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ON il THEORY -OF, SHOGK WAVES WO . .
... AN ARBETRARY: EQATION. OF STATE

. . - ’
el o by He A..Bethe -
SN Ahatrac't ,:’-'12 . -
FRva AN 2odty

- ( ~Zhe, funt _pbtg.l equations of the hydrodynamin‘ tfxeory bf et
‘one .onal shock waves —- that s, the; jequations of.con=:
" &M‘bibh%f A E,‘"tg mémentm, and--of energy — are devel-
opeds,:; :Theme ;ave _mne the veloolty; mssa-veioc:{
by, pressurs rise in ghock ‘wavgs . in air-and; -
iﬁ*m&‘bé:". I’Hiﬂidoﬂb* dditlcnal équation, :they ‘miffice to per— .
. mit ajpaleilation of detonation velocities ifigaseéus’ and“ﬁ'i' ot
8olid explosives, Predictions of .detonation Felooity,as A
functiiéd'?ff‘léfadzng &emity are "thamhy acm.eved accurate to
a few percent, FPressures, tamperatureng anq ‘mass-velbettias
inside “the explosgive arg also ca;gput,gd The question o6f. $h3m
'ctihn:vﬁe“roﬂmng the" ﬂq’onnatinq ‘ont in the- explo-
sivg-ds JAnyeshieatedy: The inttial -welocity; pre#surs, &nd;:
- 8o farth, ‘of the - -shock wave prgduced. at the 'end of astick of .
etplusi'vé‘ ar'd'cdleulated ‘Bucdes&ﬁﬂ.ly The. "Hying away of ' j_
ghock Wavesy, problem& of raflec,t:i;on and so i’m*t.h, are- also e
discnssed b:riefly. S : T Bt b it Ll

7"‘" o o .,:‘:‘-';. R ~",', R I NTORNA Py 3».“»'-....

L B R S
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R L( o . . SO R . ‘q‘ ‘J Y et e
- i . N .t ce o e ¢ 4 P -
LAkl R R R exa:-.;-'&.‘mmmg» o et “l 3

et o A 1 . . » ’ 0 - . “\ -

n.

"4 The: "theoiy- of ’%hcék aved- thns*far has been~dcefve§.bped main]y for _
ideal’gases. ‘Evéh 1&“*%119%, “the* qﬁéstion o&‘ the siability oi‘ shock ’ N
waveshas receivea ‘littlé’ %é‘n’&ion “Recéntly “the" probiém oi‘ shock o -
waves in\'aa‘&ér ‘hag’ jgained*much phcticai ‘3.ﬁp3rtance. » ‘therefore it o
" Seens, wtimhile 'EB «mvesitgaﬁe the properties “of " shock mives under T

m és R EToL B LTS BESAS Sl AL { PN
°°ndif-i° genéraI as%’pcssible. sl T e ,
k R P I Tt o S
RS ‘1 A sold 442"1 e o !r'.) n.u .,,'”J I < LS :'_.~.':.su ak 1‘1 -“.. <1 P

. . sl s, i
1L, HE R Rt LenlE e

\L la aghall _f:c‘:ns:%@;dsir_ Ja mterial ;:harac‘beriz s ,});r a gprtai,n eqna;h,ion A
of state Ha L -

A § .,. ,‘. et , ,.:.-“5':5.... 9 ,j}. ‘-.-._-;,.,--

. .
R T N T BT Pt t x4
1) . " . M . 0

e ‘."_",, L ;.;V - ‘ Py :", “'. - '*- S ’;:.' o
. f) ,..J,'.: - .:J..,_ . :p 'PN;T),.-’ J-'_"ﬁ. " I - ~. | . ' (1) '

- .*.t. -4.-.- o we 0‘ hagie ]

where 2 is the :-pressm'e, V.= i;he:.epecltic ‘vulmng and T tha e.bsolu‘he tem-
peratnre. We"shﬂl assume thatz:!z a unique f\nmtion of y and 1,

- This will cert.ain]y be fulfillad ir- themndwna.mic equilihr:mm is es-
] . . L -




et ——  —— e s =2 - . - .

tablished behind the shock waxe. Moreover, it will also be fulfilled
if there are always the same deviations from equilibrium,

The most important example of such ﬁregular“ deviations from equi-
librium is the nonoccurrence of phase changes in shock waves in cases
where they would be demanded by the ohase-diagram~ For instance, Kirk-
wood has shown that water behind a violent shock wave (pressure about
10,000 atm or higher) would transform into ice VII if thermodynamlcal
equillbrlum were established. -30wever, as Kirkmood has pointedfbut,
this will almost certainly not happen since the relaxation time for
crystallizatzonmms'probably many times longer than the duration of a
shock condenSation.. In a case like this, we shall use the (meta-—
stable) conmznuatzoh of the equation of state for liquld water to
higher pressures. E f} A ,/

For reasons to be explained subsequently, we must gulte general;x
exclude phase changes £rom ‘our. theo:y (see Seca. 13 and 1h4)s The
function p(V, T) will," therefore, n' general refer. to that phase.in

which the material existed before the arrival of ﬁhe shock wave, even

if this phase becomes metastable at the densidly and temperature reachedA
behlnd the shock wave. . The justlflcatlon for this. procedure is the
above-mentioned fact that. the relaxation tlme of . the phase;change will .
be long enough to preserve the metastable state behind the: shock.wave, .
No assumption aboux the relaxat;on time 1s required: when.the denslty

and temperatprembeh;nd the shock wave tnrn out to lie ‘above their . )
criticai values. Then this state can be reaghed without a phase transe .
ition, both from the ordlnary llquld and from the gaseous state.1/

- Besides p, V V, and T, we—shali~use—the energy*E-and'the*entropy'S
both" quantltles per gram‘of the substance.' If we agree in ‘which phase'
the material is to be, its state can be described uniquely by E and V
or by S.and V; for example, the pressure is a unique function of §
and V, The variables 8 and V ﬁilitfu;n.oui fo be especially convenient,

1-/The transition of solids to states of extremely high temperatures
and high densities will, in general, not involve any difficulties either,
although there is probably no critical point for a solid (see Secs, 7

and 1l).
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Pressure’ and specific ‘volume,stm’ ti'n othe!‘m& .m-e.mt :&.auztt-
able pair of independent variables -because they: dowiot,always: defim
‘the state of the substance. uniquah‘.; ‘Thus' water at 1 atm-pressure’ will
occupy the same specifio volume bolow and above: ).;°c,. vlce Tat-a few !
atmospheres and 0%C has the same specific volume ‘as liquid water. at:
about 150°C and the same pressure, Both these factm ars, ‘of cowrse,.
consequences of the nsgative expansion coefficient of water, A negae:
tive.expansion coefficient is 1ot often found for'.substances other
than water, and even for water ‘the expansion coefficient beoomes posi= -
tive at higher pressures or. temparatures, However, we wish to keep’
our consideratlons general and.therefore admit both signs of the ex=
pansion ooeffiolent inclnding,rntﬁgonnaew.tne-poasibdlity'of a .
posltive coeff1c1ent for certain valuea of V and T and. a negative-.
coefflclent for other valuea. S

We snall find in the following that: certain assumptions must be"
made concerning the equation of state d4n order to ‘prove - the .existence.
and uniqueness of the solutlons of Hugoniot‘axahookduave.equations.‘ -
The most important of thesg condltlong (see Sec. .3) is. o

