

UNCLASSIFED

VERIFIED UNCLASSIFIED
Per LMR 6-11-79 By Marclene Lajasa CHC. 14 _1L-2095

Classfifcation changed to UNCLASSIFIED by authority of the U. S. Atorate Eneray Commissions.

BY REPORT LIBRARY fotilf

PUBLICLY RELEASABLE
Per Bill Palatinus FSS-16 Date: 3-l1-92 By Mardeseligen, CIC-14 Date: $11-2095$
$I A=487$

A PETHOD FOR DETERRINING EQUATIONS OR STATE AND REACTION ZONES IN DETONGPION OF HIGG EXPLOSIVES, AND ITS APPLICATION TO PENTOLITE, COMPOSITION $-B_{0}$ BARATOL, AND TNT:

REPORT WRTTYEN BY:
Ro Wo Goranson

APPENDIX

MEASUREMENT OR FRTE SURYACE AND SFOCK VELCCITY IN PETALS.
FOHK DONE BY:
So Wo Bale
E. I. Nooker
B. Wo Pierson

Go Mraters
D. Whyte

ABSTRACT

A method, which is kere describods has been devised and utilised for the study of detonation waves in high explosives Those investigated are pentolite. composition a Beratol, and granular TNTo Pressure o volume data inve been obtained for the detonation head and the Chapman o Jouget pointo The Trak pressure of tho detonation head is found to bo about 255 times that at the Chapian a Jouget pointo Furthermore assuming the ediabatic expansion of the burnt gases can bs represented by prr ${ }^{\gamma}$ constant, it was found that the mana square deviaticn of any of the explosives from the value $\gamma=3$ was about 4 par cent, which therefors makes the formala $p=\left(p_{0} D^{2} / 4\right)$ aseful first approximation in determining the Chapman - Jouget pointo if this picture of the detonation head is correct then "abnormal" spall effects, iweo not present in thicker specimens, shoula occur in thin plates: Theso have been observed, Estimates have also been. made of the width and duration of the reaction zone They are found to lie in the intervals $0.8 \pm 0.2 \mathrm{~mm}$ and 0.2 ± 0.1 microseconds respectivelyo

UNCLASSIFIED

A LGTHOD FOR DFTERMTNTNG EQUATIONS OF STATE AND FEACTION ZONBS IN DEYONATJON OF HIGE EXPLOSIVES AND ITS APPJICATION TO PENTOLITE, COLPOSTYIONOB, BRRATOL, AND TINT

Hypothatical Considerations:

The conditions under which the tests mere conducted are such thet the detonation process may be treated as onemimensional inen the detonation wave moves across the explosive as a series of parallel planeso furthermore, divensions have been so chosen that the wave has reached a stationary state ioeo the wave velocity is constant in timso

Iet

D_{1} or $D=$ detonation velocity
$D_{2}=$ shock velocity in metel
$u=$ mass velocity
$\forall=$ specific volume
$\nabla_{0}=$ initial specific volume of the solid explosive
$\Delta \nabla=\nabla=\nabla_{0}$
p = pressure
$x=$ fraction of explosive in which the reaction is completej fraction of intact explosive $=1-x_{0}$
$E=$ internal ensrgy per unit mass
$\Delta E=E(p, \forall, x)-E\left(p_{0}, v_{0} x=0\right)$

The oxplosive, in passing from the intact state through the various reaction states, must fulfill the conditions of conservation of mass, momentum and energyo Tharefore, neglecting viscosity and thermil wondxity affects,
for $u_{0}=0$ and p_{0} negligible.

$$
\begin{align*}
& u / D=-\Delta \nabla / \sigma_{0} \tag{1}\\
& p \nabla_{0}=u D \tag{2}\\
& \Delta E=-1 / 2 p \Delta \nabla=1 / 2 u^{2} \tag{3}
\end{align*}
$$

$\nabla_{0}, p_{0} u_{0}$ are given, D is an unknown parameter, and $p_{p} v_{p} u$ are unknown funotions of x_{0}

A hypothetical set of RankineaHugoniot curves in the (p, \bar{v}) oplane together with the point (p_{0}, V_{0}) are plotted in Figo 1 for different x_{0} The angle between the negative wexis and the direction $\left(p_{0}, \nabla_{0}\right) \rightarrow(p, \gamma)$ is denoted by \varnothing so that $D=\nabla_{0} \sqrt{\tan \phi}$ and $D=u=\nabla \sqrt{\tan \phi}$.

