ANGULAR DISTRIBUTION OF FRAGMENTS FROM NEUTRON-INDUCED FISSION

by

J. E. Brolley, Jr.
W. C. Dickinson

Classification changed to UNCLASSIFIED
by authority of the U. S. Atomic Energy Commission,

Per ACR (710-1926)

By REPORT LIBRARY 21/4/60

UNCLASSIFIED

LA-1552
Distributed: AUG 10 1958

Los Alamos Report Library 1-20
AF Plant Representative, Burbank 21
AF Plant Representative, Seattle 22
ANP Project Office, Fort Worth 23
Argonne National Laboratory 24-31
Armed Forces Special Weapons Project (Sandia) 32
Armed Forces Special Weapons Project, Washington 33
Army Chemical Center 34
Atomic Energy Commission, Washington 35-37
 Battelle Memorial Institute 38
Bechtel Company 39
Brookhaven National Laboratory 40-42
Bureau of Ships 43
California Research and Development Company 44-45
Carbide and Carbon Chemicals Company (C-31 Plant) 46-47
Carbide and Carbon Chemicals Company (K-25 Plant) 48-49
Carbide and Carbon Chemicals Company (ORNL) 50-55
Carbide and Carbon Chemicals Company (Y-12 Plant) 56-59
Chicago Patent Group 60
Chief of Naval Research 61
Columbia University (Havens) 62
Commonwealth Edison Company 63
Department of the Navy - Op-362 64
Detroit Edison Company 65
Directorate of Research (WADC) 66
duPont Company, Augusta 67-69
Foster Wheeler Company 70
General Electric Company (ANPP) 71-73
General Electric Company, Richland 74-77
Hanford Operations Office 78
Idaho Operations Office 79-82
Iowa State College 83
Knolls Atomic Power Laboratory 84-87
Mallinckrodt Chemical Works 88
Massachusetts Institute of Technology (Kaufmann) 89
Monsanto Chemical Company 90
Mound Laboratory 91-93
National Advisory Committee for Aeronautics, Cleveland 94
National Bureau of Standards 95
Naval Medical Research Institute 96
Naval Research Laboratory 97-98
New Brunswick Laboratory 99
New York Operations Office 100-101
North American Aviation, Inc. 102-104
Nuclear Development Associates, Inc. 105
Patent Branch, Washington 106
Pioneer Services Engineering Company 107
RAND Corporation 108
Sandia Corporation 109
Savannah River Operations Office, Augusta 110
USAF-Headquarters 111
USAF Resident, East Hartford 112
U.S. Naval Radiological Defense Laboratory 113
UCLA Medical Research Laboratory (Warren) 114
University of California Radiation Laboratory, Berkeley 115-119
University of California Radiation Laboratory, Livermore 120-122
University of Rochester 123-124
Vitro Corporation of America 125-126
Walter Kidde Nuclear Laboratories, Inc. 127
Westinghouse Electric Corporation 128-131
Yale University 132
Technical Information Service, Oak Ridge 133-147
ABSTRACT

The angular distribution of fission fragments from the neutron-induced fission of several isotopes has been studied. Distributions were observed for thermal neutrons on 233U and 235U, Lady Godiva leakage neutrons on 235U and 238U, and 14 Mev neutrons on 233U, 235U, 238U, Th232, and Np237. No anisotropy was observed for thermal neutron fission, whereas for Lady Godiva neutrons and 14 Mev neutrons the probability of fission along the axis of the neutron beam was determined to be higher than for fission in the orthogonal direction. Experimental results are given on pages 10 and 11.