‘ NP IR SO A M SN L

LT e ‘(a p/5v2)5>o'_.'~ﬁi-~w“ oo

/
Since --(ap/aV)S is the' adiabatic oompression-modulus, conditlon (I)
means that this ‘modulus must- in¢rease with 1ncreaslng compresslon.
Cond;}iontﬂl) is very plausible; its ¥alidity will'be 1nvest1gatéd
in detail in Sec. 12. It will be’shown ‘that for all sinkle-phase
systems the condition is very well fulfllled. Only in extreme cases,

as for-a gas at a pressure of 10 R atm” (1), the condition is violated
for certaln temperatures. ' : L
On tne otner hand condltlon (I) is violated for most phase .:.,.y.
changes (Sec. 13).; Only for evaporatlon and.condensatlon does con~
dition (I) remaln true. But for the theory of.compressional waves,
which forms the ma1n problem of thls paper .only.phage transforma-
tions between condensed phases, that:ls, from.llquld;to solid, or

from onc solid phase to another, would be of interest, .For-these':-
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transitions conditi ghi ki3
° on '.s( P £updd t,ihﬁ : ’&?‘é:ﬁ’
son ror mludingphaewansi - Trom o2
conld’ take place suf‘fi&fl.entiy aﬁ%} 3
viﬁiation of. condit;l.on (i) at. Yfef

s 4 & s
conaequences 'i‘or the‘str tin' am&; by
0“' }

The second requirement forﬁout

s daiab

L..
A

proof that compress:.ona;l. waves qbn:papnmi_ ;hq an. incrpase«éf mtx:opy" '-w T ._
(Sec, 5). Condition gI,I) ia of. cqarae, fglmigd whenevex«fbhe aﬁiﬁ- s w.: o
" stance expands with inoreagsing tempemture }(ai;'qqm@am: MERSURA
But it is also fulfilled i‘or a small ;negativei expam:hon co&ﬁ'iaien

for example, for liquid water at 0 °c; the. legﬁt-pand side ot'-cqnd‘.l,trjm)” o
(I1) 1s '-0.015. ; For Jmelting. ;l.c,e I, V(Qp/éE)N Begms :to IgO dom,#so ﬂ'ust
about the cr1tical value,, namely, -2.1,... Calcul.at:!,ona for srater. _end sheld
ice mll be .glven in Sec., 15_,. We believe that ponditiom -(Ip'li,) j.epv;alid. o
for all substances ip practlcally a.ll Btate.s., f ot el mrreeal Jae I
Conditions (I) and (II) are su.fficient for the general proof of
‘the existence and uniqueness of- ﬁhe’ solu'ti\ms bf the shock equation, °

However, in prov:.ng the stabillty of shock waves against breaking up

. &
p3e Do (oA .)’\ur *' .L!u; “A;.‘ AN AN

in any"#way' (Sec._ 1‘1) e also use the inequallty o ;", s . _-
S IR ST S R S C AR ML B SOOTGNE T La VL0l siSnd S et R o
B T (Bp/av‘)EL,{ Or;n o cdikminifa vy sl {1 {ﬁj’:,""“ -
e Eamim JS0 e o i R VS BNRT R B ".1- 'o‘l:r -.“'- =i L 18

——rd o s mteen  mss—

which ageln is only a su.fflcler;t not a-. mecessa:;y"copglp,oa .ofdate.-ﬂ
b111£§r.¥ Condltlon (III) ig. ob*rxx.ously ful.t‘z.lled f{orv_c}eal gaseg.:forcy »-
wh:Lch constant energy is equivalent to constant temperaturep We: - o o
have also found 3t te ke valid.foy :.all one-a-phase sxstems Ma.hava imw
vestigated - (Sec. _“6 .-However, it can-bg ﬁown*that*oo‘;rdxti:oﬁ’(’iII)

breaks down again for some phase transformatlons, r_xa.mely, .1f the :energy -

and entropy change in opposlte dlrectlons.;; R T T L ST BRSPS

ceg. (RN PR

2, The shock equations ~ @' = "= v "¢ .7

We shall denote by the subseoript 1-the guantities referring to the -

MiAdS et i1 rhed!! catthetarnme <m Pomemt ~AF +lha ool coomoe Tice M b lemem o v ot



relg%ive *f.ad:ehe shaclw ﬂﬁ&ﬁ} &?)#gm’é 'volnmamenargy. .

anh'opy, anﬂ‘:;:rassm, m ﬁrﬁi :. ‘n'dantit'iea};per ga.m. BJA‘V
8p, a:nd ao forth we ﬂann:ﬁe the m&%f vcluma, weasure, a:nd ‘80
i‘orth, namely. S SR T .

ap = pz =Py, A‘_V'- v, - v, and 56 r’b'riii;""" (2)

&

The conservation laws for Jnasa, momantmn,~ and energ are, re-~
spect;l.vely, ;

u1 “2 | P
, ‘ . . .(3)
| 2 2 '
: = -uy L U o .

E1 +p1_V +3-u -E #p2V2+%u§.'l'”v. . (5)

| Tt is convenient t.o ‘l;ransform qu (h) by use’ oi‘ Eq. (3). ‘We obtain
Ty 2u
SRR i el < v(“1'“)

. PRI ; '1 2 .

| | S T RN :
LIS S '.-"'ufz' i~'.-V2\"-'~! u? TSR P (ha)
=""'(1 =-_.AV
e A .v1' v1j e

s.‘.

E

Lol 1

_,.

P
<.

I

% ©6)
A

Similarly, Eq. (5) may be transformed:

. _ o _ 172 2\ '
OE = E, - E, = p.V, p2V2+2(:u1-u2/,. (5a)




a:ﬂ"ﬁéﬁgg‘lq, (3), Pt , Ty .-: s ' ‘.ij';u.'z:-:'. ot T

,,1 %.Ap(v +v) B | (7)
. {F;~ . . ) ‘3 .';'1.'1’ ';"“ : ‘

LS

Tnserting tnto .gq.~".‘.(5a)’, B

zv %(91 +pz T e - (8)

This d.s the famous Hngoniot. equation. It win be noted _that the equa-
tion no ,'Longer contains the veloc‘ities u or {12’ but that it is an
equation between tbermodynamic quantities only. ) It is, therefore, most
suitable for a determination of the possible "£inalt states of the '
material beh:l.nd the shock wave xwhen the “.initlal" state (state 1), in
'front of “the shock wa\fa, is’ gJ.Ven. f.'F ,a given V1 ,E’ ,’p,’ and given
Eq. (B) gives a lingar relation between E2 and Ppe Another re-
lation between the same quantitiés is provided B& the equatlon of state,
‘At the a.nterSection of these two .relati (if ‘sdch an intersection.
exists) we find the possible "final® state of the material for the
given value of V2 - This makes it easy_ to determ:me all possible flnal
statey for a glven initial state, Hav‘ing determlned Py and V2, we
can immediately find the correspond:.ng V81901t185 uy and v, from Eq. (6).




wave relatlye to the materlal.

-those powers that w1i“w‘ww

-
s e S e, W oa
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'II, GENERAL THEORY FOR ORDINARY SUBSTANCESZ/

'3, Small shock waves | . 34;:[ -

Equations (6) and (8) are obviously generalizations of-the ~equa-

e -~
‘N rem. ey

" tions for inflnlte51mal (sound) waves, Equatlon (8) goes over, for -

infinitesimal changes, into ‘ St

. ‘ %% | - P’ : . (9)

A

which is the condition for an adiabatic change of state. Equation (6)

then takes the form ' ' - e

2
3.

L e ()-,(za - .('1.0)'_

~

.
-

. Where p is the density. The rlght-hand side is the well-known ex-

pressidp for the square of the veloci&y_of sound- that is, the mate-*
rial moves with'respect to the "infznitesimal shock wave“ with the
velocity of sound, and this is, of course, also the veloclty of the

3 DR S IS bet '4_' cev me! N 0 .
. ol EREE] (j -‘3~f:"—."._ :-&- LR Leom.

i Afr s,

Vie shall now cons1der shock waves of flnlte but stlll very small

: amplltude. We - choose volume and entr0py as 1ndependent varlables, and
-expand.AE and pz; in Eq. (8), in powers of Na and AS. Retaining OnlY' L

t“to 5e relevant we-find

..I \.,.