Thile \varnothing is undetermined it is not entirely arbitrary since it may be observed to lie in the upear laft quadrant from the conditions that $\tan \phi=\left(\mathrm{D} / \mathrm{v}_{0}\right)^{3}$) and that $p>p_{0^{\circ}} \quad \forall>\nabla_{0}$ because we are here considering detonation and not nerely burningo Furthermore the straight line from ($p_{0} v_{0}$) to ($p_{s} \nabla$) must intersect the (p, ∇) curves for all $0 \leqslant x \leqslant 1$. Therefore, in Figo I_{s} wo must have $\phi \geqslant \varnothing_{2}$ where D_{η} is the tangent to the (p, v) curve for $x=10$ The Chepmanejouget hypothesis states that $\not D=\mathscr{C}_{n}^{\prime}$ 。

Thermodyasmic and hydrcdymamic arguments can be propounded to justify this conclusiono

For example, if at $x=1$ we have $-(\partial p / \partial \nabla)_{s} \times\left(\operatorname{pop}_{0}\right) /\left(v_{0}-v\right)$ then $D=u+c$ and the condition is fulfilled; c here denotes the sound velocityo If the point lios at "a" in Figo 2 then $\sigma(\partial \mathrm{p} / \partial \mathrm{V})>\left(\mathrm{p}_{\mathrm{p}} \mathrm{p}_{0}\right) /\left(\nabla_{0}-v\right)$ and $0+u>\mathrm{D}_{0}$ The rarefraction wave will then catch up with the detonition weve and:lop it oif

APPROVED FOR PUBLIC RELEASE

$\Phi 5 \omega$
until tho point has moved dow to "d". But we have hypothecated a steady state to the detonation waver if the point lies at " b " then $-(\partial \mathrm{p} / \partial \nabla)<\left(p-p_{0}\right) /\left(\nabla_{0}\right.$ o- $)$ But the entropy of the burnt gases corresponding to state "b" is less than that for state " a ". ioeo " a " is more probeble then " b "; similarly for all pairs "a" and "r," until $a=b=d$ 。 Hence " d " is the nost probable pointo

A discontinuity must of necessity occur at $x=0$ for increasing x with an immediate fump from the lotrer intersection point ($\mathrm{p}_{0^{\circ}} \nabla_{0}$) to the upper intersecticn point (p^{0}, ψ^{0}) . Thus the reaction zone sets in as a shock wave with an abrupt increase of p and u and an equally abrupt decrease of v, This is accompanied by a large increase in temperature and a vehoment blow of velocity u by the wave head on the intact explosiveo This velocity is smaller but of the order of magnitude of the detonation velocity D and it is this discontinuity in material velocity which can provide e mechanism to start reactiono The reaction zone behind the head is able to replenish the head with the necossery energy since inthis region $c+u>D 0$ The reaction proceeds continuously remaining as an upper intersection point for the curves $0<x<1$, and terminatos at $x=1$ as a tengent pointo This is followed by an adiabatic expansion of the burnt gases.

Von Noumann (OSRD Noo 549) has also presented an alternative argument whersin all the curves for different x intersectiach other ${ }^{p}$ ioe in which wherethermic changes of state can occur, and for which the Chapmenolouget hypothes is mould not be ralid.

A similar argument could be made for an intermediate situation wherein the Hugoniots for the $x \leq x_{0}$ form stream lines as in Figo 1 while the curves for $x>x_{0}$ intersect one another, Here the envelope of the interseatingo aurves could

the deviation from this condition would be negligibles In this case what we observe would not be a function of the reaction wone width but only of that fraction from $x=0$ to $x=x_{0}$ the remaindar blending in with the indistinguishable from the adiabatic expansion portion of the curvea

This latter concept of Von Neumann does not appear very probabla thermodynamically since it implies that a mixture of reaoted and unreacted material cen do more work than the completely reacted material. If this were true it would he desirable to include an inhibitor which would prevent the reaction from going to completiono As will be seeng it ioes not agree either with the results obtained hereine

The cross section of the detonation wawe kill thus appear as in Figs 30 The shape of the burntogas expansion curve will depend upon the confinemento nith an infinite amount of explosive this portion of the curve would remain horigontal. provided no endothermic recombinations occurs It should be remembered that no after-burning offects, suoh as from reaction with surrounding air, will be observable With the method of this papero

Then such a detonation wave impacts on a metal surface a shock wave Will be transmitted into the motal with shock velocity D_{2} and pressure

$$
\left(p_{2} / p_{1}\right)=\frac{p_{2}=\rho_{t} \text { where }}{\rho_{2} D_{2}} D_{1}+\rho_{2} D_{2}
$$

