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Errors when Shock Waves Interact due to Numerical Shock Width*

RALPH MENIKOFF
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Los Alamos, NM 87545

(send correspondence to Ralph Menikoff: (505) 667-7761, FAX (505) 665-4055)

ABSTRACT

A sunple test problem proposed by Noh, a strong shock reflecting frorn a rigid wall, demon-
strates a generic problem with numerical shock capturing algorithms at boundaries that
Noh called “excess wall heaiing." We show that the same type of numerical error occurs in
general when shock waves interact. The underlying cause is the non-uniform convergence
to the hyperbolic solution of the inviscid limit of the solution to t'ie PDEs with viscosity.
The error can be understood from an analysis of the asymptotic solution. For a propa-
gating shock, there is a difference iu the total energy of the parabolic wave relative to the
hyperbolic shock. Moreover, the relative energy depends on the strength =i the shock. The
error when shock waves interact is due to the difference in the relative energies betwern
the incoming and outgoing shock waves. It is analogous to a phase shift in o seattering ma-
trix. A conservative differencing scheme correctly describes the Hugoniot jmup conditions
for n steady propagating shock. Therefore, the error from the asymptotics ocenrs in the
transient when the waves interact. The entropy error that occurs in the interaction region
remains localized but does not dissipate. A scaling argument shows that ns the viscosity
coctiicient goes to zero, the error shrinks in spatinl extend but s constant in mnguitude.
Noh's problemn of the retlection of a shock from a rigid wall is equivalent to the senunetrie
inpnet of two shock waves of the opposite fannly  The asymptotic argument shows that
the sne type of uumerienl error wonld ocees when the shocks are of unequal streagth
T'hus, Nolt's proble is indieative of o mun seal error that occurs when shocks iternet

dne to the numerienl shock width.
Ixey words: hyperbolie conservation lnws, shock interactions, viseous profiles

AMS (MOS) subject classiticntion: 35165, 30167, 6HM 12, TOM20)
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1. Introduction

The equations for ideal Auid flow fori, a hyperbolic system of conservation laws

p pu \
O pu + 0, pu’ + P =0 (1.1)
p(%u2+E) p(%u"’+E)u+Pu

where p 1s the density, u is the particle velocity, E is the specific energy, P(V,E) is the
pressure and V = 1/p is the specific volume. Dissipation only occurs across a shock
wave and physically is accounted for by imposing the Rankine-Hugoniot juinp relations
across the shock discontinuity. Finite difference shock capturing algorithms are frequently
used to obtain a numerical solution to the fluid flow equations. These schemes have a
numerical dissipation that gives a shock wave a small width measured in grid cells, but an
artificially large spatial width co:npared to the typical shock width that physically occurs.
The effect of the artificial shock width is largest when shock waves interact. To determine
the effect of the numerical shock width, we analyze the asymptotic solution for n simple

shock interaction when a viscous dissipative term is added to the ideal fluid equations.

The problem we coasider in detail is a stroug shock in an ideal gns reflecting from
n rigid wall. This is equivalent to the interaction between vqunl strength shocks of the
opposite funily. It is similar te a test problem Noh [3] introduced ihat exemplify errors in
nunrerical caleuletions due to artificial viscosity. In Nolt's problem the initial dato consists
of 0 uniform state of cold gas with a constant velocity directed towards a vigid wall. Ity
solution has o strong outgomy shock, Beenuse of the zero witial sound speed, an analytie
solution exists in plauar, sylindrical and spherienl geometry. Typically, numerical solutions
have an entropy error at the boundary. The shock inteenction problem cousidered here
ix less singular then the Nolh problem. The mitial state is assumed to have a sioorh
viscous prafile rather than adiscontinuity i the veloeity, Furthermors, the Mach nunber
of the veflected shock s fimte. Nevertheless, the sae type of entropy error ocears in the

numerical solution of the shock interaction peoblem.

The hyperbolie solution of the shoek inceraction prablem consists of an outgoty, shoek

wave. Beennse the thux at the honnduries v constant, the total anss, momenimn ol
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energy in the viscous solution have the saine value as those in the hyperbolic solution. We
define the shock position of the viscous wave to have the same total mass and momentum
as the hyperbolic shock wave. An important quantity in the asymptotic analysis is the

energy of the viscous shock relative to the energy of hyperbolic shock.

