—13)

we see that subtracting Eq. (A-12) from Eq. (A-13) yields

V'V]=0. (.‘1—14)

This is a consequence of the assumption of incompressible flow. We can use either Eq.
(A-12) or Eq. (A-14) to replace the linearized continuity equation Eq. (A-9) under this
assumption.

To proceed, we write out the vector equations (A-10) and (A-12) in component form.
The linearized momentum equatioa (A-10) becomes

Ov) . __apl +
Po 6t - al_ P19z,
ov Op
£o 6;"=—~a—y’+pngy,
Po 6t - 62 P19z,



while the linearized :scompressibie continuity equation (A-12) becomes

dp 0po dpo dpo _
BtV Ty g =0

Because gravity acts only in the £ direction, g. = g, = 0. Furthermore, since pg 1s uniform
throughout each medium, with its only vuriation occurring across the horizontal interface,
we have O0py/0z = Opy/By = 0, while 9py/0z is non-zero, but only at the interface. Thus

the linearized incompressitle component equations may be written, using g = |9:] = —g.,
Pca;x = —%%, (4 - 15)

poa’a’;’ =—%—’:, (A-16)

poa;;' =—%--plg, (A-17)

-a;-Tl+v1,%?=0. | | (A-18)

It will also be useful to have Eq. (A-14), which expresses the nondivergence of the first-
oxder flow, in component form:

av“ 3v1, 6v1, _
B + 3y + 3, = 0. (A-19)

The next step in our analysis is to carry out a Fourier transformation of the system
of equations (A-15) - (A-19). This is a powerful technique for the solution of differential
equations, because of a useful property of Fourier transforms: ii F|f(t)] is the Fourier
transform of the function f(¢) with respect to the independent variable t, then the Fourier
transform of the derivative df/dt is

Fldf/dt] = isF[f(1)],

where s is the transform variable. Thus a differential operator acting on a physical quan-
tity becomes simply a product of the correspending transform variable and the Fourier
transform of that quantity. Accordingly we define the following two-dimensional Fourier
transforms with respect to £ and y:

Vlr(’-t,ky,z-.t) = Fzy[vlz(I,y,z’t)]

1 <+ 00 “+o0o )
=2 dT/ dy vl:(r,y,z,t)e'(k':+k'y),
27 - 00 —00

‘flll(kz’k!l’z’t) = FIV[UIV(I’ y,z’t)],
Vi(kz, Ky, 2,t) = Fpy[via(z,y, 2,0)],
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P(kg,ky,z,t) = Fyplpi(2,y, 2, 1)),
R(ke,ky,z,t) = Fyy[pr(7,y,2,1)).

We do not transform with resp~ct (o z, because the £ direction does not share the symmetry
of the other two directions; the linearized component equations (A-15)-(A-19) are invariant
under the interchange of z and y, and it will turn out that solutions are waves in the (z,y)
plane. Furthermore, zeroth-order quantities such as pg are not functions of z and y, which
simplifies the Fourier integrals. The transform variables k, and k, are called the x and ¥

components, respectively, of the wavevector k, whose magnitude k = \/kz + k2 is called

the wavenumber. Corresponding to the wavenumber is a wavelength A = 2= /k.

Additionally, we shall seek solutions whose time dependence is proportional to e'.
This is a standard procedure when Fourier transfurming differential equations. U, for
example, we suppose tha*

"lx(knky, z,t) = f/,,(k,,kv,z)e",

then

aVlz = “f— e = AV

ot TV V12
Thus, again, a cerivative can be replaced by a product. The variable v is called the
frequency.

Performing the Fourier transforms of the component equations (A-15)-(A-19), and
raking the assumption that the time dependence of the solution is given by 7!, where 4
may be a function of k; and ky, results in

vp0Vir = —ik, P, (4 - 20)
1poVry = —1ky P, (A-21)
. oP

TPoV1: = =5 = gR, (4-22)

R+, 2P0 - 2
TR+ lza~ —0, (A_-'a)

/,

ik,v,,+ik,v,,,+%¥=o. (A -24)

The solution of the equations (A-20) - (A-24) is now straightforward. Multiply Eq.
(A-20) by 1k, and multiply Eq. (A-21) by ik,:

i-YPOk:‘,lz = kzzp,
i7poky‘,]y = kyzp.

Add these equations:
i1p0(k:Vir + kyViy) = (k% + k)P, (4 -25)
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From Eq. (A-24), solve for k; Vi, + k, Vi, = i0V},/0z and substitute in Eq. (A-25):

aV]' _ 2
7%72— = k*P, (A -26)

using k? = k? + k3, the square of the wavenumber. Next we eliminate R between Eqs.
(A-22) and (A-23). Equation (A-23) implies

_ 1. 0po
R= __V“ Bz

which we may substitute into Eq. (A-22) to obtain

oP = apo
5 = —-vpoVi: + Vuaz

Finally, solving for P from Eq. (A-26) and inserting here we find

Vi:
o —) =k PoVu(l——g—-gﬂl (A-27)

E(Po B2

Equation (A-27) does not have solutions for arbitrary values of v, once k, g, and ps(z)
are defined. Solutions exist only for a particular value of v, called the characteristic value
or eigenvalue. Equation (A-27) is called an eigenvalue equation, and its solutions V;, are
called eigenfunctions.

Since we are considering fluids of uniform density, pg is constant everywhere except at
the interface. Therefore, away from the interface, Opg /0: vanishes and py may be canceled
from Eq. (A-27), leaving

62‘ lz
0:?

The general solution to this equation is

= k*Vi,.

Vi = Aetk® 4 Be™%:,

The vertical velocity should vanish at large distances from the interface, and so we
choose a solution with A # 0,B =0 for 2 < 0 and with A =0,B # 0 for z > 0. V}, must
be continuous across the interface since a velocity discontinuity would require an infinite
acceleration and therefore an infinite force. Accordingly we select

Wett 2 <0
Wi, = E )
We "% ,2>0
where W = V),(z = 0) is the value at the interface.
The derivative 8V}, /0= is not continuous, however. It has the value kW immediately

below the interface and —kW immediately above. Equation (A-27) expresses the rela-
tionship between the discontinuity in 8V;,/0z and the discontinuity in density. We can
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use this relationship to derive a boundary condition at tne interface and determine the
frequency eigenvalue v in ierms of the gravity g, the wavenumbe: k., and the density jump.