“i
ﬁ'
L]
it

j2nd

AEe(g—%)SAV+1\§?)AV2 (;3;)“3{;.° ()As+ ...:"-...(11;)’

All derivatives are to be taken at the orlglnal volume and: entropy,

Vi and Sye Remembering the thermOQYnamic relations ‘-i“'v
B ‘®=-P I R _ ft.;‘}
.. (] }S . . o . : X ’
and . 'A  _.,' . S .
CQE A | (12) -
eS v B

e

g/That e enhetarceoe Pl 1 7<% mm macmedtds o 77\ 4. 7TTv\ o~ =



O Sy . 4t ——

-8~ E T

we find 3 N R I & ISR T ;'"”:,;:.\'.. - .“
. K AS - Lomi S .
-Z—V-ap + - AV-I'Z(a AV2 +.. e o -Tzv"‘ o-v'-'-*-‘--«»——(—iaa)-_. b
CELVL et A R T LR
Do ke : S e L A st Lorifipl e
Likewise, since p = p1, . B
. 2 ’
1 179 1%\ 2 173 o
5(py +p,) =p +3 )AV+ (—E)A * 506 T A5+ ... . (12b)
2\P1 T P 2(2%5 Eavzs , 2(5§)V

The last term in E'q;"”(:1‘::21:')“"is"'ﬁéé‘i'i"g;i‘iaie compared with the Tast:term
in Eq. (12a) since AV is assumed to be small, Comparisor of-Bysy {12a) .i:
and (12b), which must be equal according to Eq. (8), shows that the two
first terms are 1dentica1 and therefore :

- T ASHSé -‘..’81:‘ ( ) AV3 $ 5T aiihe o 33.(13). .
N R E S R S I avz C e e et n":x '
neglectlng hlgher Powers of AV R A S T SRR SN

We have assumed’ that the shock’ wave moves info'material: 1, whlch
is thereby converted 1nto materlal 2, If the” shock ane ig to be:
thermodynamlcally stable, the entropy must inéréase in - this, process; -
that 1s AS must be posltlve. For 8 compressive wave;’AV' 'V, - V

2
is negatlve; 1f at the same t1me AS 1s “to be posrtIVe,'we ‘indet have
MRS SRS R R I . B
[see Eq. (13)] : . ' ~" “‘f AT e ey
v - -, ' 3 .'."j": - y fS ' ' .‘
£ s e u o > a . L o ;'::__; :’:-T 1 -1 / e 4 - :-,‘(Il
) . .J.;.-:.I'; ‘.- "Al‘ el Y 4

This condition -seems to be fulfllled for all substances as long as
only one phase is present . . (Sec, 12). At phase boundarles condltlon {I)
is usually violated (Sec, 13). Therefore, if a phase change his time -
to occur, rarefaction waves might be stable and_compresslon waves une-
stable, a case discussed in détail in Sec. 1,

As was already mentioned in Sec. 1, phase changes usually cannot -

occur because of the long time required for them, We can therefore
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’v consider condition (I) quite "generally as valid. In any case, we shall
assume it to be valid in the main part of this paper (Secs. 3 to 11).

If condition (I) is valid, then Eq. (13) shows that compressive
shock waves of small amplitude AV are thermodynamically stable since
the entropy is greater behind the wave than in front of it., On the
other hand, rarefaction waves (positive AV) cannot have a finite ampli-
tude.because the entropy would decrease in that case, Therefore, in
any substance obeying condition (I) rarefaction waves will dissolve in-
to trains of infinitesimal waves, a behavior well known from ideal
gases, .Ali these statements have been proven for only small AV —-
small enough to make cpe>h1gher powers of AV negllglble in Eqs. (12a b).
The general proof w111 be given in Sec. l.

e have also shown 1n Eq. (13) that the entropy change is pro-
portional to the thlrd power of’ the volume change. This is under— .. <.
standable since we have seen that 1n first approx1matlon the entropy )
is unchanged [See Eq. (9)1. Moreover, AS must be propdrtiodal to an
odd power of AV because, when the states 1 and 2 are interchanged, the
sign of both &S and AV must change. The third-power relation is thus
the 51mplest p0551ble.u o -

We shall now célculate the velocity of the shock wave relativeé to
the two media, u, and Uy For this purpose, we évaluate the left-hard

side of Eq. (6):

8p .. (Tg) T (1L)

where we have' neglected terms of order AV2 and of order AS/AV, which
is also proportional to NG [see Eq. (13)]. The subscript 1 means
that the derivatives are to be taken at V = V,, S =5,, Now

) ‘ 2
o S (gg\ - % L | (1ka)
‘ : -\l E

where a, is the velocity of sound in the medium in front of the shock
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wave, and (B p/aVz)S is p051t1ve (condltlon I). Using Eq. (6), we

;‘flnd then
u1 a1 . "2’ a Vz ( 1 - 2 o o o o ( 5 )
. . S .

Therefore, if state 2 is denser than state 1, V1 >.V2 and

u, > a, . - ~ (15a)

1

.

In' other words, the shock-wave -velocity in the medium of smaller. den-
sity (medium l) is greater than. the velocity of sound in that medium,
Conversely, relative to the denser medium, 2, the shock wave moves

more slowly than sound.- The general proof of.these theorems for

‘arbitrarily large pressure change P, = Py will be given in Sec. 9.

‘he General proof of the increase of entropy for compression waves

‘We now admit arbitrarily-large~6hanges of the variables of state.
YV, p, E, and S. We shall keep the "initial state" V S fixed and
consider all possible "final" states V2,S which satlsfy the shock
equation, Eq, (8), and the equation of states . . i

We shall prove in this section that in any compression wave. the

entropy must increase, whatever the amount of the compress1on, where-

‘as in the last section this theorem .was proved only for small shock

waves, lLet V13>Vé and let the states 1 and 2 be’ connected by the
shock equation, Eqe (8), namely’

-

tet eengpe
W e iy

gl "1 e T g R
By =By = 5.8 * pJ(V, - W) . . (16)

Now let hs_ponsider that state 1', which has the same specific vol-
ume as state 1 but the same entropy as state 2. Its energy is re-
lated to that of state 2 by the thermodynamic relation, Bq. (11),
which gives upon integration

&

; /V1
E,.-E, =/ Lav (17\
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the inteyal to be taken along the adiabatic passing through the states
2 and 1 Now the equation of state has already been assumed to fule
fill the condition - L .

(azia/avz’)'S >0. L

Therefore, if V and P are used as coordinates, the adiabatic from 2
to 1' will lie below the straight line joinlng 2 and 1, Expllcitly,

Ve V
p(v‘,sz) <p, * (p1 - p2) r-v— if V, <V < vy . " (18)

Integration of Eq. (17) gives-"

E2 -E;<%(p; 'l'”pa‘)(V‘1 - V2) . | IR . (183a)
Subtracting Eq. (16) from Eq. (18a) yields
Bj - By <&py < p) (V) = 7,) . 9

»

We are now going to prove that E must be smaller than E For

this purpose let us assume that the reverse is the case ‘that is,

E, - E > 0. Then, since v, > V, by assumption, Eq. (19) requires

that p1 > pqe This means that, for flxed volume V = V1, the pressure

must decrease with increasing energy (and temperature) This requires

a negative expan51on coefflclent (see Sec. 1), which in itself is

quite possible, y _ ‘
However, ‘Eq. (19) requires also that the decrease of pressure with

energy should exceed a certain emount. It is most convenient to divide =

both sides of Eq. (19) by 2 5(E, —'E ) which has been assumed to be posi-

tive; then we get |

Py = p]
- — (V. -V)>2, (192)
I




n . \ N RS
-12-' T~ ‘\"N-n-- ~

- GoAE); (N -V) >2, o ()

~

where (ap/bE) denotes the average of the derivative between E and E
Iy v, - V, is small, Eq. (20) can certainly not be fulfilleqd so that
our orlglnal assumption, E >>E1, is proved to be nrong for this case,

s § agreement with our results in Sec. 3. However, for larger volume

changes we ¢an assert that Eq.. (20) is false only if (apABE) is
11m1ted in absolute value. A certainly sufficient condition is

v(gg)v > 2 o \ “ (II)
everywhere, because if condition (II) is fulfilled then Eq, (20) is
certainly false, since V1 - V2 is smaller than V It will be proved
in Sec. 15 that condition (II) is very well fulfllled even for water,
The only exception we have found (Sec, 15) 18'ne1t1ng ice I, but in
this case also condition (I) is viclated, Ve believe that condition
(II) is probably fulfilled for all substances for which condition (I)
is satisfied, and at least.for all one-phase systems, If condition
(II) is valid, we have shown that E must be smaller than E Since,
at constant- volume, the entropy 1ncreases together with the energy,
S1 must be greater than 51. But 5 is equal to 82 by definitiom,
Therefore we have proved that - :

S,>8, 4if V, <V (21)

2 1.