ACKNOWLEDGMENT

The authors wish to thank the personnel of Groups P-2, W-2, and P-4 for the use of their equipment. In particular, we thank R. E. Peterson of W-2 and R. W. Davis and A. H. Frentrop of P-4 for considerable aid in the installation of our apparatus and the taking of data. Thanks are due to J. Povelites for the preparation of the fission foils. We are indebted to K. Boyer for suggesting the type of collimator used in these experiments and to D. L. Hill for several interesting interpretative discussions.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2. Apparatus</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Fission Chamber</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Electronic Equipment</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Fission Foils</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Neutron Sources</td>
<td>7</td>
</tr>
<tr>
<td>2.4.1 Water Boiler</td>
<td>7</td>
</tr>
<tr>
<td>2.4.2 Lady Godiva</td>
<td>7</td>
</tr>
<tr>
<td>2.4.3 Cockcroft-Walton</td>
<td>8</td>
</tr>
<tr>
<td>3. Procedure for Accumulation of Data</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Water Boiler</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Lady Godiva</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Cockcroft Walton</td>
<td>9</td>
</tr>
<tr>
<td>4. Experimental Results</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Thermal Neutrons</td>
<td>10</td>
</tr>
<tr>
<td>4.2 Fission Spectrum Neutrons</td>
<td>10</td>
</tr>
<tr>
<td>4.3 14 Mev Neutrons</td>
<td>10</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>11</td>
</tr>
</tbody>
</table>
1. Introduction

The Bohr-Wheeler liquid drop model for the fission process would predict essentially no correlation between the direction of the incoming fast neutron and the direction of the fission fragments, apart from center-of-mass effects. According to this model, the energy of the neutron is quickly assimilated among the individual nucleons of the fissionable nucleus and only later is this energy concentrated on a mode of deformation leading to fission. However, according to the new collective model for the fission process formulated by Hill and Wheeler, part of the energy of the incoming fast neutron goes to nucleonic excitation and part to vibrational excitation of the nuclear surface. The vibrational excitation will be predominantly such as to distort the nucleus along the direction of the neutron beam, leading preferentially to fission in this direction. It is also possible that the presence of a nuclear quadrupole moment would influence the angular distribution, since a nucleus that is elongated in prolate form might be expected to fission more readily in the direction of the long axis.

We have measured the angular distribution of the fragments from the 14 Mev neutron-induced fission of several isotopes to provide a test between these two pictures of the fission process. We have observed also the angular distribution of fragments from thermal neutron-induced fission. This was done principally to provide a check of our experimental apparatus since no anisotropy would be expected from any reasonable picture of the fission process.

In addition, we have observed the angular distribution of fission fragments using neutrons closely approximating those from a fission spectrum. This information might be of interest in bomb physics. It is known that prompt fission neutrons are more intense along the axis of fission fragment motion than in the orthogonal direction. Hence, an anisotropic distribution of the fission fragments would indicate that there is a correlation function between the neutron which induces fission and the resulting fission neutrons.

2. Apparatus

2.1 Fission Chamber

Figure 1 is a photograph of the fission chamber with the cover removed. Figure 2 is a schematic representation of the chamber illustrating the type of collimation which was employed. The negative high-voltage electrode was honeycombed with 0.040 inch holes drilled on a hexagonal matrix to fill a circle 1 inch in diameter. These passages were inclined 45°

with respect to the normal in order that the geometry would be in all essentials identical
for the 0° and 90° angular settings. No geometrical or shadowing corrections are necessary
when this scheme is used. The length of the collimator holes was 0.382 inch, resulting in
an extreme angular resolution of $\pm 0.6^\circ$ and an average angle of emission of the fragments of
approximately $2-1/2^\circ$ from the axis of collimation. Thickness of the walls separating the
collimator holes was 0.006 inch; geometrical transmission of the collimator was 68 percent.
The collector electrode was mounted on three 1 inch long steatite insulators and the nega-
tive high-voltage electrode was separated from the collector electrode also by three 1 inch
long steatite insulators. The high voltage lead was insulated with a teflon tube. A gas
filling of 95 percent argon and 5 percent CO_2 was used at a pressure of 45 cm Hg so that
the fastest fission fragments would be stopped shortly before reaching the collector. A
negative voltage of 300 volts obtained from a dry battery was applied to the collimator elec-
trode and the collector electrode was connected directly to the grid (1 megohm grid leak)
of the first tube of a preamplifier held on the back of the fission chamber so as to make
a shielded unit. No attempt was made to attain saturation. The rise time of the electron
collection pulses was about 0.5 μsec. The chamber was mounted so that it could be rotated
by means of an indexed rotary table about an axis containing a diameter of the fissionable
layer. Angular error of position probably did not exceed 0.5°. A cadmium jacket sur-
rounded the chamber when thermally fissionable materials were being studied with fission-
spectrum or 14 Mev neutrons.