Ito hore correctly

$$
\left(p_{t} / \rho_{1}\right) \frac{\rho_{2} D_{2}}{\rho_{1} D_{2}} \quad \frac{\rho_{1} D_{1}+\rho_{3} D_{3}}{\rho_{2} D_{2}+\rho_{3} D_{3}}
$$

WHRLASSIFIEH
where P_{3} is the density behind the detonation fagrat: argi Dig the feflected shook velooitys
$p_{1}=p_{i}$ denoting the incident pressure in the shock wave. ρ_{1} and p_{2} thonintial densities in the high explosive and metal respectively, D_{1} and D_{2} the detonation and shock velocitios respectivelyo Relations (1). (2) and (3) must also apply for the $p, v_{s} u$ and D in the metalo

A facsimile of the datonation wave modified in amplitude as indioatod by (4) is transmitted through the metale Here however there is no replenishment by reaction and the unloading wave, moving with velocity $u_{2}+c_{2}$ which is greater than D_{2} is continually enoroaching upon and eroding the peako c_{2} is the sound velocity in the compressed medium behind the shock fronto

It ras expected therefore that, on impacting the front surfaces of a series of metal plates' of rarying thicknesses by high explosive detonation wraves and measuring the initial surface velocities of the backs of these plates, a cross sectional picture of the detonation viave could be obtainedu

From this cross section it should be possible to estimate
(a) the width of the reaction zone
(b) $\mathrm{p}^{0}, \nabla^{0}$ for $x=0$
(c) p, for $x=1$
provided certain other quantities, such as $D_{1}, D_{2} c_{2}$, were alsc determined,
If a denote the width of the reaction zone and b the apparent width in the mstal then
C_{2} being the sound velocity in the compressed medium For $D_{1} b D_{2}$ there is a foreshortening effect dus to orowing of the detonation wave at the matal surface and given by the ratio in parenthesis, on the other taigd therg sise eingongation resulting from the term in square bracketso The reaction time dt rill be given by

$$
\begin{equation*}
\Delta t=\left(a / D_{1}\right)\left(\nabla_{\sigma} / \nabla\right) \tag{6}
\end{equation*}
$$

where the increase in time as represented by ($\bar{\sigma} / \nabla$) resul.ts from the fact that the raacting particla is moving at velocity \underline{u} In the same direction as Do

The impedances PD of the impacting and impacted materials shoule be identical. For aluminum and high explosive the ration p_{t} / p_{i} as given by (4) is about la 250 In consequence a pressure wave is reflected back into the explosive which might hate an effect in ghortening the reaction zone and would therefore ocnstitute a possible source of uncertainty inestimating the reaction zones by this mothodo

$$
p_{1}^{0} \text { and } p_{1} \text { may be approximated by (4) efter the } p_{2} \text { have been obtained }
$$ from the velocities D_{2} and $u_{2}{ }^{\circ}$

Even with the above approximations and limitiations in mind it was believed that the results obtained by the mathod of this paper would be able to supply additional justification for the oonsiderations just described or to indicate wherein they might be invalid.

For this purpose it is desirable to use a substance for which mass velocity is a sensitive function of pressure and which would yield a fair "impadance" match with the high explosiveo Beryllium, aluminum, and graphite approach these specificationso Aluminum was chosen because it is readily obtained in very homogeneous form and is easily workedo

In order to ascertain further to what extent the moasurements may be correlated with particle velocity rather than with momentum transfer from explosive to target for the very thin plates a sories of measazemfity was aiso jeade on steel plateso

The procedure consists in impacting the front surfece of a metal piato With a plane detonation wave and obtaining a measure of the initial velocity of the back surface of the plateo This is accomplished by spacing a set o about oight o of electrical contactors in the interval from 0 to 2 millimeters from the back surface of the plate and mensuring the times of arrival of the plate at these contaotor positionso Details of the technique are given in LA a 384 and with more detail in the appondix to this report.

Caloulation of pressure by Eqne $\{2$) is subject to some unoerteinty since the frse surface velocity is given by

$$
\begin{equation*}
u+\int_{S_{2}} c d(\ln \rho) \tag{7}
\end{equation*}
$$

Where c is the sound velocity in the compressed regiono Expression (7) has been approximated herein by 2 uo The Yugoniots for aluminum and steel are expeoted to cross over into the liqujdus regions for pressures of about 0. 6 and lo 7 megabars respectivelyo No marked discrepancies were observed between results for steel and aluminumo To ascertein what might be expected in the liquidus to vapor region a series of tests was made with lead and with lead backed by $00125^{\prime \prime}$ of steel. Tho Fugoniot for laed is axpected to cross over into the liquidus region at about 0.26 mb and into the rapor region at about 1025 mb . The data obtained are show in Figo 9 where it may be observed that velocities from unbacked lead scatter considarably and for thiokness under one inch are about double the values for steelmacked leado

