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Dynamic Compaction of Granular Materials
in a Tbbe with Wall Friction, Applied to
Deflagration-to-Detonation Transition

Larry G, Hill
Los Alamos National Laboratory
Los Alarnos, NM, 87545, USA
Aahwani K. Kapila
Renwelaer Polytechnic Institute
TTOY, NY, 12180, USA

Abstract: A theoretical problem is considered in which a granular material is
pushed through a tube of arbitrary cross-section by a constant velocity piston
against the resistance of compaction work and wall friction. The crushing of
the material is dictated by a simple yet physically reasonable compaction law.
By considering two special cases - the limit of vanishing friction and the quasi-
static limit - we identify the two basic compaction wave structurta We then
consider the general case in which the two waves interact. Estimatm suggest
that for typical deflagration-to-detonation tests explosive at the wall melts on
time scales short compared to the experiment.
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1. Introduction

Many investigators have examined clefhgration-to-detonation transition (DDT)
of gramh explosives using shock-tube like experiments (e.g. McA&I, Asay,
& Campbell 1989). Often a piston is driven explosively into the bed, and the
resulting compaction work is thought to initiate combustion whkh ultimately
leads to detonation. We examine an aspect of the DDT tube problem that has
received little attention, namely the resistance and resulting ener~ dismpation
due to wall friction. Wall friction has a large effect in r~m-prd charges
(Elban & Chiarito 1986) - essentially the quasi-static limit of the DDT tube
test - so thmt one expects even greater effects for the longer sspect-ratio I)DT
tubes. The rcsi~tnncc mechnniRm is that ~ial stress npplicd by the piston is
transmitted to the walls, giving rise to a proportional frictional drag. Since
particles are interlocked, resistance at the wall is tranmnittcd throughout the
interior, The entire bed resists motion in proportion to how hnrd it Is pu~hcd
upon - much like the ubiquitous “chil~cw flngcr” but M iug in comprwwiou,
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2, Rheology

Because a confined
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granular material exhibits solid-like properties it is appr-
opriate to adopt the generalized definition of pressure USNI in elasticity, i.e.,

P = -(a=+ u, + (7,)/3 = -(ur + Ue + u,)/3, where all stresses are force per
unit total area, normal stress components are positive in tension, and pres-
sure is positive in compression. We define an ideal granular material whose
loading state is dictated by a compaction law (Herrmann 1969) of the form
@ = p/p, = f(p), where # is the solid volume fraction, p is the mixture den-
sity, and the subscript s means ‘solid”. To determine analytic solutions we
choose a simple but physically realistic form for ~(p), where So and ~ are the
zcr~pressure slope and volume fraction, respectively:

4 =1-
(1-q$l)’

sop+ (l-~)
(1)

We consider Class-A granular HMX explosive as an example, and infer its
compaction law from pressing data (Elban & Chiarito 1986) using the fact that
the experimental geometry enforced nearly uniaxial strain. Both this task and
the formulation of the equations of motion in Sec. 3 are greatly simplified by
the inference that Poisson’s ratio, v, remains constant and equal to its solid
value during crushing. This follows from pressing data (e.g., Campbell, Elban,
& Coyme 1988) for which the ratio of normal to axial stress, which depends
only on v (specifically, u~/u, = u/(1 - U)), remains constant. The inferred
compaction law is shown in Fig. 1 together with a lead-squares fit to Eqn. 1.
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Figure 1. Compaction law for Clam A HMX, #0 = 0.503: data WI,flt to Eqn. Ii

The wall drag is SStiumcdto ohcy a ~tm]flml friction law cxccpt thnt, bmwuse
the solid area fraction in contn.ct with the wfdl incrcws as the nmterinl is
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crushed, the friction coefficient is not constant. Intuitively one expects that
the coefficient should be weighted by the solid area ratio, p/p, = A./A = O.
Equating the solid area and volume fractions is a common practice following
from the statistical argument that for many randomly arranged particles, each
plane within a volume element intersc~ts the same solid area. This behavior for
p can be more rigorously justified, but here we merely note that the limits o +
O (no material) and # + 1 (solid material) are both sensible.

3. Formulation

Consider a cylindrical semi-infinite tube of arbitrary cross-section, filled with
powder and sealed at the origin by a piston, as shown in Fig, 2. The initial
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Figure 2. Schematic of the problcm.

conditions are uniform mixture density and zero pressure. At t = 0+ the piston
is moved impulsively to the right at a constant velocity Up. The resulting

ma!erial motion is assumed to be always and everywhere one dimensional. To
simplify the equations wc transform to a Lagrangian coordinate sy~tem, whereby
the spatial coordinate z is replaced by the msss-weighted spatial coordinate
h. Then, incorporating the above results and assumptions, the dinlcnFionkss
equations for mass and momcnturn conservation become:

C9&#f=o

Ot 8h
(2)

alu afi .---
Ot~= 8h p

(3)

