A Less Sensitive Explosive (U)

Kien-Yin Lee
Michael D. Coburn

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Los Alamos National Laboratory is operated by the
University of California for the United States Department of Energy
under contract W-7405-ENG-36

Derivative Classifier
B. J. Palatinus
Classification Analyst
memorandum

Los Alamos
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

DATE: March 10, 1986

TO: Dan Pace, IS-4859

FROM: Bill Palatinus, OS-6

SYMBOL: OS6:86-97

SUBJECT: DECLASSIFICATION OF LA REPORT

Information contained in LA-10302-MS, authored by Kien-Yin Lee and Michael D. Coburn, is no longer classified. Please declassify and mark your holdings appropriately. You may use this memo as your authority to make this change.

BP: ms

Cc: US DOE, Headquarters Library
 Reports Section
 Washington, DC

US DOE, Technical Information Center
Oak Ridge, Tennessee

Lawrence Livermore National Laboratory
Livermore, California
 Technical Library (2 copies),
 R. McGuire, L-324, LLNL
 C. Coon, L324, LLNL

K. Y. Lee, M-1, MS C920
M. D. Coburn, M-1, MS C920
L. A. Gratz, M-DO, MS F915
 CRM-4 (2), MS A1505

File

LA-10302-MS (Rev: [1985])
Los Alamos National Laboratory.

All cys (except 12&13) were destroyed after they were declassified. This was done because the rpt. was reissued as unclassified & was processed as a new report. 5/7/76

2-21-85

N7 CEOF

APPROVED FOR PUBLIC RELEASE
3-NITRO-1,2,4-TRIAZOL-5-ONE,
A LESS SENSITIVE EXPLOSIVE

by
Kien-Yin Lee and Michael D. Coburn

ABSTRACT
A new, less sensitive explosive has been prepared and subjected to preliminary characterization tests. The compound, 3-nitro-1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm³ and calculated detonation velocity and pressure equivalent to those of RDX. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13-cm-diam, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation. Finally, NTO can be prepared in high yield from inexpensive starting materials.

I. INTRODUCTION
In the past, the common explosives RDX, HMX, and TNT were considered adequate for all weapons applications. Due to the many catastrophic explosions resulting from unintentional initiation of munitions by either impact or shock aboard ships, aircraft carriers, and ammunition trains, these explosives have become less attractive.

Triaminotrinitrobenzene (TATB) is noted for its insensitivity and is currently employed for insensitive high explosive (IHE) applications in nuclear weapons. Unfortunately, TATB does not produce sufficient performance to replace HMX in some applications. The need, therefore, exists for explosives that are powerful yet resistant to accidental and sympathetic initiation.

This report describes a new candidate energetic explosive, 3-nitro-1,2,4-triazol-5-one (NTO). The chemical, physical, and explosive properties of NTO
are reported, together with the procedure for its preparation. Results from initial performance are also included.

II. PROPERTIES OF NTO

NTO is a white crystalline compound, moderately soluble in water to give yellow solutions. The chemical properties of NTO are given in Table I. The CO-balanced explosive was found to have a crystal density of 1.93 g/cm^3 by x-ray crystallography.

Results of small-scale screening tests of NTO are tabulated in Table II. For comparison, data from RDX are also listed. It can be seen that NTO is less sensitive and more stable than RDX in all the tests.

TABLE I

CHEMICAL PROPERTIES OF NTO

 Structural Formula:

![Structural Formula of NTO]

$\text{C}_2\text{H}_2\text{N}_4\text{O}_3$

Molecular Weight: 130

Acidity: $\text{p}K_a = 3.67$

NMR Spectrum:

$^1\text{H NMR (DMSO-d}_6\text{): } 12.7 \text{ ppm (>NH)}$

$^{13}\text{C NMR (DMSO-d}_6\text{): } 148.0 \text{ ppm (>C-NO}_2\text{), } 154.4 \text{ ppm (>C=O)}$

Elemental Analysis:

Calc: $\text{C, 18.46; H, 1.54; N, 43.08}$

Found: $\text{C, 18.78; H, 1.92; N, 43.47}$

III. PREPARATION OF NTO

NTO is prepared by a modification of the procedure reported in the Russian literature. It consists of preparing the intermediate 1,2,4-triazol-5-one (TO) followed by nitration with 90% nitric acid.
TABLE II

PHYSICAL AND EXPLOSIVE PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>NTO</th>
<th>RDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Density (g/cm³)</td>
<td>1.93</td>
<td>1.806</td>
</tr>
<tr>
<td>DTA Exotherm (°C)</td>
<td>>236</td>
<td>210</td>
</tr>
<tr>
<td>Heat of Formation (kcal/mole)</td>
<td>-14.30</td>
<td>+14.71</td>
</tr>
<tr>
<td>Henkin Critical Temp (°C)</td>
<td>237</td>
<td>219.6</td>
</tr>
<tr>
<td>(0.64-mm size)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Sensitivity (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 12</td>
<td>291</td>
<td>22</td>
</tr>
<tr>
<td>Type 12B</td>
<td>293</td>
<td>41</td>
</tr>
<tr>
<td>Spark Sensitivity (J)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 mil</td>
<td>0.91</td>
<td>0.22</td>
</tr>
<tr>
<td>10 mil</td>
<td>3.40</td>
<td>0.55</td>
</tr>
<tr>
<td>Vacuum Stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ml/g/48 h at 100°C)</td>
<td>0.2</td>
<td>0.12-0.9</td>
</tr>
<tr>
<td>(ml/g/48 h at 120°C)</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

A. Preparation of TO (2 mol)

TO is obtained by condensing semicarbazide hydrochloride (SC) and formic acid, Eq. 1. Thus, to 230 ml of formic acid (85%) in a 1-L round-bottom flask is added 223 g SC slowly with stirring. The mixture is then heated under reflux for 4 h. The reaction mixture is concentrated by distillation until crystallization begins to occur (about 2 h). Water is added and distillation is continued until the mixture is near dryness. After cooling in the refrigerator overnight, the solid is collected by filtration, washed with a small amount of ice water to remove excess formic acid and dried in an oven at 100°C overnight. The yield of TO is 96-98%. The purity of TO is determined by NMR spectroscopy.

\[
\text{HCl} + \text{H}_2\text{N} - \text{N} - \text{H}_2 + \text{HC-OH} \rightarrow \text{HNO} + \text{HCl} + 2\text{H}_2\text{O} \quad (1)
\]
B. Preparation of NTO

In a 2-L beaker containing a mixture of 222.5 ml of 90% nitric acid and 118.8 ml of water is gradually added 112.45 g (1.32 mol) of TO with the temperature controlled at about 40°C. The mixture is heated to boiling until brown fumes start to evolve, then it is removed from the heat and set aside. At this point, the reaction becomes exothermic and large quantities of brown fumes are evolved. NTO is precipitated as white solid that is collected by filtration, washed with ice water to remove excess nitric acid, and dried in an oven at 100°C for 24 h. The yield is 142.11 g (83%).

IV. PERFORMANCE TESTS OF NTO

We have evaluated the performance of NTO by conducting unconfined plate-dent tests at various charge diameters and pressed densities. We recrystallized NTO from water and its purity was analyzed by both 1HNMR and 13CNMR spectroscopy before pressing. Results of these tests are compiled in Table III. For comparison, data from RDX and TATB are also listed.