We show that there is a shift in the relative energy between the incoming and outgoing
waves. This implies that an entropy error rnust occur during the transient shock inter-
action. For a shock reflection. the transient take- place when the shock profile overlaps
with the boundary. After the transient, the entropy is frozen in place, 1.e., convects along

particle trajectories, and the error does not dissipate.

A scaling argument due to Noh shows that as the viscous coefficient goes to zero
the entropy error decreases in spatial extent but not in magnitude. It implics that the
convergence of the inviscid limit to the hyperbolic solution is non-uniform in regions where

shocks have interacted.

2. Asymptotics

Let us consider astendy state viscous shock wave. Snppose ihe wave s right facwg
and propagnting with veloeity 7. Furthermore, let the reference points r, aud ry bhe o
the nhead nnd behned state respeetively, with ry < r,. The position of the wiave ean
be defined by comparing the viscous protile with adiscentinuons shock and ndjusting vhe

Jdiscontinaity such that the two waves have tie siane total manss,

The condition that the waves have the snme mass s given by

H - / J.r(p ")t / 11.!'(,) Pa) 1

Relative to ry the shoek position bhased on the mnss vogiven by

NI P N I O B / daeip(r)  pa) (AL
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Similarly, the position of the wave could be defined by matching the total momentum.
The shock position based on momnentum is obtained from Eq. (2.2) by replacing the mass

density p with the momentum density pu.

In steady state the mass Hux is everywhere constant
plu —a)=m

Hence, there is a linear relation between mass density and momentum density pu == po +in.
Consequently the shock positions, based on either the 1.1ass or momentuin of the waves,

are the same.

One could also base the shock position on the total energy. However the energy
density & = ( %“2 + E)p is not Galilean inveriant. This would lead to a non-nnigqueness in
the shock position. Iustead, we define the relative cuergy between the viscous protile and

the discontinuous shock with the shock position based on mass

I, Ta
01‘.‘.‘1 = / r(& - th) +'/ ll.l'(t. E..)
I r

= / dre (& - 8y) — (e = 0p) (& - &) (2.3)

We note that 087 0 correspoinds to an exeess cuergy in the viseous profile over 1the

discontinuous shoek.

We next show that the relative energy is Galilean invartant and henee well detined.
In a reference frame moving with relative veloeity w' the rnergy density is teansfored
to &8 b opuud _:-p(u')‘. Substituting & mto Fgo (22.3) one finds that the additinal
terme ave proportional to the nss and mowentum dewaty and have the siane form e

Eqg. (21, Henee, the additiomal terms vonish when ey s chosen to be the shoek poanon

based onmnss or equivelently  owmeatun,
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3. Von Neumann-Richtmyer Viscosity

Viscosity can be incorporated into the fluid equations by adding a viscous pressure
onto the fluid pressure. P — P + @ in Eq. (1.1). We analyze the viscous fluid cquations
using a von Neumann-Richtinyer viscosity {2} and an ideal gas equation >f state. The von
Neumann-Richtmyer viscosity is defined by the viscous pressure

Q= { C, p¥(B:u)?, if B;u < O;

0, otherwise. (3.1)

where C, is a dimensionless viscosity and ¢ is a length scale proportional to the shock

width. Without loss of generality we can set C,. = 1. For an ideal gas

PV =(y-1)E (2.

L)
(]
~—

with y > 1.

In this case, there is an exact analytic forinula for the viscous profile of n shock wave

[4]. Let o be the shock velocity and the variable

} ~
w = (%l) . (171') (3.3

be o sealed length relative to the shoek front. Then the viscous prefile is given by

Viw) = F(V # Vi) + (Vi Vi) sintn) (3.1)
1 ’ r 2

. .-(7 Fl)(‘,.—‘h)c'():&(u') .

) t) = L ) - .!. 2 ..Pp 5 1 - __é..__ e e = 3.
Plu) = 5(00 + Dy) - (5 I“)[sm(_u) } VA ATTUAS Vb)sill(u')} (3.9
(V. - Vi)eos?() 1 .