EXPRRIMENTAL RESUITS

The oxperimental data of surface velocity as a function of thiokness of material through which the shock wave has traveled are tabulated for

$$
\begin{aligned}
& \text { (A1) Aluaninum - pentolito } \\
& \text { (A2) Steel - pentolite } \\
& \text { (A3) Aluminum - Composition B } \\
& \text { (A4) Aluminum - Baratol } \\
& \text { (A5) Aluminum - granular TNT }
\end{aligned}
$$

as rollows:
TABIE (Al)
Aluminum o Pentolite

Thiok Al inches	No of Observo	Wean Obs. Vel. $\mathrm{km} /$ sec.
1050	5	$20454 \pm .028$
1225	13	$20605 \pm .020$
2.00	3	$2.679 \pm .044$
0.50	6	$20900 \pm .029$
0.234	1	2. 96
0.220	1	$3 \cdot 11$
0.225	2	3035
0.119	1	8056
0.087	1	3.34
0.065	1	4.16
00005	5	$6.03 \pm .04$
The first four points may bebregresfofitiont		
$y=$ thic	and $x=$ \vdots \vdots ED EOR	-

APPROVED FOR PUBLIC RELEASE

$$
=110
$$

TABLE (A2)

Steel = Pentolite

Thick: Steel, inches	No of Observo	Mean Obsa volo \qquad
2.00	3	0.65
1.50	5	$0.964-0045$
1.00	16	$1.376 \pm .022$
0.50	7	1.628
0.49	1	1.668
00079	1.	2.078
0.038	1	2.920
00016	1	2.781
0.010	1	3.947

The first five points can be represented by $y=20962 \sim 20483 x$ where $y=$ thickness steel in inches, $x=$ velocity in km/seco

-120

TABLE (A3)
Aluminum - Compositicn B

Thick Al inches	Noo of Observo	Wgan Obs. Vel $\mathrm{km} / \mathrm{sec}$.
2.50	2	$2.818{ }^{*}$-023
1.00	3	2.979 ± 0.29
0.50	3	$3.13 \pm .018$
0.229	1	3.08
0.200	2	$3.01 \pm .045$
0. 224	2	$3.19 \pm .00$
0.083	2	$3.75 \pm .13$
0.031	1	3075
Or 016	2	5026 ± 045
0.017	1	5.52
00005	1	7.11

APPROVED FOR PUBLIC RELEASE

-13∞

TABLE (AS)
Aluminum - Baratol

Thick Al inches	Noa of Observo		Mean Obs. Vel. $\mathrm{km} / \mathrm{sec}$.
2.50	2		$1.45 \pm .01$
1.00	2		1061 ± 01
0.765	2		1.628 $\pm .04$
0.620	1		2.711
0.500	2		1.776 $\pm .05$
0.483	1		3.730
0.250	1		1.905
0.235	1		1.970
0.062	1	-	2.370
0.031	1		20758
0.011	2		3.474 $\pm .06$

TABLE (A5)
Aluminum - Granular TNT

Thick Al inches	No of Observo	Hean Obs: Vo $\mathrm{km} / \mathrm{sea}$
1.000	1	1-61
0.500	3	$1.67 \pm .01$
C. 250	2	$1.72 \pm .02$
C. 125	2	1.84 $\pm .02$
0.062	1	2065
0.026		$3.275 \pm .01$

APPROVED FOR PUBLIC RELEASE

These results are also shown as graphs in Figso 4 to 8 inclusiveo From esch test the times of arrival of aight contactors, distributed in the interval 0 to 2 millimeters from the back surface of the plate, are recorded and a least square value for the slops is calculated from these points. Eren though the mean square deviation of the points from this line may amount to only about two percent, the deviatlcn from shot to shot in repeat tests may be sevaral times this values The factors which result in the latter spread are due probably to differencos in the quality of the high explosive, eogo from variations in porosity, grain size, segregations, cavities and cracka

The first set of measurements (LA-384) was made with a lens intonded to give a flat wave 305^{n} in diameter (the actual wave front was, howeverp convex, the central axis leading by about 0.2 u sede To this lens was attached the cylinarical disc $4^{\prime \prime}$ diameter by $3^{\prime \prime}$ nigh of the explosive investigatodo Thicknesses less than $2^{\prime \prime}$ were found to give low values of velocityo Later a lens designed to give a flat wave $605^{\prime \prime}$ in diameter was made available (the actual wave front was slightly convex the contral axis leading the edge by about 0 ol u sed. The cylinarical cake of the explosive investigated was 8^{n} diemeter by $3^{\prime \prime}$ higho Results with the former lens showed considorably more scatter than was obtained with the latter. In Pact the data obtained for thick plates with composition-B cakes and 3.5" lenses had to be disoarded entirely beoause the values of velocity obteined Were too erratic end were furthermore consistently lower than those obtained with 6.5" lenses. An adequate explanatica for this behavior is not known because the measurements were made within the unperturbed conical region as computed and checked experimentally.