To do so, we integrate Eq. (A-27) over an infinitesimal element of z that includes
the interface z = 0. The derivative of a quantity, when integrated, then gives simply the
change it the value of that quantity across the iaterface. Thus the left-hand side of Eq.
(A-27) integrates to

| e = po Tt = —ule > ORW - po(s < OkW
= _k“’(pabove + Pbelow) = Il, (A - 28)

where pgpeve = po(z > 0) is the density in the upper fluid and pyeiow = po(z < 0) is the
density in the lower fluid. The first term on the right-hand side of Eq. (A-27) gives, upon
integration,

kzpovlzdz = ":2“’(1’ahovee + Pbelou-e) = (A-29)

The second term on the right-hand side of Eq. (A-27) gives

Jpo szg ¢ dpo K2 Wg ¢
- k2 A g = —
IR -7 2. - v J_ 0z dz P,
K21V
= - g(Pabove - Pbclou) = Is. (.4 - 30)

In the limit that € soes to zero, I, vanishes, because it is proportional to €. On the
other hand, I, and I3 are finite; they are, in effect, integrals of delta functions. Thus we
must have I, = I3 or

LQW

_k“/-(Pabove + f’belou-) = (Pabole Pbelou-)-
Soiving for v, we obtain
(Pabove Pbelow)

72 = kg )
(Pabole + Pbelow)

Define a dimensionless number A, called the Atwood number:

(Pabove = Pbe low)

A= .
(Pabave + Pbelow)

Then 4% = kgA. Since solutions depend on time as ¢!, we have, for example,

v {H(q,k Jetke 2 < 0}

= A-31
’ W(ks, ky)e ke 2> 0 ( )

11



If padove > Pielow, then A is positive, the interface is unstable, and the perturbation grows
exponentially with growth rate v = /kgA. If, on the other hand, pasove < Pbelow then A
is negative, v is imaginary, and the inter“ace oscillates with frequency Im(y) = vkgA4.

Effect of a continuous density gradient

In actual ICF situations, the interface between two materials is never truly a dis-
continuity. Instead, the density varies continuously with position, aithough sometimes the
gradient can be rather steep. Often, however, the density varies continuously with a length
scale comparable to perturbation wavelengths of interest. To find the effect of a continuous
density variation on the growth rate of the instability, we need to repeat the above analysis
with a smooth variation of pg(-). '

A treatment of this problem was carried out by LeLevier et al. (1955) for a model
density profile defined by

A .
Dpelow t+ '2_pe+hz,z <0
po(z) = Bp , (A-32)
Pabove — '2_5- z,z >0

where Ap = pabove — Poelow- Their starting point is the system of linearized incompressible
component equations (A-15) - (A-18). If we assume sinusoidal variations in z and y for all
variables, we can omit Eqs. (A-15) and (A-16), leaving just Eqs. (A-17) and (A-18):

avlz _ 3p1

po—— =~ MY (A-33)
Op, dpo _
IR (4-34)

Further, assume that v,, is given by

etk coskzf(t),z < 0} (A — 35)

vi(@. 5,1 {e"”cosk::f(t),z >0
This is an approximation, because this form for the eigenfunction v,, actually corresponds
to the solution Eq. (A-31) for the case of discontinuous density. All the same, it leads to a
simple expression for the instability growth rate which is useful and illustrates qualitatively
the effect of a continuous density gradient. Mikaelian (1986) calculated accurate numerical
eigenfunctions and the corresponding growth rates, for the density profile given by Eq. (A-
32), and found that the approximate eigenfunction gives quite good results.
So we proceed to integrate Eq. (A-34) over time to get an expression for p;:

{
p](I,Z,t) = —%—/0 vl:dt',
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where we assume that the initial density perturbation is zero and the zeroth-order density
po(z) is static. This can be inserted into Eq. (A-33), which when rearranged becomes

op _ Ov,, + dpo

H
v]zdt’.

B - P "% ),

Using expressions (A-32) and (A-35) for po(z) and v,,, respectively, this becomes

t
[pbclow + 5‘—pe+K‘] etk f 4 gI\’—‘z—pe”K*"" / f(thdt'.z <0
0

o 2
0z

= —coskz

{
[Pabove - $A2—p€_Kz] e-k‘f + gK_A2_pe-(K+k)l / f(t')dt',z >0
0

This expression for the derivative of the first-order pressure may be integrated from
z = —oo to z = 0 to obtain an expression for p;(z = 0), since p,(z = —o0) vanishes.
Likewise, integrating from z = 0 to z = 400 gives another expression for p;(z = 0).
These expressions must be equal, since p; is continuous at z = 0 for a continuous density
profile, unlike the case in our earlier analysis for discontinuous dentity. Carrying out the

integration gives
° 9 *d
pe=0= [ Par=- [P

Thus .
: | Pbelow A 1 [} gAp K
f[T 21+k]+(/0 f‘“) 2 K4k
_ 4| Pabove AP 1 / gAp K
_f[ 2 K +k ] ( fdt) 2 K+k
or

: [ Pabove T Pbelow _ K ‘ AT
(B itee )~ gmp ([ g0 =

Differentiating and rearranging coefficients gives

1 ¥ (¢ Pabove — Pbelow
- =0.
f gI\ +k (Pabove + pbdou')f

The solution is an exponential with grcwth rate

_ gkI\
TEVL + k

where A is the Atwood number If we define a gradient length L = 1/K, we can express

the growth rate as
gkA




which is a commonly encountered form.

It is clear from this expression that the effect of the density gradient is always to
reduce the growth rate of the instability. For perturbation wavelengths much shorter
than L, or, equivalently, for long gentle gradients, we have kL >> 1, so v — /gA/L =
V9K A, independent of wavelength. The gradient therefore limits the growth rate for short-
wavelength perturbations to the growth rate of a mode whose wavenumber equals K, the
inverse lengthscale of the gradient. On the other hand, for perturbation wavelengths much
longer than L, or, equivalently, for steep gradients, we have kL << 1, so the growth rate
v =~ \/gEA, unaffected by the density gradient.

B. Ablation-Surface Instability

The ablation-surface instability occurs when a material layer is rapidly heated by some
erergy-deposition process and ablates. If the spatial extent of the energy-deposition region
is small with respect to the depth of the layer, then a high-pressure low-density region forms
adjacent to the layer, which accelerates the layer. The low-density region is composed of
heated ablating materiai expanding away from the layer’s surfac... The acceleration of the
high-density layer by the low-density ablated material is analogous to the support of a
high-density fluid by a low-density fluid in a gravitational field, vo an instabilitv arises.
Thic ablation-surface instability is much like the classica. Rayleigh-Taylor instability, just
discussed, but differs because of the flow of material out of the high-density layer, across
the ablation surface, and into the low-density ablated region. Furthermore, gravity plays
no role.

If we approximate the energyv-deposition region as a discontinuity, we can make a rough
estimate (following Gamaly 1993) of the effect of ablation on the growth of perturbations
by repeating the Rayleigh-Taylor analysis with a simple change: because of the ablation
flow, we permit a velocity discon‘inuity at the interface as well as a density discontinuity.
This means that the zeroth-order state is not static, so that we cannot set vo = 9 in our
linear perturbation analysis.