0 o 1 . » opoy |l A T, 3.
QL) Jaly + 1) (Py 1..)[(‘,“ ENTSTAN AT (3.6)
() = o ~ml(w) (3.7)

where me - pa(a - ) is the mass tlax throngh the shock front, From the Hugomot jump
emdidons (P, )/(Vi V). We note the shock profile is of finate width extendag,

from the nhend state 0 ooy, lz" to the hehud state at ooy Yr.

The shock position hased on mnss is given by
| L A

o 2
1 ' duae ) T 3 s
" el (Ilh P'I) / n/? ! (ll.l | \h) | (‘-u \.h).'illl(ll') T ( M)
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The integral is of the form evaluated in the appendix. It can be simplified to give

+ Al 3.9
w, = w T| ————— .
b n(n—1) (

where n = V,,/V} is the compression ratio of the shock. We note the limiting cases: for
a weak shock » — 1 and w, — 0 while for a strong shock n — (v + 1)/(y = 1) and

—%rr < w, < 0.

It is convenient to calculate the relative energy of the shock profile in the rest frame
of the shock front, i.e., 0 = 0. In this case the kinetic energy is 3pu? = ;m*V and the

energy density can be expressed as
£=%m2V+(‘7—1)_lP (3.10)

Substituting this expression into Eq. (2.3) for the relative energy we ubtain

2 \1} m/ m/

T 2 L, 2 . 1 -

o8 = - ¢lzm dw V(w) + aw P(w)
y+1 -n/2 Y=1J_w2

- n& = (wy —wp) (& — &, )j (3.1

The integrals can be evaluated with the fonnulac in the appendix.

w/2
/ dun Vi) =n(V, +V))
J-wf2

n/2
/ dw P(w) — .%1r [(I’.‘ t Py) - .:—(7 + ])(l,* ~ 1)y - 1) NP, - [’..)l
~nfe

After steaightforward algebrive manipulation, we obtaia for the relative energy

: L 2\ 4 I I (b
A ok R | . L Al ! 3 ) R S 1y - -
SERES l(ﬂ_l) (ry | ){u )l'-"" B SRR

(31"

L

We note three genernl properties of the relative energy.
(1) &8 10 n funetion of the shoek width,

I pacticulae, 887+ 0 ag the shock width sovs to zero.

G
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(2) 6ET is a function of the shock strength.
For weak shocks JET/é’ ~ (Py = P,)* and for stroug shocks 6T /¢ ~ (P, — P, ).

(3) 8&ET varies with v, and hence the equation of state.
This is a consequence of the fact that the viscous pressure depencls only on the density
and velocity, hence the shock profile depends on the equation of state.

These important properties are expected to be true for any reasonable viscosity and equa-

tion of state.

4. Example of Reflected Strong Shock

The effect of the shock width on a shock interaction can be seen in the simple case
of a strong shock retlecting from a rigid wall. To compare the viscous solution with the
hyperbolic solution, we compute the difference in the relative energy between the incoming
shock and the outgoing shock, AET = o&1, - 6€T. We note that AET > 0 eorresponds to

a net excess energy in the viscous shock profiles compared to the hyperbolic shocks.

Let “he pressure behind the incoming shock be Py The compression ratio of o strong
shock 15 1y = (v + 1)/(y = 1). The reflected shock is characterized by its pressure ratio,

P.,/Py =1+ 29/(y - 1), aud its compression ratio, p,,/pe = 7/(y — 1).

The seale for the relative energies is e = L op
2

, \ ! :
~ '-;IT{) ¢ P,. Substituting the values

—_ N

;
for the pressure and compression ratio into Eq. (3.11) we obtaia for the relative energies

S iz i
""f..ql‘/'f -= :(7 - 3) {(—%“;ll—)l‘ [( ; +:—> |] l} - |/,.() l)z [( :i_:) ll
” o N 5 <
'5':.1-';/“ (y -3 {2(7 - 1) ‘ ( 7_7 )’ : l} : 7_)i} Sy Ny - 1) [( 7"?"{) l}

From the above formudae, the difference m the relntive energies can ecnsily be eveluated
unmerically ns o function o 3. A plot shows the tollowing general preserties for the

diflerence ol the velative cuergy:
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(1) AT 20 asy > 1
This singularity is due to the singularity in the compression ratio at v = 1.
(2) AET =0 at y = 2.4
(3) The minimum value of AET =~ —0.34 occurs at v x 4.65
(4) AET -0 as vy — oo.