2.2 Electronic Equipment

A Los Alamos Model 130 preamplifier was attached to the back of the fission chamber. This
preamplifier has a gain of approximately 50 and a cathode follower output which trans-
mits signals via a long 93 ohm cable to a Los Alamos 101A amplifier with a rise time of
0.5 μsec and an RC clipping time of 2 μsec. With this clipping time no large pulses caused
by alpha-particle pile-up were ever observed. In most of the experiments two Los Alamos
Model 700 scalers were driven in parallel by the amplifier. The discriminator setting of
one scaler was such as to accept all fission pulses while the discriminator setting of the
second scaler was such as to accept principally only pulses from the higher energy (light)
fragments. (See Sections 3.1 and 3.3). Data in some of the later experiments at the
Cockcroft Walton were taken with the Cockcroft-Walton 18 channel pulse-height analyzer at-
tached to the output of the amplifier.

The linearity and amplification of the equipment were checked periodically during the
experiments with a Los Alamos Model 500 precision pulse generator.
Fission Foils

Thin layers of U₃O₈, NpO₂, and ThO₂ were prepared by J. Povelites by painting solutions of the nitrates on 10 mil platinum discs and baking at 800°C until the oxides were formed. Deposits ranging from 100 µg/cm² to 5 mg/cm² were used. Table 1 gives approximate analyses of the foils.

<table>
<thead>
<tr>
<th>Principal Element</th>
<th>% Principal Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th²³²</td>
<td>100</td>
</tr>
<tr>
<td>U²³³</td>
<td>96 (balance normal U)</td>
</tr>
<tr>
<td>U²³⁵</td>
<td>95.7 (1/2% U²³⁴, balance U²³⁸)</td>
</tr>
<tr>
<td>U²³⁸</td>
<td>(16 parts per million of U²³⁵)</td>
</tr>
<tr>
<td>Np²³⁷</td>
<td>100</td>
</tr>
</tbody>
</table>

Neutron Sources

2.4.1 Water Boiler. The south thermal column of the Water Boiler furnished a steady, well collimated beam of thermal neutrons. A bismuth filter between the reactor and the graphite column attenuated the gamma rays. Resulting gamma ray intensity was quite low and the amount of photofission would be insignificant. A steel collimator with a 2.37 inch diameter circular aperture was used. The wall of the reactor was covered with cadmium sheet to exclude extraneous thermal neutrons. By means of a small U²³⁵ spiral fission counter, the neutron intensity across the beam was found to be flat to better than 1 percent. For these studies the Water Boiler ran at a 30 kw power level. Figure 3 is a photograph of the south face of the Water Boiler with the fission chamber in place.

2.4.2 Lady Godiva. The leakage neutron spectrum from Lady Godiva is closely similar to a pure fission spectrum from slightly less than 1 Mev up to the maximum, according to preliminary studies of L. Rosen. Production of gamma rays was copious but photofission was again probably not significant. The center of the U²³⁵ sphere was 75 inches from the concrete floor. The fission chamber was aligned so that the perpendicular line passing through the center of a fission foil went through the center of the glory hole of Lady Godiva. The plane of the fission foils was 26-1/2 inches from the center of the sphere. A power level of about 100 watts was maintained during the measurements.