We consider a reference frame moving with the layer. In this frame, the layer is at
rest, and the ablating material moves in the —2 direction with velocity vg31. Thus

v = —vapi2,2 <0
0= 0,z>0 |

Rewriting Eq. (A-8), omitting gravity, and keeping terms containing vo gives

Gv ov
po-# 4 p,(# +vg - Vvg) + po(vy - Vvg 4+ vp - Vvy) = —Vp,. (B-1)
Rewriting Eq. (A-6) and omitting gravity gives
ov 1
'WO'FVO Vv = —EVPO- (B-2)

We may substitute this expression for the iotal Lagrangian derivative of vq into Ea. (B-1)
and rearrange terms to obtain

ov .
Po('a_tl'*'VJ 'VV0+V0'VV1)=%VPO—VP'- (B -3)
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Just as in the classical Rayleigh-Taylor analysis. we take the two-dimensional Fourier
transform of the z-component of Eq. (B-3), assuming a time dependence like e'. This

leads to 0 oV, RO oP
oz AL LAWNLLEC/ -
PO('YVlz + Vl: aZ + Vo: 62 ) Po 62 az ] (B 4)

where, as before, V;, = F[v,.], R = F[p,], and P = F[p,].
We define an acceleration go = —(1/po)0po/0z, and we use Eq. (A-23) to eliminate
R = —(1/4)V1.0p0/0z in Eq. (B-4). Then colving Eq. (B-4) for 8P/8z results in

oP

0 Ovg, oy,
'67=—7P0Vlz+272Vlz"aﬁzg—l’ovlz_a{’;—l’01)027;—-_ (B -5)

Finally, we use Eq. (A-26) to eliminate P in terms of dV,,/3dz, and find upon multiplying
by —k?/~

d 6‘1, 12 7 k? ’ 6po k2 avo, k2 6V,,
.é;(Po D= )— k PO‘lz—QO?‘lz 52 + ?POVlz_a'z_'*'?POvOz 0z . (3—6)

Equation (B-6) is analogous to Eq. (A-27) in the classical Rayleigh-Taylor analysis,
Lut contains two additional terms on the right-hand side, proportional to the zeroth-order
velocity and its z-gradient. Again, we use this equation to derive a jump condition at
the interface by integrating it over an infinitesimal element —e¢ < 2z < ¢, which includes
the interface. We shall find as usual that only the terms in Eq. (B-6) which are deita
functions produce any finite contribution to the integral in the limit that ¢ — 0. These
are the second and third terms on the right-hand side, and the term on the left-hand side;
Po, Yoz, and 911,/0z are discontinuous at the interface, so their z-derivatives are delta
functions. However, 8V, ,/0z itself is not a delta function, so the fourth term on the right-
hand side produces a vanishing integral. So does the first term on the right-hand side, as
we saw in Eq. (A-29) in the classical Rayleigh-Taylor analysis.

Integrating Eq. (B-6) requires evaluating only one new term, since two of the non-
vanishing terms were integrated earlier, as I; in Eq. (A-28) end I; in Eq. (A-30). The
new integral is

/' k2 avo, | 4% ¢ avo, dz = I4,

— — '2—
7P0Vn Bz dz =k 5 Po Pz

-C
wherc W is the value nf V), at z = 0. The integral is not so straightforward to evaluate
as those encountered earlier, since the integrand is the product of a step function and a
delta function. However, let us suppose that po and vy vary linearly over the infinitesimal
reg.on —e < z < ¢, so that as ¢ — 0 they approach step functions and dvy./0z approaches
a delta function. Then the integral is trivial, with the result that

‘ n a
I‘ — k2lpll +P b’va“,
2
where p,n, 8nd p.pr are the densities in the unablated layer and in the ablated region,

respectively.



Thus the result of integrating Eq. (B-6) is

L =L +1,,
or
—EW(pun + pant) = — kz_‘::go (Pun — pabl) + sz Pun -; Pabl bty
which can be simplified as
-,u%-,-kgoA:o, (B-1)

where
A= (.')un - Pabl).
(Pun + Pabl)

The solution to the quadratic equation (B-7) for v is

__kvawr kvast\? |,
¥ = 2 = 1 +kgoA

The positive root may be written, when /EgoA >> kv.pi/4,

v =k X_k_v“_"l_;._l_.(k_l"ﬂ)z_ (B —8)
The effect of ablation is thus to reduce the growth raie of the instability.

Although this expression is only approximate, having been derived under some rather
severe restrictions (no spatial extent of the region of acceleration, no modification of the
contiauity equation for finite zeroth-order velocity, no heating or energy exchange), it

nevertheless resembles relations obtained from more accurate treatments. For example,
the Takabe relation (Takabe et al. 1985)

v = av/kgo — Bkv, (B-9)

is found to describe detailed numerical solutions of a linear perturbation analysis of
ablation-surface instability that includes heating and energy exchange in the flow. The
analysis results in a system of five coupled ordinary differential equations for first-order
variations in five quantities: density, normal velocity, tangential velocity, temperature, and
normal heat flux. In general, the solutions are well fit usinga =09 and 3 « 8 < 4. In
Eq. (B-9), the ablation velocity v, denotes the mass ablation rate divided by the density
at the ablation surface, whereas vy in Eq. (B-8) represents the terminal velocity reached
by ablating material far from “he ablation surface. We expect vap1 >> v,, which accounts
in part for the different coefficients of kv, and kv, in eqs. (B-8) and (B-9).

The effect of ablation in reducing the growth rate of the instability is crucial to the
success of ICF implosions. Equation (B-9) demonstrates that the growth of high wavenum-
bers (short wavelengths) is reduced more effectively than the growth of low wavenumbers.
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In fact, there is a “cutoff” wavenumber k.y¢ = (a/B8)?*(go/v?) for which the growth rate is
zero, and above which modes ire stable.

In:tahility occurrence for opposed density and pressure gradients

Earlier it was pointed out that Rayleigh-Taylor-like instabilities arise wherever the
density gradient and the pressure gradient have opposite signs in an imploding capsule.
To see this, factor Eq. (B-6):

aVl z

%(poTz_) = kpV1,(1 - Jo 3p_o ALY _Yo: WV,

~2p, Oz +; 0z +7V1_; 0z ) (B -10)

Recall that go was merely shorthand for —(1/p0)8p0 /02, so

0, oW, N
3, (po 6; ) =k poVi(1 + "

1 8po Apo 4 108vo: | wo, V1.

p_gaz 8z v Oz V1. 9z ) (B -11)

The terms in vq are stabilizing, as we have seen. The second term on the right-hand side
drives the instability if its sign is negative, which will be the case if dpy/0z and 8po /02
do not have the same sign.

C. Bubble rise in late-stage Rayleigh-Taylor instability

The amplitude of a sinusoidal perturbation increases exponentially with time in the
early stage of Rayleigh-Taylor instability, as we saw earlier in the linear analysis. Eventu-
ally the growth rate decreases, when the amplitude becomes about 10% of the wavelength
A = 2x/k. At this point, higher harmonics of the original sinusoid appear. The perturbed
interface is then no longer sinusoidal, but assumes a “bubble-and-spike” configuration, in
which rising, broader bubbles alteinate with falling, narrower spikes. The relative width
of bublles and spikes depends on the density ratio of the two fluids, or, equivalently, on
the Atwood number A. When A =~ 1, the bubbles are much broader than the spikes. But
when A ~ 0, that is, the fluids have nearly the same density, there is little distinction
between the behavior of bubbles and spikes, and they have nearly the same width.