We note that in general AE7 is not zero.

The constant flux ahead of the outgoing wave can be accounted for by comparing the
position of the shock in the viscous solution to that of the hyperbolic solution. The shift
in the energy of the viscous shock profiles implies that a steady state outgoing wave can
not simultaneously satisfy the flux relations for mass, momentumn and energy. Iustead,
the shock interaction must result in a transient. The transient occurs on both a fast and
slow time scale and results in an entropy error when comparing the viscous solution to the

hyperbolic solution.

Over the fast tine scale, (shock width)/(shock velocity), the viscous pressure sinoothes
ou* any discontinuity in the non-degenerate or acoustic modes. This is important when
the positions of the incoming and outgoing shock waves are within a few shock widths of
the wall. The pressure and particle velocity rapidly equilibrate towards the values of the
hyperbolic solution as the incommng shock profile changes to the outgoing profile. On the
slow time scale, the viscous solution is close to the solution to the Riemann problem and

the outgoing shock profile approaches its steady state solution,

On the slow time scale, the shift in cuergy is small compared to the total energy
behind the shoek. The energy misiateh in the shock profiles can be distributed over the
region between the wall and the shock front by acoustic waves. ‘The entropy error at the
shock front is small and further deerense as 1/t for large £ This is a consequence of the
fuct that the Hugoniot jup conditions give the corrert eitropy jump neross a stemdy state

shock profile independent of the form of dissipation.

Ou the fast time seale, the energy shift is signifieant compared to the total energy

in the shock profile. This vesults in o significnnt entropy error in the internction region

A
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during the transient in which the shock profiles change. After the pressure and particle
velocity have equilibrated, the viscous pressure in the interaction region approaches zero
and the subsequent chang= in entropy is negligible. Without heat conduction which would
give rise to diffusion of entropy, the entropy error is frozen into the particle trajectories.
Thus, the bulk of the entropy error from the interaction is confined to within a few shock

widths of the wall.

Let us consider in more detail the interaction region for the case when AET > 0. Near
the wall the outgoing viscous wave must have a deficit in energy equal to AET in ovder
to compensate for the energy difference in the shock proai=s. Because the wall causes the
particle velocity to go to zero, the energy density reduces to £ = pE = P/(y — 1) and
is proportional to P. When the reflected wave has propagated a couple of shock widths,
the pressure has approximately equilibrated to the value behind the outgoing hyperbolic
shock. In order to conserve total energy, the viscous shock front must be slightly behind
the hyperbolic shock front. Then to conserve mass, on average p must be above the value
for the hyperbolic shock. Since P is-approximately constant, a high value for p implies on

average the entropy S x log(P/p7) is low.

At the wall, the pressure rise is more characteristic of a single strong shock then a
double shock. Since the entropy is greater for a single strong shock then for two sequential
shocks to the same final pressure, right at the wall we expect the entropy to be high and
the deunsity to be low. This imnplies there is an oscillation in the density and entropy in
the vicinity of the wall. The pressure and density determine the specific energy through
the equation of state. At the wall, a low value of p results in a high value of E. This
ngrees with the results of numnerical caleulations and is what Noh 3] called excessive wall
hieating, even though there is a damped oseillation in the cnergy about the value hehind

the hyperbolic shock.

Finally, to conscrve totnl momentmin the velocity profile overshoots ad bheomes
shghtly negntive immediately behind the viscous shock frout. As the wave moves further
awny from the wall, the viscous profile iore closely appronches that of o stendy state

shock wave, Consequently, the entropy jump across the viscons wave tapidly approaches
A | A

)
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the value for the hyperbolic shock. As time progresses, further errors in entropy outside

the interaction region are negligible.