Here, Lf = u/s. is the M~ch number, md the “tilded” quantities have been
scaled as follows: j = SOP, ~ = h/lJ, ~nd i = aot/lf, The rcfcrcnce qutintitim
/j (th “frktion” length) mid CO(the Iongit udinnl sound speed) arc given by:

If =
i% ““m (4)

with J the twca-to-pmimcter ratio of the cross mction.
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4. Results

4.1. Zero Friction Limit

In the absence of friction the second term on the right-hand side of Eqn. 3 does
not appear. The piston drives a steady compaction shock (SW)into the powder,
whose speed M,w and amplitude paw are given by:

M,w = ‘M
2(1 -&)

p (“m ‘aw=AfpMaw ‘5)

where M, = UP/atI is the piston Mach number. [n reality the shock has a finite
thickness equal to several grains (e.g.. McAfce, Asay, & Campbell 1989).

4.2. Quaai-Static Limit

This case corresponds to a vanishingly small piston speed. Over correspondingly
long time intervals Eqn. 2 survives intact but the left-hand side of Eqn. 3 is
negligible. Subject to the requirements that the initial piston pressure is zero
and that the powder far upstream is undisturbed, an analytic solution emerges:

j(i, i) = j(i, O)e-h, #(i, k) = 1-
(1-A)2

j(i, h) + (1 -~)

[ (*”4-11j(i, O) = A(1 – ~) exp

(6)

(7)

The pressure and compaction fields, mapped back to the Eulcrian frame, are
shown in Fig. 3. The wave is not strictly steady u the pressure is always rising.
But, due to the shape o~ ,he compaction law, the compaction field aasumes a
steady profile of width s 5/1 following a start-up transient. The downstream
state of the dcwlopcd frictiomd wave (juJ) is fully compacted, so its speed is:

(-)MI. = & M, (8)

4.3.

Onc

General Case

expects the gmwwd solution, corresponding to nonzcro friction nnd order
unity piston ~pccds, to involve a friction-attenuated shock. One nmy furthw
surmise that to a good approximation the problem mm be dividwl into two
distinct rcgiom: the lending Bhock for which inertial forces dornin~te, and the
downstrwun flow in which frictiomd forccMdcm]inate. A perturbation solution
valid for hort times, or oquiwdcntly, small friction Codkicnt (not prwented
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Figure 3. Pressure, compaction fields in qussi-static limit; ~ = 0.65, A~ = 0,25.

here), finds the correction to the particle speed between the piston and the
shock to be time independent, which supports this notion, In this ‘inertiAsa”
approximation Eqn. 3 formally reduces to that for the quasi-static limit, but
the initial piston pressure is the zero-friction shock pressure corresponding to
the prescribed piston speed, and the solution extends only to the shock loca-
tion k. W(~),at which point it is matched to shock jump conditions, A second
(coupled) ODE arises from the matching, and the problem must be solved nu-
merically. A phase plane analysis, also not presented here, shows that below a
critical value of kfP, A4~( = 1- ~, the strength of the leading shock decays
to zero asymptotically. Above kf~i, ite amplitude decays to a finite value.

Fig, 4 compares the results of this inertialcss approximation (again nlappecl
to the Eulerian frame) to the results of a full numerical solution. Their agree-
ment is remarkable, with respect to both prc.ssurcs and shock location.
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Figure 4. Prcmuro for full problm; #o ICI0.65, Al = 1, Mp EM0.6, Afpit = 0.3S,
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5. Thermal Problem at the Wall

Heat generation at the wall can be equated to the frictional work there: ~W=
Wj = p,@ (-an) u. The problem is simplified by noting that most of the heat
flux flows into the (metal!) wall, and that the temperature distribution is, for
short times, confined to a thin boundary layer, The wall temperature is then:

TW(z, t) = TWO+
(l:.) (:;J/”’’’’)’(*’’’)” ,,,

where bWis the wall heat penetration coefficient. After the leading shock passes
one may briefly assume a constant state. Then for a steel wall and UP = 100

m/s, dTW/dt is of order 100 C/psec, The melting temperature (247 C) is reached
in order 1 psec – the same time. sca’ie as the leading shock rise. One expects
a melt layer to lubricate, decrerwing further frictional resistance and energy
dissipation. The question of wall ignition may therefore depend strongly on the
difference between the melting and critical temperatures of the explosive.

6. Conclusions

Without wall friction an impulsively started piston drives a narrow compaction
shock through the tube. In the quasi-static limit with wall friction a different
kind of compaction wave occurs whose width is proportional to the tube diam-
eter and inversely proportional to the friction cocfficicnti In general both wave
types are present, and their interaction is such that the amplitude of the lead-
ing shock is attenuated. Neglrct ing inertia behind the shock yields an excellent
approximation to the wave structure. In a typical DDT test the rate of work at
the wall is sufficicmt to cause rapid melting and, possibly, ignition,
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