Eventually the flow reaches a regime which is nearly steady-state, if the initial pertur-
bation is a pure sinusoid. The buboles rise at constant velocity. If A ~ 1, we can carry out
an approximate analysis of the resulting flow pattern (following Davies and Taylor 1950,
incorporating a suggestion by Layzer 1955) and determine the velocity of the tip of the
bubble. Layzer considers the entire history of the instability, from the initial linear stage
io the asymptotic steady state, but we focus only on the latter here.

To do so, we employ the concept of potential flow. The law of conservation of circula-
tion implies that for isentropic flows (that is, flows which are not dissipating or exchanging
energy or subjected to shock waves), the curl of the velocity field, V x v (called the vortic-
ity) is con<tant along particle trajectories. In particular, if the vorticity vanishes anywhere
on a fluid trajectory, it vanishes everywhere on the trajectory. In the case of an arruy of
bubbles rising intc initially motionless fluid, the vorticity of the fluid at a large distance
above the bubbles is zero because the fluid is at rest. Even after the fluid bcyins .o fall past
the bubbles, its vorticity remains zero, by the law of conservation of circulation. Like any

17



vector field whose curl is zero, the velocity can be therefore be expressed as the gradi-ut
of some scalar, by virtue of the vector identity V x (V¢) = 0. This scalar is called the
velocity potential, and we write v = V¢. This kind of fow is termed potential flow, or
irrotational flow.

If furthermore we assume that the flow is incompressible, as we did in the linear
analysis of Rayleigh-Taylor instability, we have that the velocity is divergenceless: V-v = 0.
(This follows from the vanishing of the Lagrengian total derivative, Eq. (A-11), and
the continuity equation, Eq. (2).) Therefore, expressing the velocity as the gradient of
the potential, we conclude that, for incompressible potential flow, the velocity potential
satisfies Laplace’s equation: .

V¢ =0.

Determining the flow field for an array of rising bubbles then amounts to solving Laplace’s
equation subject to the appropriate boundary conditions.

Another useful relationship for problems of this type is given by Hernoulli’s equation.
It states that, for steady flow of an incompressible fluid,

1
—v? 4 L + gz = constant
2 p
along particle trajectories. In our problem, in which A =~ 1, it is a reasonable approximation
to take p = constant within the low-density bubble near its tip. Since the high-density
fluid at the bubble surface must be in pressure equilibrium with the bubble, and since
density is constant in incompressible flow, we can assume that along the surface of the
bubble

1,

v + gz = constant. (€C-1)

Let us consider an exactly sinusoidal initial perturbation at an interface, with arbitrary
values of the wavevector components k; and k,. By appropriately rotating the coordinate
system in the (X,y) plane we can make the X direction coincide with the direction ol the
wavevector k, so that k, = 0 and k; = k. Thus the sinusoid varies only in X, and we can
ignore the y direction in the following analysis.

From this sort of initial condition, a flow field will eventually arice consisting of an
array of identical rising bubbles (which are two-dimensional, like long tunnels, having no
variation in y) arranged with a spatial period of A = 27 /k. The flow pattern is the same as
that for a single bubble rising between two parallel frictionless walls located at z = /2.
The boundary condition at the walls is that the component of the flow velocity normal to
the walls vanish there:

A
v.(z = :1:5) = 0.

We now transform to the frame-of-reference rising at the same speed as the bubble.
Call this speed U; the point of this analysis is to determine the value of U. An edditional
boundary condition is that in the frame of the bubble, the undisturbed fluid far above the
bubble is traveling downward at velocity

v.(z = +o00) =--U.
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Solutions of Laplace’s equaticn aic well-known from many branches of physics. For
geometries such as in ¢ ir bubble problem, where the flow is two-dimensional and confined
by planar walls, it is clear that a potential of the form

2n7r

¢(z,2) = —2U - Z Adn - 2300 cos\2n;I)

satisfies Laplace’s equation and the boundary condscions just defined. For

2nrz

);

sin(

P
]
it
$

2nrzx

—= -U+Za,, cos(

)

2 oo
6 ¢ Z= ane cos( TI;I’I )
Thus

0r2 = 022
as Laplace’s equation requires. (Recall that for our choice of coordinate axes, 9¢/0y =
8?¢/8y* = 0.) Furthermore v, = 04/8z = 0 at z = £4 and v, = 0¢/0z — -U as
z — 00, as our boundary conditions require.
The trajectory of any fluid particle in the flow field is described by the stream function
1, which is related to the velocity potential by

61,[) gf

9r 0z’
311’ —-0¢
9z Oz

It is easy to verify that the function

Y(z,2) = -zU + Z Adn ‘ur‘ sm(2n7r:r)

satisfies these relationships. The stream function is constant along particle trajectories for
steady flow, so that trajecturies are given implicitly by

,2) = . = constant.
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At z = +00, the stream function becomes v(z,00) == —zU, so we see that . is related to
the distance of the trajectory from the symnietry plane r = 0 at large distance above the
babble. Thus the trajectory for a fluid particle that flows duwn the plane z = 0 and then
alone the boundary of the bubble is given by ¢. = 0, which implies that

(o)

nr A

1 <= J)a, 2
;72 a e'ul"'sin( n7r:|:)=1
’ n=])

is the equation of tne bubble surface.

A simple approximation to the solution of this problem is obtained, following Davies
and Taylor (1950), bv keeping only the first term in the sum defining ¢ and v. That is,
using k = 27 /),

¢=-—2U - a—kle"" cos kz,

Y=-—zU+ a—kle"“ sinkz.

Then th= velocity components are

—kz coskrz.

The surface of the bubble is given by

—k Ukz
€N = —
a; sinkz
The huight of tie apex of the bubble, at z = 0, is determined by the values of a, and U.

If we demand that the apex occur at z = 0, then we must have a; = U and so the bubble
sarface is given by

kx
-kz _ _
¢ T Sinkz (€-2)
or . -
sinkr
2 = pIn(=)

To proceed with the soluti. ~, we now require that Bernoulli’s equation be satisfied
along the bubble surface. Insertin, the above expressions for the velocity components into
Eq. (C-1), with a; = U, leads to

U(e~**sin® kr + 1 — 2¢™** cos kz + €72** cos? kz) + 2¢z = constant,

or 0
- z
e~ 2k +1—2e""cosk:r+—t§7 = 0. (C-3)
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We choose the constant to be zero on the right-hand cide of the equation because the apex
of the bubble is a stagnation point, with v, = v, = 0, and its height is z == 0. Thus it
1s clear from Eq. (C-1) that the constant is zero for this trajectory. Along the bubble
surface, Eq. (C-2) applies, so we insert that condition intc Eq. (C-3). The result is

(kz)? 0 kz sin kz

otk ‘tankz 1Y kU 7 0(—=—)=0

o 2¢g 2 sinu
u?tanu ~ 2usin®u + sin utanu + Wsm u tan u In(

where u = kz. - .