The shock velocity is alyaigikm notistysil was obtained fron a series of

-15-

14 internally imbedded pins spaced in the intervel 1 to 23 millimeters from the front surface of the one-inch thiok plates The shock velocity in aluminum ($3.5^{\prime \prime}$ lens and pentolite) may be represented by

$$
D_{2}(A D)=\frac{d x}{d t}=\frac{1}{0.1204+0.0006336 x} \mathrm{~km} / \mathrm{sec}
$$

where x is distance in millimeters and t time in microseconds, except for the initial highopressure peako

The shock velooity in steel ($6.5^{\prime \prime}$ lens and pentolite charge), from similar measursments, is

$$
D_{2}(\text { Steel })=5024 \mathrm{~km} / \mathrm{sec}
$$

and over'this interval the man square deviation of velccity from constanoy was less than one per cent. This value is about 5 per cent higher than the figure obtained with 3.5" lenses (LA-384).

The characteristios of the various explosives tested are as follows:

TABIE B			
Explosive	Doxsity	Do $\mathrm{kom} / \mathrm{sec}$	Grain sizo
Cast pentolite 50/50	10666	$\begin{aligned} & 7.500 \\ & (\text { stick }) \end{aligned}$	coprecipeted product
$\begin{aligned} & \text { Cast Compr } \\ & 60 / 40 \mathrm{RDX} / \mathrm{TNL} \end{aligned}$	1.70	$\begin{aligned} & 7.850 \\ & (\text { stick }) \end{aligned}$	RDX 70 microns
Cast Baratol II	20.51	$\begin{aligned} & 4.850 \\ & (\text { stick }) \end{aligned}$	Barium nitrate 12 microns
Granular TNT	1.03	5. 250 (flat wave lens	Spherical granules from 0.3 to 0.5 mm diameter. Grain size small.

APPROVED FOR PUBLIC RELEASE

DERIVED QUANTITIES

Equation of State: From these data and the relations whioh have been presented
it is possible to evaluate a \underline{p} and oorresponding ∇ or ∇ / ∇_{0} in the detonating explosive from the initiation to the end of the reaction ioe. from $x=0$ to $x=1$; The data are given in the following tableo

TABLE C

Reacted fraction	Corre thicko in aluminum	Pressure Megabars	$\nabla / \%_{0}$
		PENTOLITE	
$x=0$	0	- 562	. 400
	0.05	-347	-629
	0.10	. 308	. 672
	0.15	-247	. 736
$x=1$	0.20	0245	0.738
		COMPOB	
$x=0$	0	. 664	-366
	0.025	0 - 44	. 576
	0.05	. 293	- 721
	0.10	-272	. 740
$x=1$	0.15	. 264	. 748

BARATOL

$x=0$	0.01	.294	0502
	0.05	0201	0659
	0.10	0.68	0735
	0.20	0150	0745
	0.30	.141	0761
	0.40	0136	.769

GRANOLAR TNT

$x=0$	000	(0260?)	(01 3)
	0.06	- 204	-280
	0.10	- 122	- 570
	0.13	- 107	- 622
	0.15	, 301	-643
$x=1$	0.18	$:-988$	- 652

0170

The poak pressure values will be somowhat uncertain because masurements sufficient to reduce probable orrors from random iluctuations are not yot availablec The peak pressure in the detonation fronto according to the above table is about 2.5 times that at the Chapmanojouget pointe

Reflection of this high peak from free surfaces of thin plates should then be able to produce certain spall effects which would not be observable in thicker specimenco Such "abnormal" spall effects have been observed and therefore offer an indirect confirmationo

Ho Jones (Bho647。 ACo364y) has computed the ($p_{g} v$) o adiabatic expension curve for the reaction products of oomposition ${ }^{\text {co }}$ fis oalculatod values for the Chapman-jouget point are ${ }^{2}$) $\mathrm{p}=0208 \mathrm{mb}\left(\mathrm{m} / \nabla_{0}\right)=0790$ These are to be compared with $p=0264 \mathrm{mb}$ and $\left(\nabla_{0}^{\prime} \nabla_{0}\right)=075$ of this papero