-The denser state bounding a shock wave has a greater entropy than

the state of smaller density. Hence compressional shock waves are.

always accompanied by an increase. in entropy and are therefore. thermo—

dynamically stablc. Rarefaction waves of finite amplitude are always

unstable,
These results are valid for any substance with. -any arbitrary equa-

tion of state, and for any change of the spec1flc volumc and of the
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pressure in the shock 3  ,* grovided only conditions (L) and (II) are

'Mf,msd. o ~ e

5. Existence of_solutipna »--fuﬂl:ﬁujp e r! SRy T
m axam <4!1tq Then’ if,.there is a solution ot\‘bhe shocke + 7 ™

equations far a given'value of Vé, we have shown in the preceding

aection that 52 >'S’. We ask now whether or not there actually exists

a solution for a given Vé and given "initial" state’ VB,
For fixed V Vy» and-E,, the shock equation, Eq. (8),

2’

s

is represented by a straight line in a p2,E2-diagram. The equation
of state, again for the same.Vé,'ip represented by another curve in
this diagram, in general not a straight line. The solution (or solu=

‘tions) of the shock equation, if any, is glven by the 1ntersect10n of

the two curves. We shall examine &he exlstence -6f such 1ntersect10ns

by 1nvest1gating, at two points Po» which of the two curves lies higher,
(2)e Take the state of volume Vé,

Then, in analogy to Eqs. (17) and (18a),

which has the same entropy as
state 1; let us call it p2, é
S 2.f.-.;;.1-,;-.-:..Yg:-.p,.-_-f? PR "..z-;t L)

Lpee e
- e e i

Denotlng by'E2 the value of the energy obtalned from the shock equation,
Eq. (16), for p2 a pz, we.see that

E. <E! . (22a)

In words: For the. pressure ﬁé the equation of state gives a lower
energy than the shock equation, :
(b). Take a state of extremely high energy (temperature) and of

specific volume Vé. The high temperature will cause all molecules to

dissociate completely into nuclei and electrons, and the kinetic energy
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of their thermal motion will be 1arge compared with their éoulomb
- interaction, Therefore the substance, whatever it may be, will behave
‘@8 an ideal monatomic gas (more accurately, as a mixture of such
gases -— namely, the gas of nuclei and the electron gag). For any
monatomic gas, we have the relation

E ;%pv, ' (23)

which remains valid even when the gas is partiy or wholly degenerate.
Therefore if pé denotes some very high pressure. and Eg and E2 are the
energies corresponding to p2 according to the equation of state and
the shock equation, respectlvely, we have

Eg * g’ Pfof V5 s o "(23a)
5 = % pa(V, - V). . (23b)
Therefore
. T . "o on 1 . 3
E;>E)  if v2>.5 v,
and _ f (2L)
ENSEY  if V,<iv I
2552 2L " J

Since E} < E (Eq. (22a)], we find that for V >1IV there must be at
least one 1ntersect10n of the curves representlng the equatlon of state
and the shock equation, If there is more than one intersection, the

number of intersections must be odd, Therefore for any specific vol-

ume greater than one-quarter of the original volume, there must be at

least one solution, and always an odd number of solutions, of the shock

eguatlons,

For any small value of the specific voiume, EV1, there need

not be any solutlon or, if there are solutions, thelr number must be

evens We are now going to show that for all real substances there will

be at least two salutions for volumes V2 between.BV and a certain,

P T . T -

smaller value V. . . The simnlect ovamemd e oo oo g~
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not monatomic. If we use the -abbreviation

it is shown in the ordinary theory of shock waves in ideal gases that

the gas may be compressed down to a specific volume

v

1 . Lo .
Yz min 573—;—1- . . (25a)

-

The constant 4 has, at low temperatures, the value 2.5 for'dia=’
tomic gases and higher values for polyatomic gases. Inserting the
value 2.5 into Eq. (25a) we find the well-kndmnresult'that diatomic
gases may be compressed 1n shock waves to one 51xth of their original
volume, : :

However much greater compre551ons are - found tO be possible when
the vibratien of the.molequle and, espec1ally; its dissociation.and
ionization are considered. When these processes. take place the energy -
content increases tremendously, and‘@.méy easily reach values of .6 or ' -

3/ -According to Eq.. (25a) the. density of the gas behind the shock
wave may thus be as much as 15 times the original density. Even
higher values may be expected for polyatomic gasess If the temperature
behind the shock wave is very much higher than that in front, it can
easily be shown that, for a given g, Vé has very nearly the value of
Eq. (25a). : ' - : T

The temperature region in whlch 8 has high values is likely to. be'
quite extensive because when the dissociation is completed, - ionization
will follow and will affect.first the outer, then sugcessively the
inner electron shells, - However, at still hlgher temperatures, when
1on1zat10n is almost. complete, B must decrease again and must finally
reach the value 1.5 for monatomic gases, because then the nuclei and

electrgns may be considered as free particles with small interaction.

¥/see a paper by He A, Bethe and E, Teller, published by the
Ballistic Laboratory at the Aberdeen Proving Ground in 19,0, which
gives the energy content of air up to 5000°, and new calculations by
H, A, Bethe and J. F. Whitnev in which the temmerature rance is eXe
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We thus find that any gas will ha_ve.,___a,}_:certaim{maximum A which. . =«
will be reached at some temperature ih:the dissociation or ionization
region, probably when both processes are already well along, that is,
at temperatures of about 10,000°. Correspondingly, for a given ini-
tial state, V2 will have a minimum,

v

"2 min * 75 T ¢ (25b)
max

which is certainly less than EWG, thus there w1ll be at least two solu-
tions ;or every value of Vé between V2 min and E 7.

Our considerations are not restricted to di- and poly-atomic gases.
Monatomlc gases will also be subJect to ionization, and are only dis—
tlngulshed by hav1ng the same value of A2 at. low and at very high tem-
peratures. Furthcr 1f we start from a condensed system the compres-

sion w1ll not become very. large SO, long as the, system.ms;a true fluid

or Solld.‘ But as the temperature behlnd the shock. .wave. increases,..the . -

substance will become quesl—gascous (the transformatlon takes place . ..: .

PR

above the critical den51ty and therefore does qot. Jead to a real, £as,).

and the transltlon to thls state will glve rise . to phenomena similar, 'Qu:

to d155001at10n and 1onlzat10n.‘ The latter processes. themselves: will

ceatt o

It can, of course, not be predicted in general whether or-:not,:

"also occur, at hlgher temperatures. D LIRS LA R U U P E

there w1ll be onlv two solutlons for 2 glven Voo It may'happen~that .

2%
B as a function of temperature, has several maxima, This will ogcur,

for example if two d155001atlon or 1on1zatlon processes. o¢cur at widely

dlfferent temperatures. Ordlnary air is. an example of..this thav1or, Lt

hav1ng one max1mum due to d153001at10n near. 8000 , .2nd anether, due to

1onlzatlon, near 20,000°. Then V2 will have two. (or eyen more) .mipima,

and one (or more) max1ma in between. ,In general the .waxima of V2 will ..

be smaller than HVT’ because 8 must be at least 1.5 at any temperature,,..

and Vé is close to the value of Eq, (25a) Therefore there.is, in

general, only one solution for every V, between ﬁva and V1. In Fig, 2...

2
we shall give some examples of possible shock curves (see Seces 8)e

solution for V >»E 19 and at lcast two between HV’ and some smaller
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value, Vé min® In general, the minimum of Vé occurs at very high

temperature, ’ .- -

6. The shock curve .

It 1s convenient ta consider 2ll the solutions of the shock equa-
tion, Eq. (8) for = given "initial" state V1,E1, including both those
with V2'< V1 and Vé >V1 The former group (compressed states) will
occur behind shock waves propagating 1nto a mediym which is in state: 1
the latter group (expanded states, Vé > V ) will occur -in front of shock
waves behind which the state of the. medlum is given by V 1.