Degradation of the leakage spectrum at the position of our chamber caused by scattering from surrounding material has been determined by R. E. Peterson and G. A. Linenberger.
of Group W-2 and found to be small. Using a spiral fission chamber, they found that the relative counting rate for ^{238}U followed closely an r^{-2} dependence out to 29 inches from the center of Lady Godiva. For ^{235}U the $(\text{no cd})/(\text{cd})$ counting rate ratio at 6 inches from the center was 1.12, whereas at 29 inches from the center it was 3.9. This corresponds to only a fraction of 1 percent of thermal neutrons at the 29 inch position.

Because of the great distance of Lady Godiva from the control room, the instrumentation differed slightly from other installations. The 101A amplifier was located in the Kiva which housed Lady Godiva, along with two discriminators whose settings could be adjusted remotely in the control room. The outputs of the discriminators were piped from the Kiva to scalers in the control room. Figure 4 is a photograph of Lady Godiva with the fission chamber in place.

2.4.3 Cockcroft-Walton. Fourteen-Mev neutrons were produced in the Cockcroft-Walton machine by the $T(d,n)\alpha$ reaction ($Q = 17.6$ Mev). Deuterons, accelerated to 240 Kev and magnetically analyzed, struck an air-cooled thick zirconium foil in which tritium had been absorbed. The fission chamber intercepted neutrons emitted at 74° with respect to the incident deuteron beam. These neutrons had an energy of 14.3 ± 0.1 Mev. L. Rosen has found, by use of nuclear emulsions, that about 3 percent of the emitted neutrons are of degraded energy. The plane of the fission foils was 6.25 inches from the center of the Zr-T target. The machine operated with deuteron currents of 100-150 μamp and with neutron yields up to 2×10^{10} neutrons/sec, depending on the condition of the targets which are slowly poisoned. Figure 5 is a photograph of the reaction area of the Cockcroft-Walton with the fission chamber in place.

3. Procedure for Accumulation of Data

3.1 Water Boiler

For each fission foil, it is necessary first to run an integral bias curve to ascertain proper bias settings for the two discriminators. The totality of fission fragments produces a double peaked ionization spectrum. This is illustrated in Figure 6 from the work of J. Wahl for thermal and 14 Mev neutrons (AECD-3379).

Although the valley between the two energy peaks does not go to zero, indicating an overlapping of the light and heavy particle distributions, it can be shown that the relative separation of the peaks increases from about 1.5 to about 2 because of the considerable energy loss of the fragments in the collimator before entering the sensitive volume of the chamber. Hence it would appear plausible that there is a nearly complete separation of the two ionization peaks as observed in the chamber and this seems to be confirmed by the two
flat shelves observed for the integral bias curves taken at the various installations. Figure 7 is an example of such an integral bias curve taken at the Water Boiler. The arrows indicate the bias settings of the two discriminators. It would appear that the scaler whose discriminator was set on the upper plateau would count all fragments and the scaler whose discriminator was set on the lower plateau only the light fragments. It has been found, however, from later observation of the differential pulse height spectrum and also from calculated pulse height spectra, that the two fission peaks are not completely separated and hence that the lower plateau cannot be truly horizontal. Therefore, no data are given in this report for the angular distribution of the light fragments only. More will be said about the shape of the pulse height spectra in Section 3.3.

Because the thermal neutron flux from the Water Boiler varied less than 0.5 percent over a considerable time interval, no neutron monitor was necessary. Fission counting was performed at 0°, 45°, and 90°. Approximately 2000 counts were taken at each angular setting, and 0.1 mg/cm² foils of U²³³O₈ and U²³⁵O₈ were used.