A plot of p versus $\left(\nabla / \nabla_{0}\right)$ for these explosives is shown in Fige 10 , the detonation velocity D being given by

$$
D=\sqrt{\nabla_{0} \tan \phi^{\prime}}
$$

where \varnothing^{1} is the angle between tho line containing the ($p_{0} \nabla / \nabla_{0}$) points and the negative $\left(v / V_{0}\right)$ axiso

It has been shown that at the Chapmanojouget point

$$
-\left(\frac{\partial p}{\sigma}\right)_{s}=\frac{p=p_{0}}{\nabla_{0}=v}
$$

Now assume that the isentropic expansion curve of the burnt gas may be represented by

-180

Whare r is identified with the ratio of heat capacities ($\left.e_{p} /\right)_{0}$ Then

$$
\infty\left(\frac{\partial p}{\partial \nabla}\right)_{s}=\frac{p \gamma}{\nabla}=\frac{D}{\nabla_{0}}
$$

whence by elimination, neglecting p_{0} we have

$$
1 / \gamma=-(\Delta v) / \psi_{0}
$$

Or

$$
p=\rho_{0} D^{2} /(2+1)
$$

From these relations and the data of Table 0 we have

TABIE D

Explosive	$\gamma=\left(c_{p} / o_{0}\right)$
Pentolito	2.82
ComprB	2.97
Baratol	3033
Granular TNT	2.88

The moan square deviation of the explosives from the value $=3$ is about 4 per oent whioh therefore makes the relation $p=\left(D^{2} P_{0}(4)\right.$ userul as a first approximation in computing (p_{0}) at the Chapman-Jouget point for various densities of packings

Reaction Zone

Th reaotion zone width and tima of reaction may be obtained from the relations (5) and (6) The ratio $D_{2} /\left(c_{2}+u_{2}\right)$ decreases with increasing pressure so that erosion of the peak is more rapid at the higher pressures: Hence the evaluations desired of these functions•in exfresifon (5) are those for which $x=1 \mathrm{c}$

$-19=$

Furthermore for shocks of small amplitude (small $\Delta \mathrm{p}$) c_{2} will approxinate to D_{2} the offect of rigidity being negligible for aluminum at these pressures"

From the plots of u_{2} and D_{2} as a function of distance in aluminum pressurepolum points are computed for aluminumo c_{2} is obtainod from the slope of the resultant $\left(p_{s} v\right)$ oflugonint curve at these pointso It was found that in the Chapman-Jouget pressure region for these explosives the ratio $D_{2} /\left(u_{2}+c_{2}\right)$ lay in the interval $0.85 \pm .030$

The values so obtained for the widths and durations of the reaction zones are as follows:

TABLE E

Explosive	Width a of reaction zone in millimeters	Time of reaction t in microseonds
Pentolite	0.80 ± 0.16	0.14
CompoB	0.64 ± 0.14	0.11
Baratol	1.12 ± 0.12	0.30
Gronular MNT	(0.5)	(0.15)

The reaction zones are therefore of the order of $0.8 \pm 0.2 \mathrm{~nm}$ wide and durations 0.2 ± 001 microseconds.

These values do not agree with estimates made by Eyring and his collaborators (OSRD 3796) from such mathods as (a) extrapolation from law temperature rate of decomposition (b) rate at which detonation builds up from low to high order (c) limiting oylindrical diameter for steady state detonation
 along the uncased stick (d) calculated rate for surface reaction from activation 3Jo They deduce that the detongtion velgaity. is proportional to ar ${ }^{-1}$ where r is the radius of the stick " Gikir detezminations would indioate that the minus exponent should be sbout $\because \circ$.

APPROVED FOR PUBLIC RELEASE

energyo Their conclusion is that the reaction time for TNT is 1 microsecond and length of about 0.5 cmo

Another mothod is to relate the width of perturbed region of a detonation wave proceding around a concave aro with tho redius of curvature γ of the arc by $D=D_{\infty}\left[1 \infty\left(X a / x_{1}\right)\right]$ where D_{∞} is the staady state volocity and K an unknown perametero If \mathcal{H} is mado unity then a would be the order of 004 cmo However, should bo more then unity and in fact probably a function of since one component of the vetor D will be direoted amay from the surfaces

Herzberg and Walker (BH 1165), from diraci observation of the duration of detonation lurainosity, found an uppar limit to be 0.03 fasco for RDX o BWX 9log pellets and 0.1 Hame for all other explosives investigated (tatryl NHMO_{8} TNI). Gorresponding upper limits for lengths of the reaction wones are 0.3 to 0.9 mo These are in very good agreemen't with the results obtainsd by uso

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& \text { E: \%. . } \\
& \text { OM }
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

```
\(\because: \quad: \quad: \quad:\)
```



``` HuGitex endixas
```


