Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36 TITLE SEPARATION OF PLUTONIUM AND AMERICIUM BY LOW-TEMPERATURE FLUORINATION AUTHOR(S) T. R. Mills and L. W. Reese Nuclear Materials Technology Division Los Alamos National Laboratory SUBMITTED TO ACTINIDES-93 International Conference Proceedings (Journal of Alloys and Compounds) #### DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Covernment. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. CEIVED OCT 8 7 1993 OSTI The acceptance of the gate to the patienter or agreein that the U.S. Caryon report relates a boson chased couply free having the patient of patients. the policyling form of the contepodors or to gibbs others to do so by 11% Opyeticient proposes tro tas Aspess tighting Latinghay inquists that the partisting aboutly this into to be sweet participated but the transfer of the U.S. Department of Everys OS Alamos National Laboratory Los Alamos New Mexico 87545 SEPARATION OF PLUTONIUM AND AMERICIUM BY LOW-TEMPERATURE FLUORINATION T. R. Mills and L. W. Reese, Los Alamos National Laboratory Box 1663, MS E510 Los Alamos, NM 87545 **KEYWORDS:** plutonium, americium, fluorination, separation **ABSTRACT** We have demonstrated separation of Pu and in-grown Am using the gaseous reagent dioxygen difluoride. Aged PuF4 was fluorinated at room temperature to generate PuF6 gas, which was trapped separately and reduced to PuF₄. The reaction product contained very little Am. Unreacted solid had elevated concentrations of Am that were consistent with a material balance. Use of a gaseous reagent and product enabled remote handling during reaction and purification. This result demonstrated a simple and minimal waste alternative that may have application to a number of actinide purification problems. INTRODUCTION Americium is generated in plutonium by ²⁴lPu decay ($t_{1/2} = 14.4$ yr) to ²⁴lAm $(t_{1/2} = 432.7 \text{ yr})$. Concentrations of the nuclides as a function of time (in years) are given by: $$[241Pu] = [241Pu]^{\circ} e^{-0.0481t}$$ (1) $$[241 \text{Am}] = [241 \text{Am}]^{\circ} e^{-0.0016 t} + [241 \text{Pu}]^{\circ} \frac{0.0481}{0.0481 - 0.0016} (e^{-0.0016 t} - e^{-0.0481 t})$$ (2) Plutonium hexafluoride (PuF₆) is a volatile, somewhat stable compound while americium fluorides are non-volatile. (Present information indicates Amb₀ does not exist, is extremely reactive, or has very little stability.) Accordingly, complete fluorination of a Pu sample containing Am should enable a gas-solid separation of the two elements. The highly reactive fluorinating agent dioxygen difluoride (O₂F₂) can produce PuF₀ from PuF4 at ambient temperature [1]. O_2F_2 is generated at cryogenic temperatures, but it is thermally unstable at room temperature, producing reactive Flatons and O2. The Flatons are available to "oxidize" PuF₄ to PuF₆; however, F-atoms also quickly recombine to produce F₂, which does not react with PuF₄ at ambient temperature. Overall competing reactions are: $$O_2F_2 \rightarrow F_2 + O_2 \tag{3}$$ $$PuF_4 + O_2F_2 \rightarrow PuF_6 + O_2 \tag{4}$$ The experimental approach is to vaporize O₂F₂ and transport it rapidly to a reactor bed containing a Pu solid. Gaseous PuF₆ will be produced and Am will remain in the solid. ### EXPERIMENTAL DETAILS ٠. The entire experimental apparatus was housed in gloveboxes for contamination control. All gas and solid-containing components of the experimental system were constructed of aluminum, 304 stainless steel, or monel and were made helium-leak tight and passivated with F2 and O2F2. The reactor holding the solid to be reacted had multiple layers of fine-mesh stainless steel screen to support the solid and porous nickel filters to retard migration of solids in the gas exit stream. The experimental system included various traps, Metal BellowsTM pumps, an optical cell, and a vacuum system. Gas pumped from the system passed through chemical traps containing soda lime and alumina to react with fluorine. Pressures were measured using 0-1000 torr MKSTM Baratrons, and temperatures were measured using copper-constant and