We are going to show now that all the solutions of the shock equa- -
‘tion must lie on a contlnuous -curve in the V'E-dlagram which we shall '
denote as the "shock curvel, .. For .this.purpose .we consider two solutions
of the shock equation whose specific volume differs by the small
amount dv, Thep we have, by .differentiation of Eq. (8) with respect

to the quantities defining state 2,

2dE=—(~p1 "::pz)dvf (V2 ".Vf)dp ". (26)
Now the equatlon of state gives the pressure ‘as a. unlque function of
V and E therefore we may write

dp = (g%)VdE + (%E)Edv , | (27)

where the derivatives are again unique functions of V and E, deter-
mlned by the equation of state of the substance, Inserting into Eq. (26)

b4

we get

dE. P, +p2 + (V -v)(ap/av)
dv 2 + (V - V )(ap/aE) 2°727¢

The derivatives op/eE and dp/aV are to be taken at v2,E2
Equation (285 is a first-order differential equation for the

shock curve. If the equation of state is known, the entire shock curve
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" and it will be’ shown that'the-shock curve goes to infinite energy E

- 18-=. ST m® D

can be obtained by 1ntegrat1ng Eq. (28) ‘using any standard method.
The 1ntegrat10n can be started at the p01nt V1,E1; at this polnt -
Eq. (28) becomes

AT Py L (262)

a relation already given in'Eq.*(9). Since Eq. (28) is a‘first-order
differential equation, thé shock ‘curve cannot énd or start anywhere
in“thé V,E-plane. It must therefore either go to infinity or leave
the region of .definition of the Eqﬁétioh of state or be closed., The
last “altefnative will be proved to be impossible in the néxt section,
-
at V HV’ (see Sec. 5), wheresds on the 'side“ V2 >V it goes either
to zero témperature or ‘to a phase boundary, - .

If the numerator or the denominator of Eq. (28) becomes zére
separately, no difficulty arises. A simultarieous vanishing of both
numerator and denominator would g1ve a singular p01nt but it will
be shown in Sec. 7 thdt -th& shock curve dannot $tart or end in sin=-
gula; pointse.

Fbr~many~purposes.it is more convenient to use the entropy rather
than the energy as an independent variable. -According to Sec. L, we
have 82 > S for the compressed states (V <V ), and 82 < S for the
expanded states (V > V ) e Theréfore, in'a Vv S-dlagram w1th V1,S1 as-
the origin, the part of the shock curve containing the compressed
states_yjll,lig‘in.the-second quadrant, that containing .the expanded
states .in the fburth'éuédqant. -.The- shock curve in the V,S5~-diagram
will be tangent to the V-axis near the origin, according to Eq. (13).

The entropy can be ihtrqquqeg by means of the thermodynamic re-

e

lation (applied to state 2) fn,;7¢~;”~“
Inserting this into Eq. (26) gives

2T,dS = ApdV - AVdp , (30)
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a most convenient relation. - ExpreSSing'E_as a fﬁncticn of Wand'S, -~

we may wrlte . KR
o ST
dp a qv +- as - (30a)
and obtain |
fp = AV(op/dV) 5 .
av T T W(ps), (31)

The denomlnator of Eq. (31) is the same as that of Eq. (28), eX-
cept for the factor T2, because

“ (QEpPS), =T , » (31a)

-

For:positive AV (expanded states), the denominator can never become
zero if-condition II is fulfilled by the equation of state, Therefore,

on the side of expanded states, the shock. curve must -go monotonicall

to greater specific volumes..-For compressed states. {4V <. -0), the de= -

nominator may easily become zero this corresponds to a minimum (or~
maximum) of the specific volumej ' We have shéwn ‘st the end of the last
section that for all real substances there’ ex1sts at least one minimum
of V2 for a given V1 and that this minimum oecurs ‘at rather«hlgh tem—
peratures(about 10,000 %)

The humerator of Eq. (31) may be written

w[H-@). o

Thereforc if dS/dV were zero anywhere on the shock curve (which, as
we are g01ng to show in the next sectidn, does not occur exce pt for

AV = 0), we should have Ap/aV = (ap/av)s. Physically, this would mean
[See Eq. (6)] that the shock-wave velocity relative to the medium bee

hind the shock wave,

u, = V - ég' , - (31c¢)
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becomes equal to the sound velocity in that mediim,

ay =V, -(g;;)s § (31d)
‘ R B S T

It should be remarked that while dS/dV is well defined by Eq. (31)
for any values of V and S, it need not be continuous. For a mixture
of two phases, (ap/c)V)S will haveia different (greater) value than for
the puré phases (Sec, 13)-'héﬁéé“ﬁé7évmﬁiii“1n éenéral have a dige
contlnuity, and S(V) a kink where phase tran51tlons begin or are com—
pleted, Howevér, as was p01nted out repeatedly, ‘most phase changes
must be excluded from our theory because condition” (1) "is violated.

Te Proof of the monotonic behavior of -the entropy

In this section we shall prove the central theorem of the theory,
namely: If the state in front of the shock wave (V1,S ) 1s glven, '

there is one and onlv one solution of the shock equatlons for any

glven: valie - of - the- entropv~ 5= behlnd the shcck wave (o ~< 8y <:a3).

2.
TIf the State behind the shock wave is given: (V S ) and If“phase

changes are’ excluded, there is “oneé and only one solutlon of the shock
equations for any given value of the entropy 52 in front of the wave,
52 be1ng larger than a certain Sj where the state SB lles on ‘a phase

B
boundary and DB is a functlon of V S1.

.

The main problem is to show that there 1s QQEX one solutlon then
from the considerations of oec. 6 it can be proved easily that there
is actually one, To prove the main statement we shall show that the
assunption of two solutions with the same“entropy leads to a contra-
diction, .

Suppose we have two solutions, denoted by subscripts‘g and'g,

which have the same entropy,

S, =5 (32)

Without loss of generality, we can assume that

V3 >V, . (32a)
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Since both soluttons fulfill the shock equation,

Eq. (8), for the
sBame initial state V p1,,E1, we have

2(E, - E,) =.(1l>.2m+ POV, = %,) , T (3

2(E3"' E1) = (p3 + P1)(V1 - V3)1o n (320)

Therefore

2(E - E, ) = (p, - p3)(V -V, + (p3 + p,)(V V,) . (33)

Since 32 3, Fe have in analogy to Eq. (18a)

v _
3 .
2(E2 - E3) a 2ﬁ pdV < (p2 + p3)(V3 - V2) . (33a)
o _ 2 - .

Subtracﬁiﬁg Eq. (33)'from'Eq: (33a), we obtain

('pz_._._v qu‘) (VB' - V2)' + (p2 - p3)(v2 - 'V1) >f 0. (Bh) -

Since Vs > Vé, we may d1v1de thls 1nequallty by Vé 2 and obtain
. p ' o )
Py = p, < v-——~—- (V -V, 3La

which holds irrespective of the si

gn of py = p2 Adding P, = Pq to
both sides,

we obtaln the corresponding equation

pz-pB . )
PRy <y (- v (3Lb)

We can now deduce inequaliﬂies for the
tions (3La,b) into Egs. (32b,c).

sign of V1 - V2 or V1 -

energy by insefting:rela—
To ‘obtain results independent of the

3» Wwe divide Egs. (32b,c) by these quantities
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and get
E, -E ) P, = D
2 y—y> = b, * b, < 2p2+v——v2§_ 2 (V- 7y, (35)
2~ " ‘-
By -E, P2 =~ Py
2 v.1_-_v.3. 3 p1.+ p3 < 2p3 V—T'V— (V 1) . (353)

From these inequalities we shall deduce an inequality for the
entropy of state 1. We have proved in Sec. h that

it
0

2 3

~

EEN '>'v3 (>v) . (36a)

H
2

S1 < 52 3

-
-

Now let us con51der the state p1,E whlch has the volume V but the
entropy 82 = 53 The adlabatlc whlch goes through the three states S
V2,p2, 3,p3, and V1,p1 is convex in the V,p-diagram accordlng to condl- -
tion (I) = (o p/BVz) >.0, Therefpre, everywhere outside the range
from Vé to Vj the adlabatlc will lie above the straight line joining
the points V,,p, and V'3,p3 (Fig. 1), Expressed in formulas,

p

(v,s8,) > + 2 " P3 (v, = V) = + 2 _ P3 (v V) if V<V V>V,.(37
p ot Py v;-:-v; 2 p3 v;—:fv; 3~ i b or 3e

Now it is clear that V1 Mmust lie outside the range from Vé to Vj
because the states 2 and 3 must either both be compressed states or
both be expanded states [See Egs. (36;, (36a)]. If V1 < V2, we have,

using Egs. (17) and (37),

v, v, I -0
Z(E;-E2)=2/pdv>2/ {pz»f—g——i(v -V)%dV
v 37

.-V, ‘% |
1 v, 2 .
(38)
- P, = P 5
2 3 L 4 , {
ety o, (= V) (V=)
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T T T T states 2 and 3

Vyapy

Specific volume V

Fig. 1. Specific’ volee—precsure diagram used in the proof of the
central theorem. The adiabatic lies below the straight line between
states 2 and 3 (Sec. 4), above it everyvnere el.,e (Sec. 7).