Now, for any particular choice of g, k, and U, this expression can only be satisfied
exactly at a single value of z in addition to z = 0. It cannot be satisfied over the entire
bubble surface. This is a consequence of having chosen the simplified poteniial and stream
functions with only the first term of the sum. Nevertheless we can determine a reasonably
accurate value for U by requiring that Eq. (C-4) be satisfied in a first-order neighborhood

of T = 0. Accordingly we expand the functions in Eq. (C-4):

)=0, (C —4)

u4
sin u = u? - T + O[u®;

tanu = u + —é- + OlW’);

sin‘utanu = u® + O],

olnu u?  uf 6
ln( ——F—IS +O[u]
sin? uta.nuln(smu) = —— + I[u’).
So Eq. (C-4) becomes
5 9,,% 2 5
ST Y B 3 _ <9 u =
W o =2+ ot _—kU?6+O[u] 0
implying that
T )=0
33T T

or

U= 39L \/%%:0.2303\/91\.

This is exactly the result of Layzer (1955) for the case of asymptotic steady-state two-
dimensional flow between parallel walls. He takes as the length scale the half-distance
between the walls a = A/2 | so that he writes

U= ‘/% ~ 0.3257,/7a.
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Layzer also considers the flow of a bubble of circular cross-section, contained in a tube of
radius R. He obtains in this case

= \/—lﬂl_\/gR ~ 0.5108+/9R,

where f; =~ 3.832 is the first zero of the Bessel function J;.

Thus we see that larger bubbles rise faster than smaller bubbles. This dependence
1s opposite to that for the linear stage of the instability, in which we found that smaller
wavelengths grow faster than larger wavelengths.

This analysis assumes Atwood numher A =~ 1. For smaller values of A, Ofer et al.
(1992) have found aumerically tLat

where 0.2 < a <€ 0.3.

Shvarts (1994) points out that this expression is a consequence of the balance between
buoyancy and drag acting on the rising bubble. Censider a spherical bubble of radius R and
density py rising at constant velocity in an initially motionless medium of higher density
pH. The buoyancy force is Fy = (py — pL)Vg, where g is the acceleration of gravity and
V is the volume of the bubble. If the bubble is rising at a velocity U, then the drag force
is Fy = C4SppU?, where Cy is a drag coefficient and S = 7 R? is the cross-sectional area
of the bubble. The drag force depends only on the ambient density py, not the bubble
density p;, because the drag force results from the increase of momentum of the ambient
fluid, which is initially mctionless; the bubble’s momentum does not change, owing to the
balance of forces acting on it. Equating the forces gives

(pu — pL)Vg = CaSpyU?

or LV )
U2 = — PH_PL)
CaS  pn °
Define the Atwood number A as
_ len=pL)
(pH + L)
Then

(pn —pL) _ 24
PH 1+A°
Also V/S = 4R/3. If we define a wavelength A = 2R, to make the correspondence with
the Rayleigh-Taylor bubble considered above, then V/S = 21/3. So finally

5 24
N L L
v \[304\/1+A9 ’

22




analogous to the form shown above.

D. Saturation and multiinode interactions in intermediate-stage Rayleigh-
Taylor instability

Saturation threshold

The linear analysis of Sec. A depends on the validity of the small-amplitude assumr: -
tion, that is, on the extent to which first-order quantities are in fact much smaller than
the corresponding zeroth-order quantities. However, if the exponential growth that char-
acterizes the linear stage were to persist long enough, the small-amplitude assumption
would eventually be violated for any initial perturbation, however small. The departure
of the instability evolution from linearity is called saturation. We can estimate the con-
ditions required for linearity by considering, for example, the first-order acceleration of a
sinusoidal perturbation mode and its relai.on to the zeroth-order acceleration of gravity g.
The z-velocity of a pure mode with wavevector k oriented along X can be described by

v:(z,2.t) = W(2)e" coskr,

so that the displacement of the interface (initially at z = 0) is

t
1
n(z,t) = / v:(z,0,t")dt' = ;v,(z,O,t).
0

The acceleration of the interface is

Ov.(z,0,t
—(at ) = vv,(z,0,t) = v2n(z,1).

Linearity requires that this acceleration be much smaller than gravity: 42n << g. Since
the linear growth rate v = /kg4, this is 4kn << 1. Since A < 1, a sufficient condition
for linearity is simply

kn << 1.

In terms of the wavelength of the mode, this condition is
n << /21 ~ 0.16).

The consequence of saturation is that the growth of the instability is no longer ex-
ponential, but begins to approach the constant-velocity bubble rise typical of late-stage
growth. A more stringent estimate of the requirement for linearity comes from estimating
the interface displacement at which the linear-stage interface velocity equals the late-stage
bubble velocity. As we have just seen, the interface velocity is v,(z,0,t) = 471, while the
bubble velocity is \/g/3k. Equating these, for A = 1, gives kn = 1/v/3 =~ 0.58, so that
linearity requires

1 A
1 << 75'2—”2’0.09/\. (D—])
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Another consequence of the onset of nonlinearity is that separate perturbation modes
on the interface, which grow as if they are isolated during the linear stage, begin to notice
one another’s presence. This occurs because they begin to affect the zeroth-order flow field
which drives the instability; for example, a short-wavelength mode riding along on the
bubble of a long-wavelength mode experiences a different effective gravity than the initial
g, because of the additional acceleration in the long-wavelength bubble. This interaction
is called mode coupling.

Haan saturation model

Real surfaces in actual ICF experiments have structure at many scales, from millime-
ters to angstroms. The structure arises for a variety of reasons, including the inherent
heterogeneous crystalline structure of materials, as well as marks left by fabrication and
machining. When Fourier analyzed, the surfaces typically have a full spectrum, with spec-
tral power at all modes up to some very high wavenumber. An important question arises
concerning how saturation occurs in a full spectrum, as opposed to the case of a pure mode
just discussed. This is because a group of modes with nearly equal wave vectors can com-
bine constructively over a region of the surface, producing a structure whose net amplitude
is much larger than the modes’ individual amplitudes. It seems clear that the saturation of
this structure should occur when its net amplitude is about 10% of its effective wavelength,
as discussed above for pure sinusoids. This means that the individual modes summing to
produce this structure must saturate a good deal earlier than we would expect if they were
isolated from other modes and individually obeying the inequality (D-1). A prescription
for determining when modes saturate in a full spectrum was developed by Haan (1989)
and is known as the Haan saturation model. It expresses a type of modal interaction which
is a short-range interaction in wavevector space, involving neighboring modes which stay
in phase over a large enough region to form a structure of significantly higher amplitude
than any of the individual modes.