chromel-alumel thermocouples. A relatively pure, several year-old batch of PuF₄ was identified and sampled for actinide analysis. The PuF₄ solid powder was ground in a pestle to uniformity (20 mesh) and put into the reactor. O₂F₂ was produced from O₂ and F₂ in other apparatus using thermal generation of Fantoms [2, 3] and was cryogenically condensed into a trap preceding the reactor. The O₂F₂ trap was warmed slowly to volutilize O₂F₂ that flowed to the bottom of and through the reactor bed under its own vapor pressure. One exiting the reactor flowed successively through an IR cell, a refrigerated trap (-80°C), and a bellows pump into a trap cooled b₂ liquid nitrogen. (PuF₆ was retained in the refrigerated trap, while O₂ and F₂ from O₂F₂ decomposition were condensed in the LN₂ trap.) Figure 1. Schematic flow diagram of PuF₄ fluorination apparatus. Following an experimental run, PuF₆ was transferred cryogenically into a removable trap for weighing. PuF₆ was then reduced to PuF₄ by reacting with CH₄ (5% in N₂) in a reduction volume. PuF₄ product, typically from several runs, was weighed and sampled for analyses. A small amount of unreacted solid residue from the reactor was fluorinated with O_2F_2 in a smaller reactor to demonstrate further Pu/Am separation. Experimental apparatus and procedures were similar to those for the larger batch. ## RESULTS 70% of the initial PuF4 in the reactor was reacted in several runs, reduced to PuF4, and analyzed. The reaction of O₂F₂ with PuF4 began at a supply trap temperature of 110°C, corresponding to a O₂F₂ vapor pressure of ~10 torr. The temperature (and thus pressure) of O₂F₂ in the supply trap was beld nearly constant by continual height adjustment of a I₁N₂ dewar below the trap. Thermocouples extending into the bed measured small temperature rises (5-20°C) at the onset of reaction, but temperatures returned shortly to ambient and remained so during the reaction period. When the O₂F₂ supply was exhausted, the reactor pressure dropped, and the run was terminated. A Nicolet 20SX FTIR spectrometer was used to measure PuF₆ in reactor exit gas during the reaction period. The R-branch of the v₃ vibration at 622 cm⁻¹ was used to identify and quantify PuF₆. The IR absorbance was calibrated with pure PuF₆ from the product trap. Absorbance was linear with PuF₆ pressure up to 6 torr. Very small amounts of CF₄ were observed at the onset of reaction during some runs, but shortly PuF₆ was the only species observed by FTIR. Initial PuF₆ observation coincided with the bed temperature rise. Relatively constant PuF₆ concentrations were observed at constant O₂F₂ pressure. The PuF₆ partial pressure ran as high as 25% of the total pressure. Using gravimetric PuF₆ product measurements, production of PuF₆ ranged from 0.24 to 1.59 g PuF₆/g O₂F₂. From Rxn (4), total O₂F₂ utilization would produce 5.04 g/g. Fluorine utilization efficiencies as high as 31% (1.58 g/g) were repeatable at the same reaction pressure. Efficiencies were highest at 15-20 torr total pressure. Reduction of PuF₆ with diluted CH₄ initially proceeded rapidly but mildly, with a $2\cdot3$ °C temperature rise in the gas within 5 minutes. Because no provision was made for gas stirring, reductions were allowed to continue overnight. Gaseous reaction products were analyzed by FTIR in the optical cell. The reaction of CH₄ to CF₄ was not complete, as all CH_xF_y (x+y = 4) species were identified. Best results were obtained when the stoichiometric ratio of PuF₆:CH₄ was 3:1, to gave CHF₃ as primary reaction product. $$CH_4 + 3PuF_6 \rightarrow 3PuF_4 + CHF_3 + 3HF \tag{5}$$ The initial charge of PuF4 was salmon-colored with a bulk density of about 4 g/cm³ after grinding. PuF4 removed from the reduction vessel was a very fine solid of a creamy yellow color, uniformly covering the floor of the vessel. Some PuF4 was retained in the PuF6 weighing trap due to decomposition of PuF6. This solid was a loose solid, somewhat pink on the surface, but the bulk was a gray-green color. The bulk density of all product PuF4 was quite low, ranging from 0.3 to 0.7 