We note that the initial data for Noh's test prublem corresponds in effect to taking
the relative energy of the incoming wave to be zerc. In this case, the energy difference for
the interaction is AET = 6ET. Again, in general AET is not zero and an entropy error

occurs from the transient interaction that forms the outgoing shock.

Finally, to understand the small distance it take for the shock to form and the pressure
and velocity to equilibrate we estimate the magnitude of 6€T relative to the energy in the
shock profile. For illustrative purposes we assume v = 3/3. From Eq. (3.3) the shock width
is Az = 2.72¢. The compression ratio of a strong shockisn = (v + 1)/(y — 1) = 4. From
Eq. (3.12), the energy ratio is 6£T /Az&, = '/o. Thus the energy in the shock profile will
have a small effect on the shock interaction after the outgoing shock has propagated a

couple of shock widths.

5. Non-uniform convergence of Inviscid Limit

One important consequence of shock interactions is that the convergence of the inviscid
limit to the hyperbolic solution is non-uniform. This may be deduced through a scaling

argument introduced by Noh [3].

The inviscid fluid equations are scale invariant. Scaling space and time amounts to a
choice of units. Viscosity iatroduces a length scale which breaks the invariance. However,
under scaling, the viscous pressure is multiplied by a constant. Therefore, by scaling
the cocfficient of viscosity along with the length and tune scales, the equations are agam
invariant A solution to the fluid equations with the von Neumann-Richtmyer viscosity
is invariant under the transformation &' = «z, t' = ot and C., = o*C,. Furthermore,
this transformation preserves velocity and hence the initial value data. As o — 0. the
entropy error at the wall is constant in magnitude but decreases in spatial extent. Henee

the inviscid limit for this ense converges in L' or L2 but not in L™,

10
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A shock reflecting from a rigid wall is equivalent to the svmmetric collision of two
shocks, i.e.. equal strength shocks of the opposite family. The argument that the cause
of the error is due to the asymptotic shift in the relative energy between the incomning
waves and the outgoing waves implies t. at the fact that the incoming waves are of equal
strength is not important. Hence. shock interactions in general will result in non-uniform

convergence of the inviscid limit.

8. Effect of Source terms

Noh also has a version oi the shock reflection test problem in cylindrical and spherical
geometry. This introduces an additional effect on shock propagation due to geometrical

source terms.

The geometrical source terms are singular at the origin. Consequently, as the shock
approaches the origin the source terms become comparable in magnitude to the viscous dis-
sipation within the shock profile. When this occurs, the conservation form of the equations

no longer implies the Hugoniot jump condition across a shock.

A real effect in which the Hugoniot jump conditions are modified occurs for detonation
waves [1]. In this case the competition between chemical reactions and geometrical source
terms gives rise to the curvature effect in which the detonation velocity depends on the
curvature of the shock front. An artificiaily large numerical shock width and geometric

source terms can have a similar effect near the origin.

An ideal converging shock, from the Gurdeley similarity solution, is singular at the
origin. The shock width provides a length seale which regularizes the singularity when
the shock reflects from the origin. After reflection there are large gradients behind the
shock front. The shock has to propagate a sufficient distince from the origin m onvder
for the gradients behind the shock to be small compared to those in the shock profile.
This is a necessnry condition for the Hugoniot jump conditions to apply across the shock

independent of the form of dissipation.



Errors when Shock Waves Interact March 4. 1693

Thus, when source terms or gradients behind the shock front are large compared
to the dissipation within thic shock profile, the viscous sclution can differ significantly
from the hyperbolic solution. Again the error is in the entropy and is expected to be
localized. Finite difference shock capturing algorithms have an artificially large shock
width. Numerical solutions with schemes that have the smallest shock width will minimize

errors of this type and be closest to the hyperbolic solution

7. Conclusion

We have analyzed the problem of a strong viscous shock reflecting from a rigid wall.
For the von Neumann-Richtmyer viscosity, we have shown that the same type of entropy
error occurs as in Noh's test problem. The error is due to the difference in energy relative
to the hyperbolic solution of the viscous profiles for the incoming and outgoing shock
waves. A scaling arguments shows that as the viscous coefficient goes to zero the entropy
error decreases in spatial extent but not in mragnitude. Furthermore, the entropy error is

convected with the fluid and does not dissipate.