Since V2 - VT is.positive, it follows by comparison with Eq. (35) that

E1' >Ei , : S (39)

or, since E1' and E; are states of the same specific volume and ‘since

the entropy.of state E; is 52,

5, >8,, (Lo)
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Similarly, if vy > V3, we calculate the energy E; by integration
over the part of the adiabatic between V3 and V1, rather than Vé and V1.
We have then, from Eq. (37), :

v Ny

1 1 _ _
: / Py = Py
2(E, = E!) =2 pdV>2 | |p. + (Vy - )| av]
3 1 J 3 V3 -V |
Vs Uy i
$ (38a)
= |
r pz_pB ! '

a :2p3 +-—-—-—V3 — V2 (V3 - V1) } (V1 - V3) . l

Since now V1 - V3 is positive, if follows by comparison with Eq. (35a)
that

(39a)

and therefore

5 1 (L0oa)

in contradiction to Eq. (36a), which is applicable to our case,

We have thus obtained a : contradlctlon, both for V1 < V2 and for

V1 > V3. Therefore our original assumption must be false and we flnd'

For a given initial state V1,S1 there are never two solu- -

tions of the shock eguation belonging to the same "final®

entropy 52.

The shock curve (Sec, 6) will therefore g0 monotonically from low

S to high S, It cannot have any maximum or minimum because this would

imply that the same value of S is taken on at least twice, once on each

side of the maximum or minimum, This means also that there cannot be

any closed shock curve because such a curve would necess arily have a

maximum and 2 minimun. -

Likewise, there cannot be any singularity on the shock curve Wthh
is approached in a spiral, If there is any singularlty at all, it can’
at most cause 2 kink or a cusp in the shock curve, without interrupting

the monotonic incrensc of the entropy.
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We have shown in Sec. 6 that the shock curve cannot end anywhere
in the V,S-plane but must either be closed or leave the region of
definition of V and S, or go fo infinity, We have just proved that
the curve cannot be closed., The region of definition would extend

from O to o for both V and S if we considered all phases of the sub-

- stance, Actually, we have agreed in Sec, 1 to exclude phaée changes,

firstly since they probably do not occur because of ‘their long re-
laxation time, and secondly in order to insure the validity of con-
dition:(I)s If we consider only one phase, for example, the liquid,
certain large.values of the volume and certain small values of the
entropy cannot.be reached; we have, therefore, a definite boundary of
the phaSe toward large V and small. S, ,On‘the other hand, states of‘
high entropy can always be reached without rhase change, both from

the liquid and from the gas, because high entropy corresponds to
temperatures above the critical onee From the solid, states of arbi-
trarily high 8 can also be reached by raising the temperature with-
out phase change, it being questionable only whether they are iden-
tical with the states obtained by heating the liquid or gas; but
metastable phases have explicifiy been pefmitted in our donsideration,g/
for the same volumes may be réached by a:liqﬁid, aﬁd also‘by é gas g
above the critical temperature, Summariigng, we find'ﬁhat For cdm-l
pressed states V is limited only by zero and S by infinity, whereas
for expanded statgs the lihiﬁs are usually given by bhase Boﬁndaries.
We shall now examine the behavior of the shock curve in the
various quadrants. On the side of small v, (<v,1, we know that the
entropy is high, 52 > 81. We ‘'know further that t?ere are states of
very high energy and entropy, and Qf.volumg V2 = EV&, which satisfy
the shock equations, Egs. (23a,b). It follows that on the high~density

éVFThe high temperature-high density state of a solid may consist
of an ordered arrangement of the nuclei, with the electrons moving
practically freely. Under equilibrium conditions the "lattice of nu-
cleiwill melt at a certain high temperature. In view of the high
temperature, this phase change will probably occur rather rapidly,
However, as will be shown in Sec. 1, such a phase transition at very
high temperature will almost certainly leave our general theory valid,
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side the shock curve goes to S2 = o rather than to V2 = Q,

That the curve does not go to Vé = 0 can be demonstrated in various
ways, of which the following may be the simplest. At very small specife
ic volume, the atoms of the substance will be crushed by pressurc ioni-
zation even at low temperatures since the mean distance between nuclei
can be made smaller than the radius of the K-shell, Then the electrons
and nuclei form again a perfect though highly degenerate gas, The
coulomb energy becomes negligible 'in the limit of very small specific

volume being proportional to V~ /3

s While the kinetiec energy of the
degenerate electrons is proportlonal to V° ~2 3. As has been mentioned

in Sec. 5, the relation

N

E=x%pV , (23)

is valid for a degenerate gas Just as_for a nondegenerate one, bro—

" vided .only the interactions are negllglble. But if Eq. (23) is valld

then there cannot be any solutlons of the shock equatlon for v, <ﬁIV

[see Egs. (23a, b)] Therefore there is certalnly no solutlon for very

small Vé : . e |
On the side of expanded states V2 > V1, the entropy 52 is less'

than S 1o Now it can easily be seen that there is no solutlon for

very 1 arge V,, for it follows from the fundemental equatlon Eq. (8)

that for V2 >I>V1

By =By %= 50, + BV, <—-;—p1V2 .
which goes to -0 as V2 increases. Since there is a lower bound to
the energy, no solutions ex1st for Vé very large, Therefore the shock
curve must leave the range of definition either at 82 =0 or at a
phase boundary. In the latter case, ~werdenote*by’SB'the value offS2
reached at the phase boundary, ‘

Thus we have proved'

The shock curve is a continuous curve —— beginning 1t S, =0

(absolute zero temperature) or at a phase boundary and at’

finite V' >V, 2and going to 3. = @ 20t V. = LU o
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entropy has no maxima and minama, Bvery solution.gg.the
shock equation (for the given phase) lies on this shock

curve, , ‘ i
These statements contain the theorem enounced at the beginning of this
section =- naﬁely, that there is onpe and only one solution for any
value of 52 greater than 51. It is possible to arrange all solutions

for gi%en V1,S1 in a single sequence according to the value of 82.

8. Behavior of.volume, energy, and pressure on the shock curve

The specific volume V does not show such monotonic behavior as
the entropy S. Only for expanded states (V' >V, ) which are of rela-
tlvely little interest, can we show that there is at most one solutlon
for any given V2. This has been done in Sec, 6, by means of" Eq (31a)
[see the remarks after Eq. (31d)]. ‘ :

Thus, .on the side of expanded states, the volume 1ncreases monoton-
ically with decreasing entropy. As we have shown in Sec. 7 the shock
curve ends in general on a phase boundary, or possibly on the line
S, = 0, but in any case with a finite volume V., which we may denote by

2 ' . 2
V.. In other words, the possible states in front of a shock wave, be-

B

hind which the material is in state V1,S1, can be ordered in a single

sequence of monotonically increasing volume, ranging from V1 to VB'
For compressed states (V2 <:V1), there is no restriction on the

rlumber of solutions for a given V, In fact, we have shown in Secs 5

that for any real substance therezwill be at least two solutions for
any V2 between V2 min and E 1 Typical shock curves in the V,S5-dia~-
gram are shown in Fig. 2. The (first) minimum of V2 will ordlnarlly
occur at a rather high temperature at which dissociation of the mole-
cules (or -ionization) is father far advanced for air, It lies at
bout 800C°, and has a value of about 7%V5. For higher temperature
T2 (or entropy 82)’ V1 will increase again, For some‘substances,

V, will have further maxima and minima (Fig. 2(b)], while for others
it may increase monotonically from V2 min’to the asymptotic value

L, [Fig. 2(2)l.

The nart af +he aharl r1rve hetweern V and V. is ordinarily
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Flg. 2. Examples of shock curves in a specii‘ic volume-entropy' diagram. Both curves approach

(a) Only one minimum for V Curve ends for large ¥ oi1 a phasge. bmmda.ry.
(R) Three minima of V. Curve goes to 8 = 0. .
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the “main aection. . .
We shall‘nOW'conaider the energy E E We have the thermmdynamic .
'relation ' o

L

dE = T,dS - p,dv, . (29)

2

where, as usual, dE, dS, v denote small changes of. E,, 3,, Vé, with
E1,,S1, V1 kept constant. Over the "main section" of the shock curve
(see _preceding paragraph), dv is negative for positive dS, Therefore'
dE is p051tive, that is, the energy 1ncreases with increasing 82.