V. PREPARATION AND PROPERTIES OF AMINE SALTS OF NTO

NTO is relatively acidic (pKa = 3.67), and forms stable salts with monovalent or bivalent metals. The potassium, sodium, and lithium salts of NTO have been reported. We have studied the formation of amine salts with NTO and have prepared, for the first time, the ammonium and ethylenediaminium salts of NTO (ANTO and ENTO, respectively). Both salts were prepared by the addition of the corresponding base to a methanol solution of NTO, followed by evaporation of the solvent in the case of ANTO or by filtration in the case of ENTO. If NTO is treated with ammonium hydroxide solution, the salt thus obtained is a hydrate. We have characterized and evaluated both salts and found they could be explosives of interest. Some of the physiochemical properties of ANTO and ENTO are reported in Table IV. In earlier studies, we have demonstrated that both ammonium and ethylenediaminium salts of 5-nitrotetrazole form low-melting eutectics with ammonium nitrate (AN) and the eutectics behave like a monomolecular explosive. We have investigated the formation of the eutectics ANTO/AN and ENTO/AN. Preliminary results indicate that both salts form eutectics with AN and the eutectic temperatures of both eutectics are below 100°C.
TABLE III

DETONATION PROPERTIES

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Charge Density (g/cm³)</th>
<th>Charge Diameter (cm)</th>
<th>P_cJ (kbar)</th>
<th>Measured</th>
<th>BKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTO</td>
<td>1.93 (100% TMD)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>1.781 (92.2% TMD)</td>
<td>4.13</td>
<td>278</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.782 (92.3% TMD)</td>
<td>2.54</td>
<td>240</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.855 (96.1% TMD)</td>
<td>2.54</td>
<td>Failed</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.759 (91.1% TMD)</td>
<td>1.27</td>
<td>250</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>RDX</td>
<td>1.767 (97.8% TMD)</td>
<td>4.12</td>
<td>338</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>TATB</td>
<td>1.87 (96.5%)</td>
<td>4.12</td>
<td>277</td>
<td>313</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV

PHYSIOCHEMICAL PROPERTIES OF AMINE SALTS OF NTO

<table>
<thead>
<tr>
<th></th>
<th>ANTO</th>
<th>ENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Formula:</td>
<td>C₂H₅N₅O₃·H₂O</td>
<td>C₆H₁₂N₁₀O₆</td>
</tr>
<tr>
<td>Molecular Weight:</td>
<td>165</td>
<td>320</td>
</tr>
<tr>
<td>Melting Point (°C):</td>
<td>190</td>
<td>221</td>
</tr>
<tr>
<td>NMR Spectrum:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹³C NMR (DMSO-d₆):</td>
<td>164.6 ppm (>C=O)</td>
<td>164.4 ppm (>C=O)</td>
</tr>
<tr>
<td>¹³C NMR (DMSO-d₆):</td>
<td>159.4 ppm (>C-NO₂)</td>
<td>159.1 ppm (>C-NO₂)</td>
</tr>
<tr>
<td>Elemental Analysis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calc: C, 14.55; H, 4.27; N, 42.42</td>
<td>C, 22.50; H, 3.75; N, 43.75</td>
<td></td>
</tr>
<tr>
<td>Found: C, 15.07; H, 4.11; N, 42.42</td>
<td>C, 23.09; H, 3.78; N, 44.12</td>
<td></td>
</tr>
</tbody>
</table>

VI. CONCLUSIONS AND FUTURE WORK

We have prepared an explosive compound that could be a candidate for future nuclear and conventional weapons applications. Initial small-scale sensitivity tests of NTO indicate that it is much less sensitive than RDX and TNT in all respects, but somewhat more sensitive than TATB. Results from a 4.13-cm-diam unconfined plate-dent test of NTO at 92.2% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation, which is equal to that measured for TATB at 96.5% of crystal density. We are in the process of scaling up the production of NTO so that a full-scale gap test can be performed to determine the shock sensitivity of NTO. NTO can be easily pressed without a
binder to the desired charge diameters and densities. We are going to study and characterize PBXs of NTO with different binders and plasticizers. We also plan to continue to characterize and evaluate the two eutectics, ANTO/AN and ENTO/AN.

ACKNOWLEDGMENTS

REFERENCES

Distribution

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Los Alamos National Laboratory Report Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td></td>
<td>Livermore, California</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Technical Library (2 copies)</td>
</tr>
<tr>
<td></td>
<td>R. McGuire, L-324</td>
</tr>
<tr>
<td></td>
<td>C. Coon, L-324</td>
</tr>
</tbody>
</table>

No. of Copies

13

4