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ISENTROPE ENERGY, HUGONIOT TEMPERATURE,
AND THE MIE-GRUNEISEN EQUATION OF STATE

Charles A. Forest

Group DX-1, MS P952, Los Alamos National Laboratory. Los Alamos, NM 87545

Analytic expressions for both the isentrope energy and temperature along the Hugoniot curve may be
expressed in terms of a single intcgral function fc: a Mie-Gruneisen equation of state with constant heat

capacity ¢,

INTRODUCTION

The Mie-Gruneisen equation of state with a
Hugoniot reference line is commonly used in
calculations. The temperature on thc Hugoniot
and isenwrope curves are at times desired.
Calculation of the temperature along the lHugoniot
was piven by Walsh and Christlan (1), the
expression for which contains an integral function.
This integral, for constant beat capacity c,, and
general Gruneisen parameter [(v) = v(dp/de),,
will be shown to be that intcgral which is
necessary for the calculation of iscnlropic energy.

‘The calculation of \emperature or the calculation
of an arbitrary isentrope is often uscful In fluid
dynamic modeling. These properties are used in
mixture equations of state that assume pressure
equilibrium along with temperature cquilibrium or
iscntropic behavior following a first shock. There
is a convenience in having the single integral
function /(u) that facllilates both purposes.

BASIC FORMULATION

‘The Mie-Gruneiscn equation of state using a
first-shock Hugoniot reference line is written

p(v.e) m (TANe - ¢y(v)) +py(v) ()

-
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where v = specific volume, ¢ = specific internal
coergy, p,(v)=s Hugoniot pressure, e,(v)=
4(py(v) + py) (vg-v) + ¢5. the  Hugoniot
relaton.

The funcion p,(v) is calculated from two

Rankine-Hugoniot relations (conservation of mass
and momemtum) and the empirical U,(u) relation

(the shock velocity into undisturbed material).
These cquations are, as functions of the shock
particle velocity u, vy (u) = vo(U,(u)-u)/U,(u),
Pa(u)=poul,(u)+ py.and U,(u) =c+ su +qu'.

leting u,(v) be the inverse v,(u), then by
compositdon py(v) = p,(u,(v)).

The empirical U,(u) reladon is represented
pleccwise by a linear or quadratic over n segments,
U <up<...<u,,,; A comesponding set of
opposliely ordered volume scgments are defined,
ViSVp>.. 5V, wih v, = vy(u,) iU (u) =
C+SU+ qu2 on a segment, then w, (v) is obuwined
by solutiun of the quadratic equation

(ﬂ‘c(—v!)n’- u+i)(v)=0 where
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uy(v) =clvg -v)/(vg - s(vg - v)).
If q =0, then uy(v)=u,(v).

If @ # 0, the (wo roots for u,(v) are

U, = 2u,(v)/(l+ ‘fl- 4q u,(v)z/c)and

up =c/(qug).

The rool u, has the comect limit for ¢ = 0 and
has good numerical precision; and for ¢ # 0, the
u, root has similar precision. Both are calculaied
using the fact that if the equation
ax?+ bx + ¢ =0 bas roots x; and x, then
¢ = ax,x,. The proper root must be selecied o
lie in the segment determined by v.

The derivatives of p,(v)= p,(u,(v)) with

respect o specific volume v, or of any other
function parametrically given as a function of u,
requires the derivalive du, /dv, which can be

calculated implicitly from the mass equation
U,tup(v) v = vo[U, (uy(v)) = up(v)}
Differentation gives
du . U, u(v))
7} ’Z&"‘Vo -v)- vol

Using this resuly, with u = u, (v),

du

R R

An expression for the Gruneisen ganma I in
terms of ¢,. 7. B. and ¢ can be obtained from
two thermodynamic equations related o T,

Cp = ¢,(l + PI'T) and ) = Bc’/l‘. where

<, =(0e/dT), + p(av/dT ). ¢, = (de/dT),
B = (3v/3T), /v.and ¢’ =(3p/3p),.