) ‘When: Vé has passed its minimum-and °2 1ncreases further, the sec-~
ond term on the right~hand side of Eq, (29) bec0mes reeative, but,
dlrectly behind the mlnimum of V2, dv will be small and hence the ener-
gy will still 1ncrease with S The same will agaln be true at extreme-
ly hlgh entropy where (Dec. 5) the volume remalns almost constant
V E 1.- However, in between there may, in princ1ple, be a max1mum “_
of Eg (followed by a minlmum at a Blgher "alueofRSQ) In order to de-~ .

rive the condltlon for such a maxlmum, We. use the fundamental equatlon

-~ oo o - e PR e

e 2B, E) s (pyt p1><v SU) e (8)

-

“and’c consider p2 as a functlon of LZ and Vé Differehtiating; we Ob='
ta:.n « o : . L S :

2 dE = (ap/aE) (V -V )dE + (v -V )(ap/av)E dv - (p1+p2)dV | (L2)

- ., - -

Therefore, 1f dm/dV is to be zero, we must have

Py * B,

< Ph =
\SVjp © 7= Y2

(L3)

" The right-hand side is positive for compressed states. Therefore a
necessary, though by no means sufficient, condition for the occurrence

of a maximum of E2'is

-

S

(¥
b=t

>0, (LL)

7/

&
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Therefore m can exclwde ths occurence of any energy max‘mm on the

: shock ourveif e, require R SR

[ ’

(§%)<° o ()

. Condition' (III) can eaaily be' shomn'to be satisfied for ideal gases’

and for d‘issociating gases. We have ‘not found any excestion to it for

~any. one-phase.system (Sec. 16), In_fact condition (IID)is even ful- "
f111ad ‘Tor most phase transitions for 'which ‘condition (I) is v1olzted.

We beligve there‘fore that condition’ (III) is ‘generally valid when
condition (I) is valid; that is, when our entire theory is justified.
<"-If ondition (III) is satisi‘ied, the energy of "compressed states"
increases monotonically vrith the entropy, from E1 to @ For ‘"ejc_- '
panded states“ have s‘hown in the beginn:mg of’ this section ‘that the ,
Sye “Theréfore both )
terms in- Eq. (29) are negative, that is, the energy décreases mono- oA
tonlcally w1th decreasmg entropy. Therefore we “Find: ) |
“If condition (III) 1s fulfllléd the energy E ' increases
monotonically w1th the entropy, along the entire shock

volume: V2 increases monotonically mth decreasing S

1
.

curve.
[For the monotonlc 1ncrease of S condition (III) need ,Ave be fulfilled, ]
In bec. 17 we shall discuss what happens if, for some substance con-

‘dition (III) should be violated while conditions (I) and (II) are satis-

fied, : B R LS T I T B G N
For the pressure, we shall prove first that Ap 2 p, = p1 cannot

be zero anywhere, except at the’ “orlgin " V2 = V 52 51. “For com~

pressed states, V2 < V1, th:Ls follows most easﬂy from a relation proved

in-the next section, Eqg,. (SOL ‘which. state thatru? *)’a? *If"v’z < V.

- Using this result, we findfrom Eq. (6)

2
. . Lo 1 )
P N ' - 1 - . ot
1

Since the shock equations are symmetrical in states Y and 2, it follows



from Eq. (45) that also

Py <’p1 if V2 > V1 . (L5a)

Summarizing, we have proved that the material behind a shock wave must

have greater'density, entropy, energy, and pressure Ehgg‘the material

13 front of the wave,

Next, we can show that Py increases monotonically as the entropy
ingreaSes from S1 ﬁo © provided’the energy also}incroases monotonically,
that is, provided condition (III) is fulfilled. It can be seen im-
mediately that P, CGrtainly.incregées with Sé as angvaé v, decreases.
This follows from Eq. (30), whicli-gives, for negative AV, ' '

| V] dp = 2T,dS - apdV . (L6)

Since Ap is positive (see previous paragraph), it follows that dp must
be positive if dS is positive and dV negative, On the other hand, if
the volume increases with increasing entropy, we may use.Eq. (8),
namely, . a
# 2(E, - E,) ,

R e B
Then, as long as E2 increases with the entropy, the numérator will in-
crease, the denominator decrease; therefore p, will still increase with
.increasing 52.

For expanded states very little can be said about Py beyond the
statement p, < p, (Eq. (L5a)]. Equation (30) gives, for positive AV and

negative Ap,

AVdp = = 2T_dS - |ap| 4V , (L8)

2

The first term is 56§itive for decreasing entropy, the second negative,
and we do not have much information about their relative magnitude.

Therefore p, may easily have maxima and minima, for p, < p,.
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Thus we find that energy and entropy increasg, monotoniaally to- .
gether, being greater than E1,S for compressed states and smaller
than E1,S for expanded: staEES. The pressure increases monotonically
with the’ entropy’ ' for compressed states; for expanded states it need
notmbehaxg,mqupgpzcgliyubut will always remain below Pye- The' volume
increaseg .monotonically with degreasing entropy for.expanded stases; . ..

. for compressed -states it will in general not decreage ronotonically -

but'willﬂalways refain smaller. than'V'

ce T o
Vi .

g -

9e 'Relatlon between velocitv and entropv o Lo

. In Eq. (30) we. have shown that .

E 2Tédsis apdV- AVAD . T (dp)
if s’-.vz,p2 and S, + ds; W E*HdV;fpéi*”dp‘are both solutions of the
shock equation for the same 1n1t1alstate S, 1,1* These twoneighboring

solutions will correspond 6 dlfferent velocxtles, 1.and'u + du,,

1
of the.shock wave relative: to: medium 1, . Differéntiating Eqi (6)

logarlthmlcally, we get - oL

2 du _E, . I
. ..u}uuﬂf o AV T : (L9)

Comparing this with Eq. (30), we find immediately

o A A idu: o ST B L v :
u1 ApAV Lo (L9a)

. . . o e T R

and, multlplylng geain by. Eq- (6)

2 .
" O (50)
u.du, = T,.dS..
. 1 S A';Z_ e

By Eq. (50) the veloc1tv change du1 is uniquely related to d3,

the coefficient belng p051t1ve definite. Therefore, since the entropy

increases monotonlcally on the shock curve from S to infinity, the

vclocity u, must also increzse monotonically. Moreover, there can bs
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only one solution of the shock equations for any given value of u

19
but we have not yet shown whether or not a solution will exist for a

given u,e.

For S, = S, we have shown already in Sec., 3, Eq. (10), that u,

is the sound velocity, a For 8, > S, (compression waves), Eq. (50)

shows that u, must be gr;ater than aje As 52 increases, V2 approaches
the value % [see Eq. (23)] while p, can increase indefinitely; there-
fore, accordlng to Eq. (6), u, w1ll also increase indefinitcly. The
same conclu51on can also be deduced from Eq. (50). Tuurefore_

For any initial state of the materlal V S there exists

one and only one solutlon of the shock e ;guatlonb for any

shock-wave velocity, u u,, greater than the velocity of

sound 1n the material, a1.

For all these solutions, the specific volume Vé behind the shock wave

will be less than that in- front, Vi, while pressure, entropy, and
energy are higher behind the wave than in front of it. If 'conditions
(I), (II), and (III) are satisfied, pressure, encrgy, ar- entropy -
behind-the shock wave are monotonically increasing functlons of the

shock=wave ve1001ty-u1. In the case of the entropy S,, this state—~

. _ 2
ment is valid even if condition (II1) should be violated,

For 52'< S, (expanded states; for their phy51cal meanlng, see

beglnnlng of Sec. 6), u, must be smaller than the velocity of sound,

aye As 82 decreases, u, “will also decreasece. However, when 52 be-

comes: equal to §B (phaée bouhdary) or even equal to zero, u, will

certainly not vanish -~ because Vé is finite, as shown in Sec, 8,

and p, must be smaller than p, [see Eq. hS(a)] Therefore Eq. (6)

gives .
2
41 Py =P
-V—2- a W>O for 52 = SB . (51)
1

let us denote the va 1ue of u, for o = S . (or O) by u 1B°

Then we find: For given V1,o1 tﬁere is one and only one solu-

tion for every u, between Usp and 2. These solutions c espond
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to V, > Vo P2 < Pqs E2 <E,,-and, S <. 51, and represeni those states
which may exist in front of a shock wave when the material behind the
wave is in state V,,S

1251- For u, <u there is no solution of the

1B
shock equationse ,

. The result which w1ll be .most 1mportant for the stabllity con=
sideratlons (Secs, 10, 11) is thiss

- The velocity of a shock wave with respect to the material

in front of it (less-dense material) is always greater than

the sound velocity.in that materialj; the velocity relative

to the materlal behind the wave (denser mater1al 1s alwavs

less than the correspondlng sound velocxtv.