The basic conceptual point of the Haan model is that a pure mode cannot be distin-
guished from a superposition of several modes except by measurements over a sufficiently
large spatial region; the region must be large enough that the individual modes in the
superposition have gone out of phase. In regions smaller than this, the saturation of the
multimode superposition must occur in the same way as the saturation of the pure mode.
For example, consider two modes of nearly equal wavelength [say A and A(1 + §)], equal
amplitudes, and parallel wavevectors. The modes stay in phase for a large distance be-
cause their wavelengths are so nearly equal. Where they are in phase, they combine to
create a net perturbation whose amplitude is twice the individual amplitudes and whose
wavelength is approximately A. When the net perturbation saturates, the two superposed
modes clearly have amplitudes which are about half the value of the single-mode saturation
amplitude, yet they must individually saturate. In this sense, they are interacting because
they are affecting each other’s saturation; they are reducing the saturation threshold by a
factor of two.

The Haan model generalizes this idea to the case of many modes with various wavevec-
tors. Two parameters play a role in the model. One of these, {, denotes the amplitude
threshold for the saturation of a single isolated mode, in the sense that a mode is linear
only when its amplitude n << (A. We saw above that ¢ is in the range ~0.09 to ~0.16.
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The other parameter, €, describes the range in wavenumber space over which modes stay
in phase long enough to interact by affecting one another’s saturation. The model assumes
that, if we consider a band of modes centered around wavevector k, then the modes k'
which interact have |k—k'| < ek. That is, the interacting modes occupy a circle of radius €
ir wavenumber space, centered on wavevector k. These modes combine to create a physical
structure with a root-mean-square (rms) amplitude that we shall call o, and a wavelength
approximately equal to A = 2x/k. We expect the structure to saturate when v2o =~ (),
where the factor v/2 converts the rms amplitude to the peak amplitude. By evaluating o
in terms of the individual modes’ amplitudes S(k), we can determine S(k) at saturation
in terms of the parameters ( and e.

The rms amplitude o of a band of Fourier modes is the root of the sum of the squared
amplitudes of the individual modes. Thus the interacting modes have

ol= ) SK)

k' —k|<ek
~ N(k,)S?(k)
~ Ak, e)D(k)S?(k)

where N(k.e) is the number of modes in the circle in k-space, A(k,¢€) is the area of the
circle, and D(k) is the density of states.

If we consider a planar interface whose extent is 0 < z < L and 0 < y < L, then
the components of k' have discrete allowed values k; = 27n/L, k;, = 2rm/L, for m,n =
1,...,00. Thus there is a mode spaced every 2r/L wavenumber units along both axes in
wavenumber space, so the density of states is D(k) = L?/(27)2. The area of the circle is
2r(ek)?, so that

N(k,€e) = (ekL)?/2n.

Therefore
o = [(1/27)(ekL)2S?(k))*/2.

The saturation condition
(A= V20 = [(1/7)(ekL)?S*(k)]'/?
can then be solved for S(k), the modal amplitude at saturation. The result is
S(k) = 2m*/%(¢/€)(1/LK?),

which can also be wri:ten
1 (A

2/me (L/))
Compared to the saturation amplitude for isolated pure modes S;,o(k) = (], this result

predicts that saturation occurs at much lower amplitudes for a full spectrum, especially
for high modes, where L/A >> 1.

S(k) =
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Haan (1989) defines a parameter
v = 2n/((/e),

which combines the parameters of interest into a single number. Thus the saturation
amplitude is
S(k) = v/(Lk?*) = (v/47?)(A/L)A.
From fitting predictions of the model to experiments, the value of v is determined to be
~4.
To generalize this result to spherical geometry, we adopt the following equivalence for
spherical-harmonic mode number ! and spherical radius R:

k? = 1(1+1)/R? ~ I?/R?

Then the saturation condition becomes

v v vt

I “RIEJR) - T

(D -2)

The other element of the Haan saturation model is a prescription for the behavior of
modes after they cross the saturation threshold, that is, after their amplitudes reach the
velue S(k) = v/(Lk?). Let niin(k,t) be the time-dependent amplitude a mode would have
if saturation were not an issue, that is, if the mode remained linear. Then the amplitude
after saturation is taken to be

nsar(k, ) = S(k) [1 + 1n"L§Et_'3—‘) . (D - 3)

In the case of a planar density discontinuity with a constant acceleration ¢ and Atwood
number A (that is, the classical incompressible Rayleigh-Taylor problem), we saw earlier
that miin(k,t) = noe?*, where v = /kgA and 1y is the initial perturbation amplitude of an
isolated single mode with wavenumber k on the interface. For this case,

Teatly 1) = S(k)[l Flnne 4yt — lnS(k)].

The growth velocity of the saturated mode is constant in time,
dnyarfdt = S(k),

and is equal to the growth velocity of the linear perturbation at the time of saturation. In
general, for non-constant accelerations,

d'?u! - S(k) d’?h‘n
dt Niin dt .
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E. Instability calculations in ICF implosions

Several methods have been used in recent years to calculate the growth of hydro-
dynamic instabilities in ICF implosions. To represent reality as accurately as possible,
the methods must account for time-varying accelerations, continuous gradients in density
and velocity, and energy transport. Historically, linearized perturbation codes were used
first, but recently nonlinear radiation-hydrodynamic simulation codes have been used qu** -
widely and routinely.

Linearized perturbation codes

The linearized equations of mass and momentum conservation were derived in an
earlier section. For realistic flows, we must also consider an energy equation. For example
(Scannapieco and Cranfill 1978), we begin with the first law of thermodynamics, which
specifies that a change dE in the specific internal energy E of a fluid element may arise
from two sources. There is a contribution —pdV when the specific volume V = 1/p of the
fluid element changes by an amount —dV at a pressure p, (a vo.ame decrease corresponding
to an energy increase). Additionally there may be a contribution TdS when the specific
entropy S of the element changes by an amount dS at temperature T. If the change occurs

in an interval of time dt, then

E Td.S' pdp
dt " dt p?dt’

where dp/p? = —dV. The entropy change is given by the equation of heat transfer

ds 1 9, T)
T =,V Is(p V] + S

The first term on the right-hand side represents heating arising from the divergence of a flux

of thermal radiation and conduction; the combined thermal and grey-radiative conductivity

is denoted by x(p,T). The second term on the right-hand side represents heating by an

energy source, which could be thermonuclear reactions or a laser. The heating rate is

g(p,T). Here T, the material temperature, is assumed equal for ions and electrons.
Inserting this equation in the preceding equaiion leads to

dE. _ pdp 1 g(p,T)
di = 2dt +;V [K(p’T)VT]+ p :

With an equation-of-state, we can eliminate one of the thermodynaric variables in terms
of two of the others, for example

E = E(p,T).

Then the energy equation becomes
OF dT OE dp 1 . q(p,T )
_— -l == \%
(3T) dt [(3p> pz]dt v Isle, TIVT] 4 =2 p

In the manner of Scannapieco and Cranfill (1978), we collect the basic zeroth-order
hydrodynamic equations here, using Eqs. (1) and (2) for our continuity (that is, mass)
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and momentum equations, respectively, onitting gravity in :he ICF context. The energy
equation has been expressed as a temperature equation.