3.2 Lady Godiva

The integrated neutron flux was monitored by a flat U²³⁵ fission chamber and also by a BF₃ proportional counter surrounded by paraffin. The integrated neutron intensity as given by these two monitors always agreed within 0.5 percent. A 0.6 mg/cm² U²³³O₈ foil and a 0.5 mg/cm² U²³⁸O₈ foil were used. For U²³⁵ about 2000 fission counts were obtained at 0°, then 2000 counts at 90°. This procedure was repeated four times. For U²³⁸ about 500 counts were taken at each position. Again the procedure was repeated four times.

3.3 Cockcroft-Walton

The integrated neutron flux was monitored by counting the alpha particles generated in the T(d, n)α reaction by means of a proportional counter attached to the target apparatus. Also a long counter directly monitored the neutron flux. In some cases, these two monitors disagreed by as much as 2 percent. The alpha counter was always used as the standard monitor.

The two discriminator setup was used for the following foils: 1 mg/cm² U²³³O₈; 1 and 5 mg/cm² U²³⁵O₈; 0.6, 1, and 6 mg/cm² U²³⁸O₈; and 5 mg/cm² Th²³²O₂. A typical integral bias curve as obtained for the 1 mg/cm² U²³³O₈ foil is shown in Figure 8. The 18 channel (5 volt widths) pulse height analyzer was used for the following foils: 0.7 mg/cm² Np²³⁷O₂; 0.6 and 1 mg/cm² U²³⁸O₈. A typical pulse height spectrum as obtained for the 0.6 mg/cm² U²³⁸O₈ foil is shown in Figure 9. It is clear from this figure that the two peaks are not sufficiently separated to allow counting of only the light fragments.

- 9 -
Because of the center-of-mass effect for 14 Mev neutrons, a fission fragment emitted at 90° will have about 3-1/2 percent less energy than if it were emitted at 0°. The rather large energy loss of the fragments in the collimator of the fission chamber results in a magnification of this effect. Thus, for a 1 mg/cm2 foil thickness, the ionization peaks were observed to shift downward about 10 percent going from the 0° to the 90° angular setting. This is in close agreement with the calculated value of the shift. The discriminator was always set far enough back on the upper plateau so as to count essentially all the fragments at both angular settings. Any error in the 0°/90° ratios resulting from this factor is estimated not to be greater than 1 or 2 percent.

4. Experimental Results

4.1 Thermal Neutrons

The 0°/90° fission intensity ratios for ^{233}U and ^{235}U were found to be 1.00 ± 0.08 and 0.99 ± 0.09, respectively. The fission intensity at 45° was no different within statistical error from the intensity at 0° and 90°.

4.2 Fission Spectrum Neutrons

The 0°/90° fission intensity ratios for ^{235}U and ^{238}U in the center-of-mass system were determined to be 1.06 ± 0.07 and 1.27 ± 0.11, respectively. Although the measured anisotropy for the ^{235}U isotope is quite small, we feel that the effect is most probably real.

4.3 14 Mev Neutrons

Table 2 summarizes the experimental results for 0°/90° fission intensity ratios.

4. Uncertainty limits used in this report are the 95 percent confidence intervals. These are approximately three times the probable error limits or twice the standard deviation limits. The errors quoted are due to counting statistics only. We feel that systematic error is sufficiently small compared to statistical error to warrant the neglect of the former.

5. The 0°/90° ratio for neptunium was also measured at the cyclotron, using 12.8 Mev neutrons from the $D(d,n)He^3$ reaction, and gave 1.20 ± 0.13.

6. According to unpublished work of H. C. Martin of this laboratory, the fission cross-section at 14 Mev for Np^{237} is 2.3 barns. From our geometry, total neutron flux, foil weight, etc., we calculated the cross-section to be 2.8 barns. The error in our calculated value is no doubt large enough so as not to indicate any disagreement in these two values.
TABLE 2