Equating the two ¢, expressions and solving the
resulting quadratic equation for I” gives

ABc’/e,)

ra- .
1+ 11+ 4Bcirc TS

ISENTROPE ENERGY AND MIE-
GRUNEISEN EOS

From the thermodynamlic equation, Tds = de +
pdv (with ds = () and the equation of swate,

d .
o= - plve(v)

where ¢,(v) is the isentrope energy. The
differential equation for ¢, is then

d
?%- + (T/v)e, = (T/viey(v) - py(v) (2)

with initial value ¢,(v,) = ¢,. Lel now g(v) =
TA). and ket G(v) = exp(]g(v)dv) be the

integrating factor.

For two special cases of (TA), these functions
are as follows:

1. T =T,, then gv) = (TA) and G(v) = v .
2. TA aTy/v,y then g(v) = poly and
G(v) = cxp {pol‘ov}.
Now multiply equation (2) by G and integrute,
6(V)G(v) - ¢)G{v)) =

.
I G(v)lgiviey (v) - pp(v)]dv
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Nole that %% = G{v)g(v) and inlcgrale by parts

17 17
v de
'[Gg exdv = [G eh]v’ -IG—dv-"- dv.
v, v,
Also note

de

R Tl %'(Vo'v) + 4(pp-po)

Finally then

e (VIG(v) - €,G(v)) = G(v) ey(v) - G(v))ep(vi)

‘_[G(zv) %(VO'V“'Ph 'Po]d"

]

The remaining integral is not expressible in
terms of elementary functons, and Is not easily
and accurately fit as a function of volume v
because p,(v) has a singular point at
v = vp(s = 1)/s when U, wc +su. Recall that

the particle velocity has no such trouble and can be
used for the integration change of variable. Thus
let

I(v) = J%[%(VO -v)+ Ph 'Po}m
‘o

(note lower limlt of inwcgraton). Changing
integration variable, let

dv
v= vy(u)and dv = -m"-du.

This particular cholce of vurinble change is
advantageous because p,(v) = p,(uy(v)) and

b, 4 v, v
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Also note

(vo = v) = vou/Uy, py = pp = pul,, and

)
th Vo u?‘-"— - U'
- v '

Then

t G, (u)) av
o =« [ [ o - v s
-]

dv
(P - Po) #]du. and finally,

t Giv,(w)u? du
Hu) = j' ——Vbﬁmu— Zidu 3
0

and

e, (VIG(v) = ¢,G(v,) + ¢, (V)G(V) - e,(v,)G(v,)-
UROIEN IR

Remark: ¢;(v) is the energy of the iscntrope
through the point (v,, e,@vhich may be any
point in the domain of p(v.e) A common
usage is the case where ¢, = ¢,(v,) thal is the

iscnrope  for a malterial elcment that has
expericneed a first shock,

The function Ifu) is represented on  each
(u,.uj,,) interval by the form [(u) =

a, +u"(az+ au+ a,uJ + a_,u’ +a6u'). In
the necighborhood of 4 = 0, we let m = 3, and

clsewhere let m = /. For calculution of the
derivative of Ifu), the exact expression

dav
% = G(vh(u))u'zq‘-“-/u,(u) is used.

‘The use of component cquations of stale in a
cquilibrium mixwre equation of state 1equires not
only an accurate function value bul an accurate
derivative so that the ltcratve equilibrium sulution
method will converge quickly. To that end, the
function /(u) i Nted by Niting the derivauve of



Ku) and I(u) simulaneously. One need nol use
polynomials, any suitable analytically integrable
basis function set would do.

TEMPERATURE AND HUGONIOT
TEMPERATURE
The tlemperature as a function of (v.e) is

T(v. e) = ie___:ﬁ(_v).). + Th(\’)

where ¢,(v) = Hugoniot energy and T,(v) =
Hugoniot temperature, and ¢, = constant beal
capacity.

The temperature on the Hugoniot T,(v) is
calculated via Walsh and Christian's method (1).

They write on page 1554,
dT; s
() bbb

Changing variable o (ve). pv.T) = p(v. e(v.T))
and thus

(3’%) = (%%) (g}-) = (F/v)e,.

‘The differential equation is then

a7, dp
P En s Be-ven-n)

with initial value T, (vy) = T,. Using the same

integruting factor and notation as in the
intcgration of the Isenlrope encrgy cquation,

Th (v) G(v) - TUG(V()) =

t d
I '}%{7‘,‘" (Vvo-Vv) + ph—po}dv.
Ve

For ¢, = conslant, the inegral is just vV ¢,. and
thus

T, Gtv) = ToGvg) + L I(uy(v)).
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