\qquad


``` Pat
```


APPERDIX

Messurement of Tree Surfece and Shock Volocity in Motals

For the 30 measuremonts a tochnique was adapted from one previously dspised for obtaining defleotion of plates and structures as a function of time when subjected to high explosive impactso

This Norfolit technique consisted in arranging a series of suitably spaced probes near the back surface of the fargete Nach probe was connected directly to the grid of a tube and both charged to a suitable potontial through a high resistance。 Fhen contact was estabished with the target the probe beoams discharged and sired the tubso The plato current flow through a resistor caused a drop in potential across the plates of the cathode ray tubo The resultant oscillograph track thus consisted of a seriss of steps equal to the number of probeso this was later modified by means of a transformorotype mixing circuit which gave an altarnating series of short positive and negative pulseso This circuit has a high-impedence lovel and was mede so because some of the tests involved relatively hieh contact resistancesa

A teotmique very sjmilar to this has been employed by Froman (LAol82, Decomber 1844; La-182A, March 1945).

For the mesurgments of this paper, howevers a highoimpedence circuit is undesirable Furthermore the total durations of some of the recordeare less than a microsecondo Consequently time resolutions of the order of a milio miorosecond are needed.
 for 1943_{9} by R. Wo Goransosi*

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

$\cos 2^{\circ}$

The maasurements of surface velooity ware mado by arranging a series of external contactors naar the back surface of the target (Figo il). Seven or eiglit oontacts were sot in a circle $3 / 8$ to $1 / 2$ inoh in diametero The points of the contactors were arranged in a double helix, so that any asymetrical Fariations of surface velocity across the $2 / 2$ inch circle would result in random deviations from a smooth displacemsnt time curre, instead of the regular deviations which might be expocted if e single helix were usedo The target was grounded olectrically, while the contacts were charged to a potential about 45 rolts by means of a battory (Figo 12). In general 7 contacts were used, tho most distant, one being 2 millimetors from the surface and the elosest being Oo millimeterso

Photographs of the pin contactor absembly appear in Fige 130 It will be noted that ach contact is insulatad along its leagth by moans of a pisce of vinylite tubingo Tho surface of each contact wes lacquered and all controts were tested before use by immersion in water to determine whether or not the insulation Was perfecto This precaution was nocessary since it was found that ionised air wrould otherwise slowly discharch the oondensers (Fign 12) before mechanical contact was ostablished, and no clsanecut pulse rise could then be observed No difficulty was enoountered from ionized air for velocitiea less than $1 \mathrm{~km} / \mathrm{sec}$ but above this velocity conditions became increasingly bad until at $5 \mathrm{~km} / \mathrm{sec}$ the laoquer began to fail in an erratic manner and unintelligible reoords were frequently obtainedo

Tripping of the circuits was accomplished by means of a thin piece of insulatod metal roil inserted betweon the target and the charge (Figo 11). A. similar piece of foil was used to reoord the arrival time of the shock wave at the front surface of tho target: In ordgre t8, regoord the latter on the osoilloscopes the entire 8 signals from tho njxig: ifrgit, : delayed by mesns of a 500 foot

APPROVED FOR PUBLIC RELEASE
piece of coaxial cable.
Shock velocity was measured in a imilar manner excopt that the contactors were imbedded in the material and arranged such that no one of tham Fould perturi those behindo Furithermore the front ends of the probes were separated from the target by very thin cellulose acetate filmso

Tho oircuit (Figo 12) used in conjunotion with the pin contactors was designed to satisfy the following distinct requirements:
(a) The impedance level of the contsct circuit aust be lofs so that no signal will result from spurious electrostatic offects produced in the detonation of the high explosives and to roduce the possibility of preocontact discharge In other words the coataots should carry a relatively high current once the circuit through them is completedo
(b) Each contact should be capable of producing one and only one signal, regardiess of whether or not the circuit remains complete after contact is establishod.
(c) The pulse front produced by closing each contact should be as stoep as possible。
(d) Whe signals resulting Erom closing the sucoessive contats should be approximately of equal size and shape This is in order to minimize systematio exrort in determining the beginming of each pulse on the recorda
(e) A signel of at least two volts must be delfvered to the oscilloscope inpute Smaller signals would require excessive amplification winich would be diffioult to aocomplish without affeoting the staepness of the pulse fronto
(f) The voltage ecrcas ofpen contact oshould be as low as possible in

-340
mohanioullyo
（g）Any apparatus to be used near the high explosive must be either rugged enough to withstand continusd use，or simple onough to bo produced in quantityo