%+V-(pv)=0, (E-1)
p-‘;—v + p(v-V}v=-Vp, (E-2)
OE\ dT [p oF dp 1o q _
('a?),,?? =[5 (%) @+ 5o rvnsd (E=3)
p=p(p,T), (E-4)
E = E(p,T), (E -5)
k= k(p,T), (E-6)
i =4q(p,T). (E-T7)

The first-order linearized equations are obtained from the hydrodynamic equations
Egs. (E-1) through (E-7) in the same manner as in the discussion of Rayleigh-Taylor
instability. Physical variables are represented as a sum of a zeroth-order part, which
satisfies the hydrodynamic equations, and a small first-order part. Thus

P=P0+Pl,
vV =vVg+Vy,
P=po+p,
T=Ty+T,

where the equation of state allows us to write

%), 5+(3)
=| = T+ | =— .
D (aT 0 1 3p Topl

Substitution of these expressions into Eqs. (E-1) through (E-7) yields, after subtracting
the zeroth-order equations and linearizing [following Scannapieco and Cranfill (1978), who
extended a treatment by McCrory et al. (1977))],

0
-;—tl-+V'(p1Vo+PoV1)=0, (E-8)
ov
Po(#*‘vl Vv +vg:Vvy) = ﬂvPO_Vpl’ (E-9)
Po
dE\ dT; OEY, dT, _
(—6T> po(-a- +v;: VT0)+('6T plT =
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Po (_3£) dp1 v 2po OE dpo
2 \5p I po "f R 7\Bp )y
p—v (koVTy + £, VT,) + p— - —;(qo + V- 5oVT), (E - 10)

where

(%), %(a—?ﬂ T*%%(S%)Jm%

(aaf> -7 (3) ] T*[é%(%%hf"

Equation (E-8) is the same as Eq. (A-7), and Eq. (E-9) is the same as Eq. (*c), that
is, they are the same as Eqgs. (A-9) and (A-10) when v, does not vanish and gravity is
negligible.

Scannapieco and Cranfill (1978) recast these equations in Lagrangian form, so that
the first-order quantities are associated with mass elements in the flow rather than fi~ed
points in space. This is convenient when the zeroth-order quantities are computed in a
Lagrangian code, and it is desired to evaluate the first-order flow at the corresponding
Lagrangian mass elements.

To do this, consider that the first-order perturbation in the flow causes a displacement
in the position of a fluid element from its zeroth-order position ry to a new position R.
The magnitude of displacement is the displacement vector

XER—TQ.

The relationship between the Lagrangian and Eulerian first-order terms is found by con-
sidering some physical variable ¢. In an Eulerian reference frame, we write as we have
done before

é(ro,t) = ¢o(ro,t) + ¢E(ro,t),

where qS,E is the Eulerian perturbation. In a Lagrangian frame, we need to know the value
of variables at the new position R:

é(R,t) = ¢g(ro,t) + 1 (R, 1),

where ¢L is the Lagrangian perturbation. Eliminating ¢o between these equations, we
have

é(ro,t) — ¢ (ro,t) = (R, t) ~ ¢L(R,1). (E - 11)
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The change in ¢ between r¢ and R is given, for small displacements, by the Taylor-series
expansion for ¢ at the position ro:

#(R,t) =~ ¢(ro,t) + X - V(ro,t) > ¢(ro,t) + X - Vo(ro,t)

where we have neglected terms proportional to X - V&, and X? and higher o-Zer. (Here
#) represents either ¢f or qS{‘) So we see that

¢(R,t) — ¢(ro, t) = X - Vo(ro, ).

From Eq. (E-11)
¢1(R,t) — ¢F (ro,t) = ¢(R,t) — ¢(ro, 1)

so that finally
$1(R,t) = ¢F(ro,t) + X - Vo(ro, ). (E —12)

The Eulerian first-order equations may be converted to Lagrangian first-order equations
by the use of Eq. (E-12). An additional equation for the new variable X is required to
close the system:

X

PR

where v{ is the Lagrangian first-order velocity.

At this point, Scannapieco and Cranfill (1978) assume that the zeroth-order flow
is spherically symmetric, and express the Lagrangian first-order equations in component
form. Then they perform a spherical-harmonic decomposition of the component equations,
arriving at the following set of equations for the spherical-harmonic amplitudes. Each of
the variables with superscript ! in the following equations represents the spherical-harmonic
amplitude in mode [ for the corresponding perturbation variable.

Py =Pl = po '27_1,4'-66%’ D'], (E—13)
dd—B;' = Al (E - 14)
dj’ 11+ 1)[ B,apo] (E - 17

oF de+(aE>' Mo 812 () [B-(E) |4
6T oT gror\ °5r p2 \0p ) ) dt
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4 pi _2Pop1_(_a£)' ]fﬂ
A ey \0p)pl dt

1{35067*,' 19 (rzar,'>+an; T 418 ( 26To>

r—

wlor or e\ B )T o TP Ear or
—zaa—flriz-aa? (r2x0%> +d) - %q'o}, (E-18)
! =(g_;>por,'+(§§)mpi, (E~19)
it =(9;;>por:+(§§)mpi, (E-21)
G, 7@ ) [5EF) L e
©), B e

Here p!; is the initial density perturbation in mode I, and the following symbols are
defined:

A= v:':",
B! = xitm
C'=[r?Vq - (vE —vo0)'™,
D’ = [Vn . X]"m.

Thus A' is the modal amplitude of the radial component of the Lagrangian first-order
velocity and B! is the modal amplitude of the radial component of the displacement. The
symbol 2 denotes the angular part of the displacement, so that, to first order,

x = Xrer + Ton.

Then the Lagrangian first-order velocity is

dX

-dT = X’,e, + Toﬁ -+ vofd.

L _
vy =
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The symbol Vg represents the angular divergence:

R N %(sin@eo-) + %(e¢-) .

190
Va: O " rsind

So we see that C! is proportional to the angular divergence of the first-order angular
velocity rof2, since
vf‘ —vof) = X,e, + rofd,

and the angular divergence of X,e, vanishes. Finally, D' is the modal amplitude of the
angular divergence of the displacement.

Scannapieco and Cranfill (1978) derived their first-order equations in a quite general
form. Frequently, however, the first-order equations are specialized to the case of an ideal-
gas equation of state, and the zeroth-order flow is taken to be self-similar [[Kidder(1976),
Hattori et al. (1986)] These approximations lead to considerable simplifications in the
first-order equations. If the first-order flow is furthermore assumed to be incompressible
(Hattori et al. 1986), then analytic solutions to the first-order motion can be found in
some cases.