Froin the asymptotic energy argument, we expect the same behavior to wccur for
an arbitrary shock interaction with any diss'pative mechanism that results in a non-zero
shock width, provided there is no heat conduction to diffuse entropy. The dissipation inay
correspond to a term added to the hyperbolic PDEs, e.g., an attificial viscosity, or «an be
numerical in nature, e.g., resulting from truncation errors in the differencing schewe or a
Riemnann solver used in the Godunov method. The fact that hyperbolic finite difference
schemes deliberately underresolve the shock profile is not critical. The iruncation crrors
merely introduce an oscillation in the shock profile as the position of the shock front

propagates between grid points.

The entropy error when viscous shock profiles interact iiplies a0 non umform comver
gence of the inviscid limit to the hyperbolie solution. Non-uniform convergenee can be

expected at the shock frout. An additional non-uniformity can oceur in o region in which

[

-
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the solution is smooth resulting from a shock interaction that occurred in the region’s past

history.

A more severe form of this entropy error occurs when a shock wave is incident on
a material interface or contact. For materials with different equations of state or when
the contact is a discontinuous change in zoning, there can be a large transient resultin<
from the change in profiles for the incident, transmitted and reflected shock waves. In
Lagrangian algorith.ns the effect is partially ameliorated by choosing the grid such that
the wave speed in units of zones per time step is the same for the outgoing shocks on each
side of the interface. However, the minimal error is similar to that which occurs for the

shock interaction discussed here.

In more complicated fluid flows, additional errors can result from the inhomogeneities
caused by the entropy error from shock interactions. For example, subsequent shock waves
will scatter off the inhomogeneities and spread the spatial extent of the error. This effect
is partially ameliorated by the fact tuat shock heating raises the sound speed. Hence
subsequent reflected shocks have a lower Mach number and the additional entropy errors
they cause decrease as the shocks weaken. Another example occurs in an unstable two
dimensional flow. The inhomogeneities from shock interactions can be the seed for a

perturbation which leads to instability growth.

For some applications, the non-uniform convergence is important. One examnple is
when comparing the calculated temnperature at a wall to experimental data. The numerical
entropy error from a reflected shock results in a high wall temperature which does not
uissipate in time. Moreover, the calculated wall temperature does not imnrove under inesh
refinement. Having understod the cause, one can compeusate for this error, c.g., with
sufficient resolution by averaging over a amall region in the vicinity of the wall. Auother
example is when the rnaterial is chemically reactive. in particular, for an explosive o
numerical hot spot caused by a shock interaction can initiate™ detonation. and greotly

cffect the ud flow. .
.

»
The spatial extend of the entropy error whenshocks interact is proportional to the
i ¢
shock width. 'Thus, this error is simallest for those numerical scheme that iminimize the
artificinl shock width. In particular, this type of error can be eliminated by using n frout

tracking algorithm.

13
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Appendix: Evaluation of Integral

The needed integrals can be evaluated by contour integration as follows. Suppose
a > b > 0 and n is a non-negative integer. Let z = e'*. Then the basic integral of interest

can be expressed as

/"d.t cos(nr) —Rc/ —idz z"
o a+beos(s) T Jo, z a+lbz+1/z)

N

= In dz —_
/(-o %bz‘ +az + %b

where Cy is the arc of a unit circle in the upper half of the complex plane.

The denominator of the integrand on the RHS has two zeros located at
2y = [—a:i:(az —b")i] /b

These lie along the real axis with z- < ~1 and -1 < z4 < 0. Let C be the path formed
by closing the path Cj along the x axis but going around the pole at z, in the upper half

plane. By applying Cauchy's residue formulae we obtain

" cos(nz) " /' "
df ———— = [ dz - PV 1
/o Tatbeos(m) (/C 632 +az + Lb A The? Yar + 5b

+ i Residue(z, ,)

T Residue(z4 )

- ( a? —b‘)*—u)
(u‘ - bk

Using the synmnetry of the sin end cos functions over n half cycle we nate two special
1

ciwes of the above forinula

L ] " 1
/ PR / dr o
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