10. Stability of shock .waves. agalnst spllttxng into:. waves movlng in
the same direction

Consider a shock wave'whlch is preceded or followed by 1nf1n1~
tesimal waves elther compre531on or rarefaction waves. D1nce 1nf1n1v
teslmalwmvesmove with the veloclty of sound of the medium, the shock
wave will, accordlng to the last theorem of Sec. 9, move faster than
the 1nf1n1teslmal waves 1n front of it and more slowly than those bc-
hind 1t. Therefore the shock wave will catch up w1th the sound waves
precedlng it and will be overtiken by the sound waves fo¢ch1ng 1t.

Now consider two shock anes moving in the same d1rect10n. Wlth
respect to the materlal between the two waves, the "front" shock wave
%11l move more slowly than sound the "rear“ shock wave faster “than "

sound, Therefore the rear shock wave w1ll overtake the front shock

WiVee

The same will be true for any arrangement of waves mov1ng in the
same direction, however many. shock waves and infinitesimal waves it
may contain, Each shock wave in the system will move faster than the

wave preccding it and more slowl&”tﬁaﬁ'thé*wave following it, and there

is therefore always a tendency toward combination of waves. We shzll

now prove the stability of a single shock wave against splitting into
scveral waves moving in the same direction. Let the shock wave be at

> 3 C a2t time t = 0, If the wave splits at this instant =211 the




o SRR
partial waves must start from the same point, x = O. But according
to our dlscussion, tha “preceding" waves move more slowly ‘than those

"follOWIHg" them, which is obviously impossible if they all start from
the same point,

No shock wave can split into “partial" waves traveling'ig

“the same direction, whether these partial waves ég shock

waves or infinitesimal ones.

'Quite generally; it iswiﬁpossibie that a shock wa&e.and'ény other
wave start from the same point at the same time in the same direction.

- There can only be either a shock wave or a train of infinitesimal rarew

faction waves.

11, Stability aééinst any splitting

The result of Sec. 10 still leaves the possibility open that a’
shock wave may split ‘spontaneously into two shock waves ﬁoving"in op-
posite directions (instead of the shock wave moving opposite to the’
direction of the original shock wave, we may substitute a train of
infinitesimal rarefaction waves)., In addition to the two shock waves,
as von Neumann has poirited out, there will in general exist a dis-
continuity of thé density (and entropy) which is stationary with re-
spect to the material and remains at the mate;%g}_point where the split-
ting of the original shock.wavézhas occufred. The pressure is. con-
tinuous at this point, )

let O be the original shock wave, A that shock wave which after

the split moves in the same direction as 9 (which we call "to the right"),

C ‘the wave which moves "to the left," and B the stationary discontinuity

of density. Further, let 1 be the material to the right of wave O or

A which is as yet unaffected by the shock waves; 2 the material be-

tween A and Bj- 3 that between B and C; and L that behind g or, origin-
21ly, behind O.
Then materials L and l_musﬂ be connected by the shock equations

since they are originally separated by shock wave O, Thus

2(B) - Ej) = (p, + py))(V; - V), (52)



and
2 2 o I .
u01 auoh llph—p1 ) (53)
I -

where Uy and uOh denote the velocity of the shock wave 0 relative to
the media 1 and L, respectively. Medium L, then, moves to the right

relative to medium 1 with the velocity

-V au

o0 Tt . 51

This velocity must, of course, remain unchanged afﬁéiuihe Spllt of the

shock wave,

SRR M

~Materials 2 and - ‘1 must also be' conhected by the shock equatlonsv”

because wave A must ‘obviocusly be a shock wave rather than a rarefactlon

wave., Consequently,:

2B - E) =y v )T V), ()

2 2 o
Ya1T W Py~ Py . N
v - (55)

2 I

and the velocity of 2 with respect %o 1 will be”

~

-, *

SVy =y -, - ‘f(§?§)‘;.

¢ S e, e s - ' . : —

toward the-rzght. R

- Materials 3. and 2 have the same @ressure'and—velodity;

p3 - p2 ’ '\
. : ¢ (55¢)
v =
3 7 Vo J
hHidle tThe e 3@ ma om0 e e 1T r - -~ .




be a shock wave or a rarefaction wave, We shall not use the detailed

theory of that wave but ohly the following simple consideration.

If

sy and U, h are the velocities 6f wave C-relative to the media 3 and
L, then, gince wave C moves to the’ left relative to the materlal the

velocity to the right of medium h relative to

3 will be

vh-v =uch'-u63.

Using Egs. (55b,c), we get for the velocity to the right of medium }

relative to medium 1

.VhéuA -u uch

o3

(56)

(562)

This quantity must be equal to the velacity v given by Eq. (54), that

is,

- Uy T gy, Ty oy,

+"v‘c;h' g3

This w1ll be' the fundamental equation of the theory,

Now we have from Eq, (3)

Uy Vg

Therefore

(2). If wave C is a compression wave,.

P2 TP3>P -
Therefore, according to Sec, 8,~

V)J.> V3 3

and, according to Eq. (58),
Un cl >»u c3 .
Insertlng this into Eq. (57) gives

1101 - O)-l >u

1~ Yo,

(57)

(58)

(59)

(59a)
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uo1- uoh <Y, =gy, (60a)
Equatlons (59a) and (60a) are in a convenient form since they re-
qulre the comparison of two solutions of the shock equatlon belonging
to the same initial state 13 From Eq, (53) we find

A R R R DI (61)

and similgrly

, 2 v
J‘ . (uA1 - qu) "_' (P2 - p1)(v -V ) . (613)
Obv1ously, Eqs. (59) to’ (61) are completely symmetrical with respect
to states 2 and L; therefore we can assume without loss' of generality
that p) > p,, that is, Eq. (60). Then Eq. (60a) must hold, and thcre-
for? we flnd from Eqgs, (61) and (61a) the condition for s»lit:

(Ph P1)(V -V) <(p2-p1)(V 2) o (62)

Since P), >~p2, Bq. (62) is.obviougly impossible_if;

Vh <V (62a)

2 ®

However, Eq. (62a) follows automatically, from P), > P, as long as both
states, 2 and L, lie on a part of the shock curve on which the volume
decreases with increasing entropy, for example, on the "main section"
(Sece. 8)s For most substances, this main section probably covers 211
temperatures up to about 10,000° (Sec. 8)s: =~ - - v
However, at very high temperatures, which may still be experi-
mentally accessible, V2 increases with increasing entropy (3ec. 8) whilc

Py continues to increase. Then Eq. (62a) does not hold but is reversed,
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tnat is, Vh > V2. In this caéé,‘we'have certainly

2;;1(V1 -(Vh) <2p,(V, = V)) . (62b)

Adding this inequality ta Eq. (62) and using the fundamental shock
equations (52) and (55), we get the condition

which is necessary but not sufficient for.the split of the -original
shock wave, (It is almost sufficient since p, << P, beyond the mini-
mum of the volume.,) Now, as we have shown in Sec. 8, the energy will
increase monotonically with the pressure if the material fulfills
condition (III). Then Eq. (63) can certainly not be fulfilled for
P), >Pp. Thus we find: ‘ ’ B a

A shock wave can never split in a material whose equation

of state fulfills the threc conditions (I), (II), (III).

As these conditions appear to be valid for practically all méterials;;’

as long as there are no phase transitions, we have proved‘thé com-

plete stability of one-dimensional shock waves in all ordinary mate-

rials. : T o

>
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