In ordor to satiafy condition（b）it was decidad to have ach contad discharge a separato small condenser through a resistor，and to observe the voltage across the resistor（Figo if）。 By making the tim constant RC short， a brief oxponential pulse e（t）will bo producedo If on the other hand the tim conetant $R_{1} C$ is long（several microseconds）a signal vill bo observed only at the initial closing of switoh so

The circuit of Figo 14 was developed into that shom in Figo 12 ， which provides for eight separate contacts，each with its cwn condensero In Fige 12 the values of R_{1} and K_{3} have been so chosen that tha fmpodance as sean from the cable is about 82 ohms（the surge impedance of tho cable ie 75 ohns）。 The charactertstics of the circuit are such that even with all oontacts olosed． there can be no appreciable reflectiono When a contact is olosed．signal is delivered to the cable and proceods to the remote and which is practically open booause of the high isput impedance of the oscilloscopso The signal is then refleote and proceeds beck down the oable whers it is almost perfectly absorbedo The reflection process delivers to the oscilloscope twice the signal which mould be received if tho input impedance of the scope were 75 ormso

The flust and last contacts whioh close will produce the samo signals as would the olrouits of Figso 15a and $15 b$ respeotivelyo（Fig＇15b assumes all contacts closed）。 In Figg 15a the paak value of（t）will be about a041 me
 at the oscillosoope inputo The gatual pade signal will be somewhat smaller for reasons to be discyspediven FOR PUBIIC RELEASE

Certain defects of tho oircuit of Figo 12 will be obvious from reference to Figo 15a. In the fijest place the signals produced by the various oontacts grow auccessively smaller, and what is worse thoy change in shape. It is reasonably obrious, however that these effects are not larges a conclusion Which is supported by reference to actual oscillograms (figo 27) But because of this inherent defoct it mas felt dosirable to measure all oscillograms at the initial disoontinuity in slopo of eaoh pulse (ostimating the position by ay as accurately as possiblel in ordor to eliminate any orrors which might result from differences in shap of suocessive pulses such as might occur ifofor instance, the position of maxinum amplitude wers measuredo

More important than the defeot just noted are the limitations imposed on the steopness and duration of the pulse by residual inductanoe and oapacitanceo Consider for example the cirouit of Figo 16 whioh represeats approximately the astual conditions met in practice I_{1} and C_{1} are estimated to ba 200×10^{-6} henries and $10 \times 10^{\circ 12}$ farads reapectivelyo The duration of the pulse will be controlled by the tims constant $R C_{0}$ which should be appreciably less than the rise time of the oscilloscope amplifiero if best results are to be obtainedo Thus we must make $R C 0.01 \times 10^{\infty} 6$ secondso on the other hand the rise time of the pulse cannot be less than $\left(I_{1} / R\right)$ and this too should bo of the order $0.01 \times 10^{\circ 6}$ secondso inks consideration mesns that $R \geq 200$ ohmso Fence $C<50 \times 10^{-12}$ faradso Furthernores R mast introduce enough discipation into the circuit to eliminate objectionable osoillationso If C were infinites it would be necessary to make $R<500$ in order to obtain more than one half critical dampingo Actually since C is finite R mast by apprecisbly genaler than this upper limito Tho qotual values uead wero $C=80 \times 10^{-12}$ farads, and $R=26$ citais finge fig probably not quite the optimum

APPROVED FOR PUBLIC RELEASE

-36°
values, but they have proved adoquato.

In order to obtain maximum contragt in photographing the oscillograph traoe 105 o spsotroscopic plates were usedo The schedule of qespations was such that they also recoivod a coritain amount of profogging which increasos their sensitivityo Timing intervals were obtained from a 5mogacycle sine wave osoillatos construnted for this purposes Tho pletas were measured with a preoision micrometer slide accurate to 0.01 mo The photographic trace of a tro microsecond awesp length is about 305 an so that reproducibility of millimiovoseoond is posstbleo

FIG. 11

FIGURE 12
CIRCUIT USED TO PRODUCE PULSES WHEN CONTACT WITH TARGET IS ESTABLISHED

$$
\begin{aligned}
& R_{1}=330 \Omega \\
& R_{3}=330 \Omega \\
& C_{1}=30 . \quad R_{2}=100 \Omega \\
& R_{4}=100 \mathrm{~K} \Omega
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& :: \quad: \quad \vdots:!
\end{aligned}
$$

FIG. 14

FIG. $15 a$

FIG. 15b

FIG. 16

Plg. 17. Pnlarged photograph of typical osciliogram trace from a hall-inch aluminum target. Total duration of sweep is two microseconds. A five-megacycle sine weve is super imposed on the trace for calibration of time intervals.