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Type</th>
<th>Foil</th>
<th>$0^\circ/90^\circ$ Ratio (center-of-mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233U</td>
<td>Even-odd</td>
<td>1 mg/cm2 U_3O_8</td>
<td>1.32 ± 0.11</td>
</tr>
<tr>
<td>235U</td>
<td>" "</td>
<td>1 "</td>
<td>1.27 ± 0.17</td>
</tr>
<tr>
<td>238U</td>
<td>Even-even</td>
<td>0.6 "</td>
<td>1.31 ± 0.12</td>
</tr>
<tr>
<td>232Th</td>
<td>" "</td>
<td>1 "</td>
<td>1.24 ± 0.10</td>
</tr>
<tr>
<td>237Np</td>
<td>Odd-even</td>
<td>5 " ThO_2</td>
<td>1.53 ± 0.21</td>
</tr>
<tr>
<td>237Np</td>
<td>Odd-even</td>
<td>0.7 " NpO_2</td>
<td>1.15 ± 0.09</td>
</tr>
</tbody>
</table>

We consider those ratios marked by an arrow to be terminal values for this experiment. Because of the rather large difference between the 238U ratios found using the 0.6 or 1 mg/cm2 foil and the ratio resulting from use of the 6 mg/cm2 foil, we hesitate to quote the 232Th ratio as terminal. Low counting rates and lack of time prevented a measurement with a thinner foil.

Angular distributions, with points at 0°, 30°, 60°, and 90°, were taken for 235U, 238U, and 232Th using 5 mg/cm2, 6 mg/cm2, and 5 mg/cm2 foils, respectively. Since only the shape of the curves was wanted, the thicker foils were used to boost the counting rates. Figure 10 is the curve obtained for 235U. The experimental points in all cases could be satisfactorily fitted to a curve of the form $1 + A \cos^2 \theta$, where θ is the angle between the fragment direction and the neutron beam.

5. Conclusions

These experiments clearly show that the angular distribution of fragments from fission induced by 14 Mev neutrons is anisotropic; fission parallel to the axis of the neutron beam is more probable than is fission in the orthogonal direction. In fact, the four final ratios tabulated in Table 2 indicate that the magnitude of the anisotropy at this neutron energy may well be essentially independent of the isotope. An average anisotropy of about 25 percent is obtained from these ratios. For the isotopes 233U and 235U it is evident from the Lady Godiva experiments that the effect persists to much lower neutron energies, although perhaps diminishing in magnitude. As would be expected, there is no anisotropy in the case of thermal neutrons.
Winhold, Demos, and Halpern7 have measured the angular distribution of fission fragments in the 16 Mev photofission of Th232 and found a $1 + A \sin^2 \theta$ dependence corresponding to a higher intensity of fission fragments at 90° to the incident beam of photons. We observe a $1 + A \cos^2 \theta$ dependence for 14 Mev neutrons. Both our results for fast neutron fission and their results for photofission are compatible with the collective model picture of the fission process. However, it is of interest to note that, whereas we find that the anisotropy probably becomes smaller (or at least no larger) with decreasing neutron energy, they find that the anisotropy increases with decreasing photon energy. The inverse dependence on energy may result, in part, from the nature of the absorptive process by which the proton in the nucleus gains energy and angular momentum from the incident photon.

Fig. 1. The fission ionization chamber with cover removed.
Fig. 2. Schematic representation of the fission chamber.
Fig. 3. The south face of the Water Boiler with fission chamber in place.
Fig. 4. Lady Godiva with fission chamber in place.
Fig. 5. Reaction area of Cockcroft Walton with fission chamber in place.
Fig. 6. Fission fragment energy spectra for thermal and 14-Mev neutrons.
Fig. 7. An integral bias curve taken with thermal neutrons.
Fig. 8. An integral bias curve taken with 14-Mev neutrons.
Fig. 9. A pulse height spectrum taken with 14-Mev neutrons.
ANGULAR DISTRIBUTION OF FRAGMENTS FROM
14 MEV NEUTRON FISSION OF 235U

(I, CENTER OF MASS ANGLE IN DEGREES)

Fig. 10. Angular distribution of fragments from the 14-Mev fission of 235U.