g/cm³. The amounts of PuF4 recovered from PuF6 reduction was in stoichiometric agreement (within 5%) with the weighed amounts of PuF6 in the trap. Residual PuF4 from the reactor had a bulk density of 0.9 g/cm³. The initial PuF₄ sample had 0.734% ²⁴¹Pu (isotopic fraction) and 3025 ppm Am (µg Am/g Pu). Assuming the PuF₄ was initially pure, the sample was 1.05% ²⁴¹Pu initially and was 7.25 years old; this age agrees with other information. Am grows into this Pu at an approximate rate of 1 ppm/day. Significant time periods clapsed between conduct of experiments and analyses, thus it was necessary to correct Am results back to the date of experiments using Pu and Am measurements and Eqns (1) and (2). Am analyses presented are those corrected to such date. Sequentially, samples of PuF₄ product (reduced from PuF₆) contained 25, 20, 160, 80, 60, and 300 ppm Am. The unreacted solid contained 8285 ppm Am at the end of the series of experiments. A fraction of the remaining solids from the reactor bed was placed in a smaller reactor for further reaction. In a single experiment, 73% of the sample was volatilized, with PuF₆ generation confirmed by FTIR. During the run, production of PuF₆ ceased before all O₂F₂ had been volatilized. The reactor was opened after the reaction, and most of the remaining solid was on the reactor walls or at the exit filter. The solids put into the reactor had 8490 ppm Am; the remaining solid had 31760 ppm Am. The amount of PuF₆ collected was in good agreement with the amount of PuF₄ reacted. # DISCUSSION AND SUMMARY The amount of PuF₆ remaining in the large reactor was 30% of the charge. However, the amount of PuF₆ weighed product, as well as PuF₆ product after reduction, accounted for only about 60% of the initial solid. Some PuF₆ may have been reacted with the chemical traps, but this is believed to be a quite small amount. Some PuF₄ may not have been removed from the reactor, or other PuF₄ may have been deposited elsewhere in the apparatus due to PuF₆ decomposition. Assuming all Am from the initial material was retained in the reactor and that no other PuF₄ is in the reactor, one expects 3025*100/30 ≈ 10083 ppm Am in remaining solid. If all Am was retained but 10% of initial solid remains in the reactor, one expects 3025*100/40 = 7563 ppm Am. The observed value was 8285 ppm, and product analyses show little Am. Cleanup and dismantling of apparatus will help identify the location of remaining material. Among questions to be answered is whether any solids passed through or by exit filters. Lack of total reaction in the smaller reactor was due to migration of the PuF₄ powder to reactor walls and the exit filter, resulting in poorer contact of O₂F₂ with the solid. Expected Am content for the solid, assuming total retention of Am, was 8490*100/27= 31444 ppm. The observed result was 31760 ppm, which supports the assumption within experimental error. While the PuF₆ from this last experiment has not yet been analyzed, this result indicates an efficient separation of Pu from Am. The reaction of O₂F₂ with PuF₄ progressed efficiently and under very mild experimental conditions. The Am concentration in reaction product PuF₄ was reduced from that in the solid by a factor of 10-100. The rise in Am concentration of solid residue was consistent with retention of Am and a material balance. The reaction, separation, and reduction do not require "hands-on" treatment, which reduces potential for personnel radiation exposure. The direct waste products are gases that could be potentially reused (O₂, F₂), are easily neutralized (HF), or are non-hazardous (N₂, O₂, CHF₃). The reduction of PuF₆ can also be attained thermally, which avoids use of a reagent and a reduction in wastes. This result demonstrates a simple and efficient separation method that may have application to other actinide separations. ### REFERENCES - J. G. Malm, P. G. Eller, and L. B. Asprey, J. A. C. S., 106 (1984) 2726. - 2 R. C. Kennedy, T. R. Mills, H. E. Martinez, and J. R. FitzPatrick, unpublished results. - 3 T. R. Mills, J. Fluorine Chem., 52 (1991) 267.