Linear single-mode instability calculations in a nonlinear rediation hydrodynamic code

An approach that is more widely used today than linearized perturbation calculations
is that of linear instability calculations in nonlinear codes. This approach was demon-
strated by Verdon et al. (1982) and its accuracy for perturbed shock waves investigated by
Munro (1989). Its application for assessing the effect of material mixing in ICF implosions
was outlined by Haan (1989). The aim in these studies was to determine the evolution of
the first-order flow in situations of interest in ICF, but instead of solving the linearized
perturbed hydrodynamic equations, these investigators represent the first-order quantities
within the nonlinear radiation-hydrodynamics calculation as infinitesimal perturbations on
the zeroth-order flow. The nonlinear code is not itself modified to handle the infinitesimal
perturbations, save for ensuring that the code computes extremsly smooth zeroth-order
solutions; this means that the solutions must be free of spurious “ringing” and numerical
noise caused by artificial discontinuities in the code’s physics approximations. The advan-
tage of this approach is that all the physics of the nonlinear code (for example, multigroup
radiation transport) is included in an effectively linearized calculation of the infinitesimal
angular perturbation, without the need to develop and solve elaborate systems of linearized
equations such as Egqs. (E-13) through (E-23). (Afier all, as complicated as that system
is, it incorporates only a crude, grey-diffusion treatment of radiation transport. To use
linearized transport equations for many photon groups would add many more equations.)
A disadvantage of the Haan-Munro approach is that the nonlinear code may suffer from
noisy numerical algorithms and limited machine precision. Furthermore, convergence with
mesh refinement of the instability growth may be rather slow.

In this approach, to calculate the linear growth of a single spherical-harmonic insta-
bility mode, a narrow angular sector of the capsule, at the capsule’s equator, is represented
by the mesh. The vidth of the two-dimensional sector is one-half-wavelength of the mode.
(“Wavelength” is not a well-defined concept for spherical harmonics, but is useful near the
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equator, where the Legendre functions are well approximated by sinusoids.) An infinitesi-
mal displacement in radius, with sinusoidal angular d~pendence, is apnlied to the mesh at
the interface of interest. The amplitude of the ditplacement, 1 maz0, is typically about 1
A, or about 10~7 of the capsule dimensions. Thus, even if the instahility grows by several
orders of magnitude, its effect on the zeroth-order flow is negligible, as required if this is
to be truly a calculation of linear growtli. Neighboring mesh lines are likewise perturbed,
with an amplitude n;(r) that decreases away from the interface in accordance with the
radial part of the solutions of Laplace’s equation in spherical geometry:

B
mo(r) = Ar' + =7, - :

for mode l. If the displacement amplitude is chosen to peak at the outer radius roy¢ of a
shell and vanish at the inner radius r;,, then

(r/rin)! = (rin/r)*?

7710(") - ’"'mazo(rou!/rin)’ - (rin /rou!)’-H .

It is observed in numerical experiments that this form for n(r) leads to more rapid
convergence of the computed instability growth factor as the mesh is refined, compared to
a linear variation of ni with r, for example.

After the perturbation has been applied to the mesh, the calculation is performed in
the usual way up to some time of interest ¢, such as ignition. The amplitude of the radial
mesh displacement is determined everywhere in the mesh, and its maximum valuen; maz(t1)
identified; usually the amplitude is largest near the boundary between the hotspot and the
cold fuel. The ratio ni,maz(t1)/M.maze = G is called the growth factor of mode l.

Next, the true initial amplitude Rim ¢ of mode (I,m) is determined from a spectral
analysis of the surface of a real ICF capsule. The linear amplitude of mode (I, m) at time
t) is then Rim = GRim 0, since linear growth rates are independent of m. If this amplitude
exceeds the saturation amplitude vr/I2, where r is the rad'us at which the amplitude
reaches its maximum value, then Haan’s (1989) post-saturation amplitude, Eq. (D-3), is
used instead of the linear amplitude.

In a similar manner, amplitudes are determined for all modes of interest at time
t;. (Although we are assuming tha: the growth factors G| have been obtained via a
linear perturbation calculation with a nonlinear code, they might equally wel! come from
a linearized code of the sort described in the preceding section.) Then the rms roughness
o is given by & quadrature sum of the amplitudes of the modes:

The bubble amplitude (the distance of penetration of low-density material into high-density
material) is taken to be v/20, while the spike amplitude (the distance of penetration of
high-density material into low-density material) is taken to be v/2(1 + A)o, where 4 is
the Atwood number. Finally, a 1D calculation of the capsule’s implosion is carried out in
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which the interface is uniformly mixed over the appropriate distances into the high-density
and low-density materials at time t,. In this way we arrive at the goal of the Haan-Munrc
technique, namely, a prediction of the effect of initial interface roughness on the capsule’s
performance.

Nonlinear multimode celculations

In this approach, one carries out a direct simulation of the effect of realistic inter-
face roughness on a capsule’s performance. The interface of interest is perturbed with
a spectrum of many modes, with finite amplitudes rather than infinitesimal amplitudes.
Thus the initial interface in the calculation is a fairly direct representation of what a real
in’erface looks like, with certain qualifications mentioned below. The calculation is run
through the time of thermonuclear reaction in the capsule’s fuel, and the yield determined
as a function of the initial ¢ and speciral content of the interface roughness.

In order to satisfy the boundary condition that the mesh displacement attain an
extremum at the angular boundaries of the mesh for each mode, it is necessary to use a
90-degree sector of the capsule, extending from the pole to the equator. Sufficiently fine
angular zoning is required to ensure that the highest modes are accurately resolved, since
in general zoning that is too coarse causes an underestimate of growth rate. Thus in this
approach a large number of zones is required, driving up the computational expense.

This approach is aprealing because of its conceptual simplicity, and because it is po-
tentially a realistic picture of instability development and the effect of instabilities on an
ICF capsule. However, in addition to its expense, 1t suffers to date from various short-
comings which limit its accuracy. For example, most existing nonlinear radiation hydro-
dynamic codes are two-dimensional, so that only axisymmetric modes (that is, spherical
harmonics with m = 0) can be represented. (It is in this sense that the initial interface
shape is not quite realistic; real surfaces are not axisymmetric on the microscopic scale of
perturbations.) In the nonlinear stage of instability, the growth rate begins to depend on
m, and is greater for larger m. Omitting this three-dimensional effect leads again to an
underestimate of the net growth rate of o.

Furthermore, many existing nonlinear radiation hydrodynamic codes use a Lagrangian
mesh, which can become significantly distorted for highly unstable flows. This means that
the mesh must be rezoned, that is, that physical variables must be mapped onto a more
regular mesh, at various times in the calculation. Rezoning introduces inaccuracies due to
numerical diffusion. If, however, rezcning is kept to a minimum, other inaccuracies occur
because of tke failure of code algorithms on irregular meshes. To avoid these difficulties,
one might consider using an Eulerian code, in which the mesh is constrained to be regular
and orthogonal at all times.

For all these reasons it i3 important to calibrate such calculations against data from
experiments. It is also important to refine the technique so as to avoid the most obvious
shortcomings, namely two-dimensionality and Lagrangian mesh distortion. Thus it seems
that a fruitfu. direction for further research is the development of 3D Eulerian codes
with high mesh resolution and appropriate physics, adequate for modeling real instability
evolution with a minimum of simplifying approximations.
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